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Spectral problem

What do we measure or compute?



Two-point functions = Operator dimensions

Spectral problem



Correlation functions

Spectral problem



Study the dimensions of gauge-invariant operators of N=4 SU(Nc) SYM

Integrability in N=4 SYM

Operators with the same charges mix under quantum corrections 
The trace structure is conserved at planar limit



Planar dilatation acting on the single-trace operators 
= Hamiltonian of a quantum-integrable spin chain

[Minahan, Zarembo; hep-th/0212208]

Operators with the same charges mix under quantum corrections 
The trace structure is conserved at planar limit

Integrability in N=4 SYM
Study the dimensions of gauge-invariant operators of N=4 SU(Nc) SYM



Exact dimensions

[Bombardelli, Fioravanti, Tateo (2009)] [Gromov, Kazakov, Kozak, Vieira (2009)] [Arutyunov, Frolov (2009)] [Gromov, Kazakov, Leurent, Volin (2011-14)]

Integrability methods (TBA, NLIE, QSC) are believed to predict 
the planar dimensions of N=4 SU(Nc) SYM operators at any l

Do these nonlinear eqns always have regular or real solutions?



Exact dimensions

[Bombardelli, Fioravanti, Tateo (2009)] [Gromov, Kazakov, Kozak, Vieira (2009)] [Arutyunov, Frolov (2009)] [Gromov, Kazakov, Leurent, Volin (2011-14)]

Integrability methods (TBA, NLIE, QSC) are believed to predict 
the planar dimensions of N=4 SU(Nc) SYM operators at any l

The answer is subtle if taking the planar limit is subtle

• Operators of O(Nc) length (multi-trace mixing) 

• b deformation (SU(Nc) vs U(Nc)) 

• g deformation (closed tachyons) 

• DD branes (open tachyons)
[de Mello Koch et al. (2011-)] 

[Ahn, Bajnok, Bombardelli, Nepomechie (2011)] [de Leeuw, van Tongeren (2012)] [Fokken, Sieg, Wilhelm (2013-14)] 
[Bajnok, Drukker, Hegedus, Nepomechie, Palla, Sieg, RS (2013)] [Hegedus (2015)]

We revisit the one-loop operator mixing problem at finite Nc

Do these nonlinear eqns always have regular or real solutions?



A simple example

Finite Nc one-loop dimension ⇔ Slope at l=0

Integrability ↔ Nc = ∞ data

The 1/Nc corrections are (un)expectedly related to 4pt functions



Asymptotic Causality

[Cornalba, Costa, Penedones, Schiappa,  
 hep-th/0611122, 0611123, arXiv:0707.0120]

Four-point functions in AdS/CFT in the Eikonal limit, p1 ~ p3 , p2 ~ p4

Scattering of two light-like particles 
  ~ Phase shift 
  ~ Dimension of an intermediate operator

uv

Dv



Asymptotic Causality

[Cornalba, Costa, Penedones, Schiappa,  
 hep-th/0611122, 0611123, arXiv:0707.0120]

Four-point functions in AdS/CFT in the Eikonal limit, p1 ~ p3 , p2 ~ p4

Scattering of two light-like particles 
  ~ Phase shift 
  ~ Dimension of an intermediate operator

uv

Dv

Phase shift ~ Time delay of gravitational shock wave 
                     → Positive from the asymptotic causality of gravity on AdS

[Camanho, Edelstein, Maldacena, Zhiboedov, arXiv:1407.5597]

Anomalous dimension of the double-trace operator must be negative

(non-planar effect)
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1. Introduction 

2. Operator Submixing Problem 

3. Submixing from Correlators 

4. Summary
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Operator Submixing 
Problem



Large Nc degeneracy
Dilatation operator is hermitian w.r.t. 2pt function:

• The large Nc spectrum is highly degenerate owing to integrability 

• Degenerate eigenstates can freely mix, even if they have different 
trace structure



Large Nc degeneracy
Dilatation operator is hermitian w.r.t. 2pt function:

• The large Nc spectrum is highly degenerate owing to integrability 

• Degenerate eigenstates can freely mix, even if they have different 
trace structure

Operator submixing problem = 
How to lift large Nc degeneracy by 1/Nc corrections

Interesting states : large Nc zero modes (D=O(1/Nc)) 



