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Spectral problem

What do we measure or compute?




Spectral problem

(0;(2)O0;(0)) ~ §;; || 24

Two-point functions = Operator dimensions




Spectral problem
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Correlation functions




Integrability in N=4 SYM

Study the dimensions of gauge-invariant operators of N=4 SU(N.) SYM

O, =tr (P, P, ... P1,)
O = tr(®y, Pr,) tr(Py, ... Py, )
O3 =...
Operators with the same charges mix under quantum corrections
The trace structure is conserved at planar limit




Integrability in N=4 SYM

Study the dimensions of gauge-invariant operators of N=4 SU(N.) SYM

01 = tI’((I)Il(:[)I2 o oo (I)IL)
02 = tI‘((I)Ich)IZ) tI‘((I)IS oo (I)IL)
03 — e

Operators with the same charges mix under quantum corrections
The trace structure is conserved at planar limit

Planar dilatation acting on the single-trace operators
= Hamiltonian of a quantum-integrable spin chain

te(ZZYZZY) < [4AH)

[Minahan, Zarembo; hep-th/0212208]




Exact dimensions

Integrability methods (TBA, NLIE, QSC) are believed to predict
the planar dimensions of N=4 SU(N,) SYM operators at any A

[Bombardelli, Fioravanti, Tateo (2009)] [Gromov, Kazakov, Kozak, Vieira (2009)] [Arutyunov, Frolov (2009)] [Gromov, Kazakov, Leurent, Volin (2011-14)]

Do these nonlinear egns always have regular or real solutions?




Exact dimensions

Integrability methods (TBA, NLIE, QSC) are believed to predict
the planar dimensions of N=4 SU(N,) SYM operators at any A

[Bombardelli, Fioravanti, Tateo (2009)] [Gromov, Kazakov, Kozak, Vieira (2009)] [Arutyunov, Frolov (2009)] [Gromov, Kazakov, Leurent, Volin (2011-14)]

Do these nonlinear egns always have regular or real solutions?
The answer is subtle if taking the planar limit is subtle

e Operators of O(N,) length (multi-trace mixing)
® (3 deformation (SU(N.) vs U(N,))

e v deformation (closed tachyons)
e DD branes (open tachyons)

[de Mello Koch et al. (2011-)]
[Ahn, Bajnok, Bombardelli, Nepomechie (2011)] [de Leeuw, van Tongeren (2012)] [Fokken, Sieg, Wilhelm (2013-14)]
[Bajnok, Drukker, Hegedus, Nepomechie, Palla, Sieg, RS (2013)] [Hegedus (2015)]

We revisit the one-loop operator mixing problem at finite N




A simple example

e.g. Tree + one-loop operator dimension surfaces

in the(A, A\, N.) space for some scalar operators

Integrability < Nc = « data

Finite Nc one-loop dimension < Slope at A=0

The 1/Nc corrections are (un)expectedly related to 4pt functions




Asymptotic Causality

Four-point functions in AdS/CFT in the Eikonal limit, p1 ~ p3, p2~ pa

> v 7 U
N 7
N 7

O Os

Scattering of two light-like particles

. [Cornalba, Costa, Penedones, Schiappa,
Phase Sh Ift hep-th/0611122,0611123, arXiv:0707.0120]

~ Dimension of an intermediate operator
Odouble trace ™ :Olap,l © oo ap,j (82)n02 ;




Asymptotic Causality

Four-point functions in AdS/CFT in the Eikonal limit, p1 ~ p3, p2~ pa

» v 7 U
N s
N ’

O Os

Scattering of two light-like particles

. [Cornalba, Costa, Penedones, Schiappa,
Phase Sh Ift hep-th/0611122,0611123, arXiv:0707.0120]

~ Dimension of an intermediate operator
Odouble trace ™ :Olap,l © oo 8;1,3- (82)7’1,02 ;

Phase shift ~ Time delay of gravitational shock wave

— Positive from the asymptotic causality of gravity on AdS

Anomalous dimension of the double-trace operator must be negative

(non-planar effect)

[Camanho, Edelstein, Maldacena, Zhiboedov, arXiv:1407.5597]



Plan of Talk

v 1.Introduction
2. Operator Submixing Problem
3. Submixing from Correlators

4. Summary




Operator Submixing

Problem




Large Nc degeneracy

Dilatation operator is hermitian w.r.t. 2pt function:

(—25 ) LOA@OR(0)) — (©4©0)On(~2))} =0
— (D04)05) = (04(D05))

— (AA — AB) <OAOB> =0

e The large Nc spectrum is highly degenerate owing to integrability

e Degenerate eigenstates can freely mix, even if they have different

trace structure




Large Nc degeneracy

Dilatation operator is hermitian w.r.t. 2pt function:

(—wé%) {(O4(2)O5(0)) — (OA(0)Os(—z))} = 0

= ((D04)0B) = (0Oa(D0B))
— (AA — AB) <OAOB> =0

e The large Nc spectrum is highly degenerate owing to integrability

e Degenerate eigenstates can freely mix, even if they have different

trace structure

Operator submixing problem =
How to lift large Nc degeneracy by 1/Nc corrections

Interesting states : large Nc zero modes (A=0(1/Nc))



Lifting large Nc degeneracy

To lift the degeneracy, solve ® 10007 = 1 perturbatively in 1/N,

Split Done-loop @and  into planar and non-planar parts

@one—loop :©O+Nc_1 Dy, Y= ZN;Z¢z
=0




Lifting large Nc degeneracy

To lift the degeneracy, solve ® 10007 = 1 perturbatively in 1/N,

Split Done-loop @and y into planar and non-planar parts

f)Done—loop:;(DO‘I'-Z\TC_1 D1, ¢:ZNC—Z¢7,

1=0

Consider large Nc zero modes, and regularize the planar dilatation as

Ve =D+ €, DePo = €y

= (De+ N D) (Z N;i¢i> = <e +> NC_":')/,,;> (Z NC—"?%)
1=0 =0

1=0

Almost textbook problem of degenerate perturbation in QM




Lifting large Nc degeneracy

Almost textbook problem of degenerate perturbation in QM

¢(a) — ug“‘)O 7» Oy : monomial multi-trace operators like tr(qzbfb)2

(a|D41]B8) (B|D1]|a)
2 B _g®

E©@®) = 5,0 B{ + N7 a|D4|a’) + N2




Lifting large Nc degeneracy

Almost textbook problem of degenerate perturbation in QM

O; : monomial multi-trace operators like tr(qﬁi)z

(a|D1]|8)(B|D1]|a’)
@ =@ T
EO _ EO

B = §oor B™ + N7 W al Do) + N2 -

What is the bracket <o|3> ?
(a) Two-point functions: S;; = (O;0 )

X Siydepends on N¢; even the rank changes

(b) Dual basis: 675 = (O;|O;)

X Matrix elements of the dilatation operator is

not hermitian w.r.t. dual basis




Operator submixing equation

Observation
Degeneracy of the large Nc zero modes is lifted at the 2nd order

7 =1 =0

<= Assumption: g and 11 have different trace structure




Operator submixing equation

Observation
Degeneracy of the large Nc zero modes is lifted at the 2nd order

7 =1 =0

<= Assumption: g and 11 have different trace structure

After a little algebra, we find an eigenvalue problem:

) ) (NeDy — D1 D71 D) 98
7 ):5"““'< <1 a');(a)> >

Hsm = Operator Submixing Hamiltonian

o HO () = () gl

4 )

H® = lim P, [Nc®1 Dy (Do +€) " @1}

e—0

P, = lime (Do + €)' : Projector to Ker D,
L e—0 )




Submixing Hamiltonian

-

.
HS, = lim P, [N.D; — D1 (Do + €)' D1

e—0

P, = lime (Do +€)" " : Projector to Ker D,
L e—0

Denoting a trace or a closed string (e.g. in pp-wave SFT) by a circle,

J

. ==

~ N,

Sm

4-pt contact term  (3-pt coupling)?