Lifting large Nc degeneracy

Split Done-loop and y  into planar and non-planar parts



Lifting large Nc degeneracy

Split Done-loop and y  into planar and non-planar parts

Consider large Nc zero modes, and regularize the planar dilatation as

Almost textbook problem of degenerate perturbation in QM



Lifting large Nc degeneracy
Almost textbook problem of degenerate perturbation in QM



Lifting large Nc degeneracy
Almost textbook problem of degenerate perturbation in QM

✗  SIJ depends on Nc; even the rank changes 

✗  Matrix elements of the dilatation operator is   
not hermitian w.r.t. dual basis

What is the bracket <a|b> ?



Observation 
Degeneracy of the large Nc zero modes is lifted at the 2nd order

Operator submixing equation



Observation 
Degeneracy of the large Nc zero modes is lifted at the 2nd order

Operator submixing equation

After a little algebra, we find an eigenvalue problem:

Hsm = Operator Submixing Hamiltonian



Submixing Hamiltonian

4-pt contact term (3-pt coupling)2

Denoting a trace or a closed string (e.g. in pp-wave SFT) by a circle,

[Constable, Freedman, Headrick, Minwalla, hep-th/0209002] [Grignani, Orselli, Ramadanovic, Semenoff, Young; hep-th/0508126]

The 4pt contact term can be removed by redefining the state



Case study: so(6) singlets

Singlet large Nc zero modes = Products of 1/2-BPS single-traces

Number of large Nc zero modes and all scalar so(6) singlets :
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Case study: so(6) singlets

Singlet large Nc zero modes = Products of 1/2-BPS single-traces

Number of large Nc zero modes and all scalar so(6) singlets :

We computed the operator mixing and submixing matrices 
explicitly up to L=10 at one-loop by using Mathematica



g2 of so(6) singlet large Nc zero modes

L

-100

-50

γ2

4 5 6 7 8 9 10

Double-trace

1st Triple-trace

1st Quadruple-trace

Submixing Eigenvalues

Operators with fewer traces have more negative dimensions



Submixing patterns
Based on explicit results, we conjecture that

1. Degeneracies are lifted at O(1/Nc2) and all second-order 
corrections are non-positive 

2. All submixing eigenstates have a definite number of traces 
3. Submixing density projectively commute



Submixing patterns

1.

Not always true for non-zero modes or not N=4 SYM 
Related to gravitational attraction and the causality of AdS5 x S5

1. Degeneracies are lifted at O(1/Nc2) and all second-order 
corrections are non-positive 

2. All submixing eigenstates have a definite number of traces 
3. Submixing density projectively commute

Based on explicit results, we conjecture that



Submixing patterns

2. Matrix elements of Hsm are block-diagonal according to #(traces)

1.

Two triple-trace zero modes at L=8, 4+2+2 and 3+3+2, submix only among themselves 
Anything may submix for non-zero modes

1. Degeneracies are lifted at O(1/Nc2) and all second-order 
corrections are non-positive 

2. All submixing eigenstates have a definite number of traces 
3. Submixing density projectively commute

Based on explicit results, we conjecture that



Submixing patterns

2. Matrix elements of Hsm are block-diagonal according to #(traces)

1.

3. Define the density by

Non-planar 
integrability

1. Degeneracies are lifted at O(1/Nc2) and all second-order 
corrections are non-positive 

2. All submixing eigenstates have a definite number of traces 
3. Submixing density projectively commute

Based on explicit results, we conjecture that



ZL coincides with the number of symmetric polynomials of Mandelstam 
variables at degree (L/2) under massless momentum conservation



Mandelstam variables

Mandelstam variables of massless particles

Symmetric polynomials

4-pt string scattering amplitude on the flat spacetime



Graphical connection

The relation between (D.1) and (D.4) can be explained graphically. Note that we neglect
dimensionality constraints; namely the finite N

f

constraints in (D.1) and the Gram determinant
constraints in (D.4).36

We begin by the so(6) singlet large N
c

zero modes. Since C
i1i2...i`

is symmetric traceless,
a flavor index of C(`i) should be paired with the flavor index of another C(`j). Since C(`) is
symmetric, the position of the flavor index inside C(`) is irrelevant. When we contract m indices
of C(`i) and C(`j), we draw m lines in between as