[Constable, Freedman, Headrick, Minwalla, hep-th/0209002] [Grignani, Orselli, Ramadanovic, Semenoff, Young; hep-th/0508126]

The 4pt contact term can be removed by redefining the state

Ny = lim (T w'—(lg 1@>¢
= — 11 = -, — —
? e=0  (hotho) 2 N,) P




Case study: so(6) singlets

Number of large Nc zero modes and all scalar so(6) singlets:

L 2 4 6 8 10 12
Zr o 1 2 5 11 34
dimHy |1 4 15 71 469 4477

Singlet large Nc zero modes = Products of 1/2-BPS single-traces

c) — Cirig...ip = tr(®e, ®s, ... P;,)) : symmetric traceless




Case study: so(6) singlets

Number of large Nc zero modes and all scalar so(6) singlets:

L 2 4 6 8 10 12
Zr o)1 2 5 11 34
dimHy |1 4 15 71 469 4477

Singlet large Nc zero modes = Products of 1/2-BPS single-traces

c) — Cirig...ip = tr(®e, ®s, ... P;,)) : symmetric traceless

{Cij Cij}r=4, {CijkCijk, Cij Cjk Cki}r—6,
{Cijki Cijki s Cijki Cij Cri s Cijik CijiCriy CijCjiCriCiicy Cij Cjk Cri Cri}—s




Case study: so(6) singlets

Number of large Nc zero modes and all scalar so(6) singlets:

L 2 4 6 8 10 12
Zr o)1 2 5 11 34
dimHy |1 4 15 71 469 4477

Singlet large Nc zero modes = Products of 1/2-BPS single-traces

c) — Cirig...ip = tr(®e, ®s, ... P;,)) : symmetric traceless

{Cij Cij}r=4, {CijkCijk, Cij Cjk Cki}r—6,
{Cijki Cijki s Cijki Cij Cri s Cijik CijiCriy CijCjiCriCiicy Cij Cjk Cri Cri}—s

We computed the operator mixing and submixing matrices
explicitly up to L=10 at one-loop by using Mathematica




Submixing Eigenvalues

Y2 of s0(6) singlet large Nc zero modes

__ -— [Double-trace

| —— 1st Triple-trace

[ — 1st Quadruple-trace

Operators with fewer traces have more negative dimensions




Submixing patterns

Based on explicit results, we conjecture that

1. Degeneracies are lifted at O(1/Nc?) and all second-order
corrections are non-positive

. 2. All submixing eigenstates have a definite number of traces

3. Submixing density projectively commute




Submixing patterns

Based on explicit results, we conjecture that

. 1. Degeneracies are lifted at O(1/Nc?) and all second-order
corrections are non-positive

. 2. All submixing eigenstates have a definite number of traces

3. Submixing density projectively commute

Hsom Po = Y2 Yo

Not always true for non-zero modes or not N=4 SYM
Related to gravitational attraction and the causality of AdSs x S°




Submixing patterns

Based on explicit results, we conjecture that

. 1. Degeneracies are lifted at O(1/Nc?) and all second-order
corrections are non-positive

. 2. All submixing eigenstates have a definite number of traces

3. Submixing density projectively commute

Hsom Po = Y2 Yo

2. Matrix elements of Hsm are block-diagonal according to #(traces)

Two triple-trace zero modes at L=8, 4+2+2 and 3+3+2, submix only among themselves
Anything may submix for non-zero modes




Submixing patterns

Based on explicit results, we conjecture that

1. Degeneracies are lifted at O(1/Nc?) and all second-order

corrections are non—p05|t|ve

. 2. All submixing eigenstates have a definite number of traces

3. Submixing density projectively commute

2. Matrix elements of Hsm are block-diagonal according to #(traces)

3. Define t

ne density by H? ~ / dt h? (t)

Non-planar

P, [ho (t), o, (t )} ho n(t)s e (7 )} P, =0 integrability

P’. = Projector to H, . , products of length-two traces in Ker ©,

min



2 8 10 12
Zr 0 5 11 34
dimHp | 1 15 71 469 4477
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Z| coincides with the number of symmetric polynomials of Mandelstam
variables at degree (L/2) under massless momentum conservation




Mandelstam variables

Zok : Number of so(INy) singlet large /N, zero modes at Ny > 1
Z% : Number of symmetric polynomials of Mandelstam variables at degree K
(Z2,24,26,28,210,212) = (0,1,2,5,11, 34)
(Z21,25,25,2,, 2L, 2;) = (0,1,2,5,11, 34)

n n 2 n
Si: — S E S:: — 0 E K _E S:: —0
1] — 273t 17 — Yo D; — 1] —

1<J

Symmetric polynomials

e (3)

(1) 2 - _ _
o, = 87, + S, permutations, = 812813+ ..., O’ = 812834+ ....

4-pt string scattering amplitude on the flat spacetime

A4=ZMa,ba'gag, s+t+u=0, oo =st+tu-+ us, oz = stu,

a,b




Graphical connection

c®

gl

gl

i2

i2

Coo o Ci .

111213111213

E CijCij < Z 33(1)0(2)

ocES,

S12 = 81, + permutations,

— m CijkCijr <> Z 83(1)0(2)
oES,

CijCikCri <> Z So(1)o(2)Sa(2)o(3)Sa(3)o (1)
Ciligc’igig,c’ig,il — ocES,

Can construct the basis of independent symmetric polynomials!




Submixing from

Correlators




Alternative method

» Analytic computation of spectrum is difficult at finite Nc
» Planar higher-point correlators know 1/Nc corrections

Planar 4-pt function to non-planar 2pt:
[D'Hoker, Mathur, Matusis, Rastelli (1999)]

[Arutyunov, Frolov, Petkou (2000)] [Arutyunov, Dolan, Osborn, Sokatchev (2002)] [Dolan Osborn (2004)] and a lot more

O(1) E E O(1) 0(1/Nc)% E O(1/N.)

<9(1/N2 0(1)

4pt (extremal 3pt)2 (non-extremal 3pt)2

2 2 2

4 2
Ar—2g 4 P b N &
=1

LigLay Li3Lay




Average anomalous dimensions

(Super)conformal partial-wave decomposition of 4pt functions

2 .2 2 .2

4
4 P i L3 ,L
<Hc<m(x > > ¢ 2 ot T Gage (u,0), (u,v>s( e )
=1

LigLyy L13Loy

Expand around A=0 and take the limit (u,v) = (0,1)

<H C(p)(mi)> ~ Nz Y Y YX” log®(u) fp,rs(u,v)

=1 C p=irrep r=0s=1

~ (3pt)2 X (anomalous dim) X 2F;




Average anomalous dimensions

(Super)conformal partial-wave decomposition of 4pt functions

4 2 2 2 2

Lol i, r
<Hc<p>(x > > < 2ot T Gage (u,0), (u,v>z( e by )
=1

LigLyy L13Loy

Expand around A=0 and take the limit (u,v) = (0,1)

<H C(p)(mi)> ~ Nz T Y YX” log®(u) fp,rs(u,v)

=1 C p=irrep r=0s=1

~ (3pt)2 X (anomalous dim) X 2F;

Perturbative 4pt functions are explicitly known at small p,
which are given by {log, polylog, multiple polylog, ...}

By comparing them, we obtain a weighted sum of anomalous
dimensions, where the averaging weight is given by the 3pt coupling
between two external and one internal states




Average anomalous dimensions

If the operators propagate the internal line are scalar so(6) singlets at twist-four,

— {tr(¢11 ¢i2 ¢’51 ¢i2 )7 tr(d)il ¢’i1 ¢’i2 ¢’i2 )7 tr(¢i1 ¢22) tr((P’iz ¢i1 ) Y tr(¢’i1 ¢i1 ) tr(¢’i2 ¢’52 ) }

= _)\ﬁv Z az (’)’(I))2 —

o 18
NZ

Negative!