C
i1i2Ci1i2 =

C(2)C(2)

C(2)C(2)

i
1

i
1

i
2

i
2

= . (D.5)

Similarly, the zero modes with length six are expressed as

C
i1i2i3Ci1i2i3 = , C

i1i2Ci2i3Ci3i1 = , (D.6)

and with length eight as,

, , , , . (D.7)

Let us turn to the completely symmetric polynomials of Mandelstam variables Given a graph
representing the large N

c

zero modes, we label each “single-trace” by i = 1, 2, . . . , n. Then for
each line connecting the i-th and j-th trace, we associate Mandelstam variable s

ij

, as

=

pµ
1

pµ
1

pµ
2

pµ
2

s
12

s
12

= s2
12

+ permutations, (D.8)

which gives the first line of (D.4). Similarly, a basis of the completely symmetric polynomials
of degree three is expressed as

= s3
12

+ permutations, = s
12

s
23

s
31

+ permutations. (D.9)

36The latter comes from the linear relations among {pµ
i

} when n is greater than the spacetime dimensions.
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Can construct the basis of independent symmetric polynomials!



Submixing from 
Correlators



‣ Analytic computation of spectrum is difficult at finite Nc 

‣ Planar higher-point correlators know 1/Nc corrections

Planar 4-pt function to non-planar 2pt:

4pt (extremal 3pt)2 (non-extremal 3pt)2

Alternative method

[D’Hoker, Mathur, Matusis, Rastelli (1999)]  
[Arutyunov, Frolov, Petkou (2000)] [Arutyunov, Dolan, Osborn, Sokatchev (2002)] [Dolan Osborn (2004)] and a lot more

= +



Average anomalous dimensions
(Super)conformal partial-wave decomposition of 4pt functions

Expand around l=0 and take the limit (u,v) → (0,1)

~ (3pt)2 × (anomalous dim) × 2F1



Average anomalous dimensions
(Super)conformal partial-wave decomposition of 4pt functions

Expand around l=0 and take the limit (u,v) → (0,1)

Perturbative 4pt functions are explicitly known at small p, 
which are given by {log, polylog, multiple polylog, …}

~ (3pt)2 × (anomalous dim) × 2F1

By comparing them, we obtain a weighted sum of anomalous 
dimensions, where the averaging weight is given by the 3pt coupling 

between two external and one internal states



If the operators propagate the internal line are scalar so(6) singlets at twist-four,

Planar 4-pt function to non-planar 2pt:

4pt (extremal 3pt)2 (non-extremal 3pt)2

[D’Hoker, Mathur, Matusis, Rastelli (1999)]  
[Arutyunov, Frolov, Petkou (2000)] [Arutyunov, Dolan, Osborn, Sokatchev (2002)] [Dolan Osborn (2004)] and a lot more

= +

Average anomalous dimensions

Negative!



Multi-trace 4pt functions

Some multi-trace 4pt functions are smaller than O(1/Nc2)

4pt functions of products of BPS operators probe internal operators  
which are more than double traces



Multi-trace 4pt functions
4pt functions of products of BPS operators probe internal operators  

which are more than double traces

Some multi-trace 4pt functions are smaller than O(1/Nc2)

The anomalous dimension or 3pt coupling should vanish



Constraints on submixing

The anomalous dimension or 3pt coupling should vanish

Submixing eigenvectors should have the same number of traces, 
unless their anomalous dimensions are O(1/Nc3)

Consistent with our computation, and generalizable for any L

Can the following large Nc zero mode be an internal operator? 

(linear combination of (4,2,2) and (3,3,2) is still allowed)



Summary



‣ Revisited one-loop spectrum of N=4 SYM at finite Nc 

‣ Studied operator submixing problem; 
how to lift the degeneracy of the large Nc zero modes 

‣ Agreed with multi-trace 4pt functions

Discussion

Future Directions

‣ Integrable model for operator submixing? 