Planar 4-pt function to non-planar 2pt: -
[D'Hoker, Mathur, Matusis, Rastelli (1999)]

[Arutyunov, Frolov, Petkou (2000)] [Arutyunov, Dolan, Osborn, Sokatchev (2002)] [Dolan Osborn (2004)] and a lot more

+

o) T o) O(1/N.) ] O(1/N.)
O(1/N?) o(1)

(extremal 3pt)2 (non-extremal 3pt)?2




Multi-trace 4pt functions

4pt functions of products of BPS operators probe internal operators
which are more than double traces

<:C(2)C(2):(wl)C(2)(w2)C(2)(a}3):C(z)C(z):(a:4)> — Op~:CPc@c®@,

Some multi-trace 4pt functions are smaller than O(1/Nc?)

Ar—

F = < c@c2), : (21 )C(z)(w )0(3)(:13 )C(3)(a:4) Z C(2,2)2,1Ca31u 2 = Gar,e(u,v)




Multi-trace 4pt functions

4pt functions of products of BPS operators probe internal operators
which are more than double traces

<:C(2)C(2):(:131)C(2)(w2)C(2)(a:3):C(z)C(z):(a:4)> — Op~:CPc@c®@,

Some multi-trace 4pt functions are smaller than O(1/Nc?)

Ar—

F= < CACD : (£,)C® (22) C® (24 )C(3)(a:4) Z Ci2.2)21Cs31u 7 " Ga,.er(u,v)

F‘O(An) ~ Z C(2,2),2,1 Cs,3,1 (’Y(I))n ~ 0(1/Nf) (Vn > 1)
I

C'(2,2),2,1 C3.3,1 ’Y(I) ~ O(l/Nf) (VI)

The anomalous dimension or 3pt coupling should vanish




Constraints on submixing

. CzCz . c3
>3&<<
Cs Cs

Floom ~ > C@2),21Css,1 (YD) ~ O(1/N?) (Yn > 1)
1

C(2,2),2,1 C3,317") ~ O(1/N?2) (VI)

The anomalous dimension or 3pt coupling should vanish

Can the following large Nc zero mode be an internal operator?

OP) L e:cPe@ @4 cy:c®e®);
Submixing eigenvectors should have the same number of traces,
unless their anomalous dimensions are O(1/Nc3)

(linear combination of (4,2,2) and (3,3,2) is still allowed)

Consistent with our computation, and generalizable for any L



Summary




Discussion

P Revisited one-loop spectrum of N=4 SYM at finite Nc

p Studied operator submixing problem;
how to lift the degeneracy of the large Nc zero modes

» Agreed with multi-trace 4pt functions

Future Directions

D Integrable model for operator submixing?
D Beyond scalar so(6) singlets; e.g. sl(2) sector

D Analytic computation;

using amplitude/bootstrap, group-theory methods
P New interpolating function of AdS/CFT at O(1/Nc?)




Thank you for

attention
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Integrable deformations

v deformation of N=4 SYM
[Xa Y] — [X7 Y]* = eiqw/\quY — eiq'y/\quX, e N\ Gy = _eabc’Ya(Qm)b(Qy)c

=TsT transformation of AdSs x S> background
= Twisting Bethe Ansatz equations by a constant phase

Da(27) — P (0) = 27w (Ng — €abecYode) s Na € Z

[Frolov, Roiban, Tseytlin; hep-th/050702 1] [Beisert, Roiban; hep-th/0505187]

Y deformed theories are UV finite

[Ananth, Kovacs, Shimada; hep-th/0609 149, 0702020]




Integrable deformations

v deformation of N=4 SYM
[Xa Y] — [X7 Y]* = eiqw/\quY — eiququxa e N\ Gy = _eabc’Ya(Qm)b(Qy)c

=TsT transformation of AdSs x S> background
= Twisting Bethe Ansatz equations by a constant phase

Da(27) — P (0) = 27w (Ng — €abecYode) s Na € Z

[Frolov, Roiban, Tseytlin; hep-th/050702 1] [Beisert, Roiban; hep-th/0505187]

Yy deformed theories are UV finite

[Ananth, Kovacs, Shimada; hep-th/0609 149, 0702020]

® Exactly marginal deformation
e N=| SCFT

B deformation v =08 €R

N deformation  psu(2]2)* — psuy(2(2)*, q = exp( )

[Klimcik, arXiv:0802.35 18][Delduc, Magro,Vicedo; arXiv:1309.5850][Arutyunov, Borsato, Frolov; arXiv:1312.3542] and others