‣ Beyond scalar so(6) singlets; e.g. sl(2) sector 

‣ Analytic computation; 
      using amplitude/bootstrap, group-theory methods 
‣ New interpolating function of AdS/CFT at O(1/Nc2)



Thank you for 
attention
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Integrable deformations
g deformation of N=4 SYM

= TsT transformation of AdS5 x S5 background
= Twisting Bethe Ansatz equations by a constant phase

g deformed theories are UV finite
[Ananth, Kovacs, Shimada; hep-th/0609149, 0702020]

[Frolov, Roiban, Tseytlin; hep-th/0507021] [Beisert, Roiban; hep-th/0505187]



Integrable deformations

• Exactly marginal deformation

•N=1 SCFT

g deformation of N=4 SYM

= TsT transformation of AdS5 x S5 background
= Twisting Bethe Ansatz equations by a constant phase

b deformation

g deformed theories are UV finite
[Ananth, Kovacs, Shimada; hep-th/0609149, 0702020]

[Frolov, Roiban, Tseytlin; hep-th/0507021] [Beisert, Roiban; hep-th/0505187]

h deformation
[Klimcik, arXiv:0802.3518][Delduc, Magro, Vicedo; arXiv:1309.5850][Arutyunov, Borsato, Frolov; arXiv:1312.3542] and others



Integrable deformations
g deformation of N=4 SYM

= TsT transformation of AdS5 x S5 background
= Twisting Bethe Ansatz equations by a constant phase

[Frolov, Roiban, Tseytlin; hep-th/0507021] [Beisert, Roiban; hep-th/0505187]

The *-product prescription is not always well-defined

Running double-trace coupling in g-deformed, sensitive to U(N) vs SU(N)

Non-conformal gauge theory ~ Spacetime with closed tachyons
[Spradlin, Takayanagi, Volovich; hep-th/0509036][Dymarsky, Klebanov, Roiban; hep-th/0509132]



Singular wrapping effects
Double-trace coupling in b-deformed, sensitive to U(N) vs SU(N)

[Freedman, Gursoy; hep-th/0506128][Penati, Santambrogio, Zanon; hep-th/0506150]

The shortest scalar operator is protected for the SU(N) theory

[Fokkwn, Sieg, Wilhelm; arXiv:1308.4420, 1312.2959, 1405.6712]
[Ahn, Bajnok, Bombardelli, Nepomechie; arXiv:1108.4914] [de Leeuw, van Tongeren; arXiv:1201.1451]

Integrability methods cannot reproduce the SU(N) result for tr(XZ)

• Twisted Asymptotic Bethe Ansatz reproduces U(N) results

• Wrapping corrections diverge both for b and g



Singular wrapping effects

Integrability methods cannot reproduce the SU(N) result for tr(XZ)

• Twisted Asymptotic Bethe Ansatz reproduces U(N) results

• Wrapping corrections diverge both for b and g

• Prewrapping effects start at one-loop for tr(XZ) 

Double-trace coupling in b-deformed, sensitive to U(N) vs SU(N)

[Freedman, Gursoy; hep-th/0506128][Penati, Santambrogio, Zanon; hep-th/0506150]

The shortest scalar operator is protected for the SU(N) theory

These results can be easily interpreted: the second term in (16) contributes in
leading order precisely if only the U(1) component propagates in the first term. This
can only happen if by cutting a single propagator the diagram of the gauge-invariant
n-point function decomposes into two parts, i.e. if it is one-particle reducible. For
gauge group SU(N), i.e. for s = 1, such diagrams do not contribute, as the second
(double-trace) contribution in (16) cancels the first (single-trace) contribution. For
the particular case of two-point functions, the affected diagrams are of s-channel14

type and have the generic form

− s

N
∝ (1− s)N2L−1 , (19)

where the two external states of length L are depicted in light grey and the area in
dark grey stands for possible additional planar interactions. The interactions have
to reduce the L fields of each of the two operators into a single field. Since the
reduction of two fields into a single field comes with one factor of the effective planar
coupling g,15 the diagrams of type (19) are at least of order O(g2L−2). This is one
loop order lower than the leading wrapping order and hence we call this new finite-size
effect prewrapping.16 The consequence of prewrapping is the vanishing of all s-channel
diagrams in the SU(N) case (s = 1) in contrast to the U(N) case (s = 0), cf. (19).