Integrable deformations

v deformation of N=4 SYM
[Xa Y] — [X7 Y]* = eiqw/\quY — eiququxa e N\ Gy = _eabc’Ya(Qm)b(Qy)c

=TsT transformation of AdSs x S> background
= Twisting Bethe Ansatz equations by a constant phase

Da(27) — P (0) = 27w (Ng — €abecYode) s Na € Z

[Frolov, Roiban, Tseytlin; hep-th/050702 1] [Beisert, Roiban; hep-th/0505187]

The *-product prescription is not always well-defined
tr (¢; * ¢j) # tr (¢p; * P;)

Running double-trace coupling in y-deformed, sensitive to U(N) vs SU(N)

2 .. _
5L = —s gYTM i tr (@) tr (950Y), s = da.sun

Non-conformal gauge theory ~ Spacetime with closed tachyons

[Spradlin, Takayanagi, Volovich; hep-th/0509036][Dymarsky, Klebanov, Roiban; hep-th/0509132]




Singular wrapping effects

Double-trace coupling in B-deformed, sensitive to U(N) vs SU(N)

93 - -
0L = —s 233/1 tr ([(bja ¢k]*) tr ([¢J7 ¢k]*)
The shortest scalar operator is protected for the SU(N) theory

0 for SU(N,)
Aftr(X Z)] = { \

. 2
— sin“(w3) for U(IN.)
27
[Freedman, Gursoy; hep-th/0506 | 28][Penati, Santambrogio, Zanon; hep-th/0506 | 50]

Integrability methods cannot reproduce the SU(N) result for tr(XZ)

® Twisted Asymptotic Bethe Ansatz reproduces U(N) results
® Worapping corrections diverge both for 3 and y

L =3+

§Ag [tr(XZ")] = g***t2 Y b(n,L)((2L — 2n + 1)

[Fokkwn, Sieg, Wilhelm; arXiv:1308.4420, 1312.2959, 1405.6712]
[Ahn, Bajnok, Bombardelli, Nepomechie; arXiv: | 108.4914] [de Leeuw, van Tongeren; arXiv:1201.1451]




Singular wrapping effects

Double-trace coupling in B-deformed, sensitive to U(N) vs SU(N)

93 - -
0L = —s 233/1 tr ([(bja ¢k]*) tr ([¢J7 ¢k]*)
The shortest scalar operator is protected for the SU(N) theory

0 for SU(N,)
Aftr(X Z)] = { \

— sin®*(wB@) for U(N,)
27
[Freedman, Gursoy; hep-th/0506 | 28][Penati, Santambrogio, Zanon; hep-th/0506 | 50]
Integrability methods cannot reproduce the SU(N) result for tr(XZ)
® Twisted Asymptotic Bethe Ansatz reproduces U(N) results

® Worapping corrections diverge both for 3 and y

® Prewrapping effects start at one-loop for tr(XZ)

©c ) (o)
5




Finite Nc Spectrum




Finite Nc constraints

Tensors vanish if more than Nc indices are anti-symmetrized

0 = Ti,4,.

(ik:1727°°°7Nc)

e INe41]

Well studied by group-theoretical bases at tree-level:
Sum of multi-trace operators < Set of Young diagrams of height = Nc




Finite Nc constraints

Tensors vanish if more than Nc indices are anti-symmetrized

0= Th,i,. (i, = 1,2,...,N.)

e iNo+1]

Well studied by group-theoretical bases at tree-level:
Sum of multi-trace operators < Set of Young diagrams of height = Nc

At one-loop, dilatation eigenstates provide a orthonormal basis for any Nc

(1) the eigenvalue remains unchanged

Atfinite Nc: (2) the eigenvector may become null

finite N,
gone-loop ¢I — VI ¢I

{@one-loop ¢} — I ¢} or ?70} a 6}

P Eigenvalues can be complex since the mixing matrix is not Hermitian
P Eigenvector of a complex eigenvalue must be null




Spectral data:

4

All eigenvalues are real, excluding null eigenvectors denoted by x




Lowest-dimension operator

The lowest dimension of so(6) singlets with L=2Nc is negative

L=4

Nc=L/2
~“double-determinant” operator




Lowest-dimension operator

The lowest dimension of so(6) singlets with L=2Nc is negative

and it seems to diverge as NC = oo

Y
3.t
-3.2t
-3.4}
-3.6¢
-3.8
4.t
—4.2f

1 1 1 1 1 1 1 1 L
4 5 6 7 8 9 10 11

N, g3
A =2N, — ngM (2.70242 4 0.015834 N, + 0.002515 N? +...) + ...
T

P Such operator cannot be studied in the 't Hooft limit
p Dual to a“bound state” of Witten’s baryon vertices?
(D5 brane wrapping on S°)  (witten; hep- th/ggos1121




(No) level-crossing

LEVEL
CROSSING




(No) level-crossing

No two energy levels cross for Nc > L
Y
30f
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(No) level-crossing

No two energy levels cross for Nc > L
Y
30f
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PaN /ﬂ; n VaN 0
| ——

Consistent with non-integrablity according to von Neumann - Wigner

Diagonalize H = (

s€+ Vis Via )
Vo s€+ Voo

1
= Y+ = > (6 + Vi1 + Va2 + \/(€-|- Vi1 — Va2)? -|-4V12V21> =0?

= Requires € + V11 — V22 =0 and V12 = V2*1 = 0 if V is Hermite




(No) level-crossing

No two energy levels cross for Nc > L
Y
30f

[ x

|- « /_"7 §
ﬁ x S ——
e

Va

L O \J ‘
L2 4 6

Consistent with non-integrablity according to von Neumann - Wigner

Diagonalize H = (

s€+ Vis Via )
Vo s€+ Voo

1
= Y+ = > (6 + Vi1 + Vaz + \/(6 + Vi1 — Vag)? + 4V12V21>

Energy become complex after collision, and the eigenstates must be null




Eigenvalue curves

How are the small Nc states connected to the large Nc states?

1. Embed the one-loop spectrum of SU(Nc) N=4 SYM to
that of (PS)U(Nc+k|k) N=4 SYM at large k

[Vafa; arXiv:1409.1603]

» Non-unitary AdS/CFT via ghost D-branes (Okuda, Takayanagi, hep-th/0601024]
p No finite Nc constraints, analytically continuation to Nc<0




Eigenvalue curves

How are the small Nc states connected to the large Nc states?

1. Embed the one-loop spectrum of SU(Nc) N=4 SYM to
that of (PS)U(Nc+k|k) N=4 SYM at large k

. . [Vafa; arXiv:1409.1603]
» Non-unitary AdS/CFT via ghost D-branes [Okuda, Takayanagi, hep-th/0601024]

p No finite Nc constraints, analytically continuation to Nc<0

2. Rescale the one-loop dimension

N. g2
’7:5’/Nc7 A:L—I—( gYM)’Y—'-...

872

to represent the symmetry of the characteristic polynomial

B(y, Ne) =B(v, —Ne) & B (Y Ne, Ne) =B ((—7)(—Ne), —Ne) -

gone—loop - Or = My, OJ, q3(7) - det(MIJ — 76IJ) — Hma(ﬁ’)




Symmetry through non-unitarity

Eigenvalue curves specify an operator/branch modulo 1

t: (¥, Ne) = (=7, —N¢)

Product of Konishi operators, tr(¢i i)
¥=8LN.+ N_"L(L—2)/8+...

Large Nc zero-modes of double-trace type

Y=N'yv24+..., 72<0




Symmetry through non-unitarity

Eigenvalue curves specify an operator/branch modulo 1

t: (¥, Ne) = (=7, —N¢)

Product of Konishi operators, tr(¢i i)
¥=8LN.+ N_"L(L—2)/8+...

Large Nc zero-modes of double-trace type

Y=N'yv24+..., 72<0

» Two ways to unitarize the U(K|M) theory: K= 0 or M = 0;
both reduce to U(Nc) N=4 SYM, but in different ways

p High-energy states are paired with low-energy states,
“duality” among multi-trace or multi-string states