Note that the quartic scalar interactions from the action (7) also fit into the above
analysis. In fact, the superspace action contains only cubic interactions between chiral
superfields. This is still the case in the component expansion including auxiliary fields.
The quartic scalar vertices only appear when the auxiliary fields are integrated out. In
particular, the elimination of the F i auxiliary fields generates the double-trace term in
the action (7) via (15). This term is just another description of the prewrapping effect
caused by the propagator of the F i auxiliary fields. It is thus perfectly acceptable and,
for a homogeneous description of prewrapping, also advisable to conduct the analysis
in one of the two former formulations.

Since the undeformed theory is insensitive to the difference between the gauge
groups U(N) and SU(N), prewrapping must not have a net effect there. This means
the contributions to both colour structures in (19) must vanish separately. The oc-
curring cancellation among the contributing diagrams with different flavour structure
can be most easily seen at the example of L = 2 states at one loop. In this case,
the cyclicity of the trace symmetrises the operators with respect to their flavour de-
grees of freedom, while the commutator interaction reducing these two fields to the

14We trust that the reader will not confuse the Mandelstam variable s with the gauge group
parameter s previously defined in (8).

15This consideration holds for all v-valent vertices in the actions (1) and (7) since they are of order
O(gv−2).

16For the sake of simplicity, we are neglecting length-changing interactions in the main text. These
are, however, also affected and easy to incorporate. For a two-point function connecting an operator
of length L with one of length L′, the critical order simply becomes gL+L′

−2.

13



Finite Nc Spectrum



Finite Nc constraints
Tensors vanish if more than Nc indices are anti-symmetrized 

Well studied by group-theoretical bases at tree-level: 
Sum of multi-trace operators  ↔  Set of Young diagrams of height ≦ Nc



Finite Nc constraints
Tensors vanish if more than Nc indices are anti-symmetrized 

At one-loop, dilatation eigenstates provide a orthonormal basis for any Nc

At finite Nc : (1) the eigenvalue remains unchanged 
(2) the eigenvector may become null 

‣ Eigenvalues can be complex since the mixing matrix is not Hermitian 

‣ Eigenvector of a complex eigenvalue must be null

Well studied by group-theoretical bases at tree-level: 
Sum of multi-trace operators  ↔  Set of Young diagrams of height ≦ Nc



Spectral data:
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All eigenvalues are real, excluding null eigenvectors denoted by × 



Lowest-dimension operator
The lowest dimension of so(6) singlets with L=2Nc is negative
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Lowest-dimension operator

‣ Such operator cannot be studied in the ’t Hooft limit 

‣ Dual to a “bound state” of Witten’s baryon vertices? 
(D5 brane wrapping on S5)    [Witten; hep- th/9805112]

and it seems to diverge as Nc → ∞
The lowest dimension of so(6) singlets with L=2Nc is negative
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No two energy levels cross for Nc ≥ L
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(No) level-crossing
No two energy levels cross for Nc ≥ L

= 0?

Consistent with non-integrablity according to von Neumann - Wigner

L=6



(No) level-crossing
No two energy levels cross for Nc ≥ L

Consistent with non-integrablity according to von Neumann - Wigner

Energy become complex after collision, and the eigenstates must be null

L=6



Eigenvalue curves
How are the small Nc states connected to the large Nc states?

L=6

‣ Non-unitary AdS/CFT via ghost D-branes 
‣ No finite Nc constraints, analytically continuation to Nc<0

[Vafa; arXiv:1409.1603]  
[Okuda, Takayanagi, hep-th/0601024]

1. Embed the one-loop spectrum of SU(Nc) N=4 SYM to  
that of (PS)U(Nc+k|k) N=4 SYM at large k 



Eigenvalue curves
How are the small Nc states connected to the large Nc states?

‣ Non-unitary AdS/CFT via ghost D-branes 
‣ No finite Nc constraints, analytically continuation to Nc<0

[Vafa; arXiv:1409.1603]  
[Okuda, Takayanagi, hep-th/0601024]

2. Rescale the one-loop dimension

1. Embed the one-loop spectrum of SU(Nc) N=4 SYM to  
that of (PS)U(Nc+k|k) N=4 SYM at large k 

to represent the symmetry of the characteristic polynomial



Symmetry through non-unitarity
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Eigenvalue curves specify an operator/branch modulo i
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‣ Two ways to unitarize the U(K|M) theory:  K → 0  or M → 0; 
both reduce to U(Nc) N=4 SYM, but in different ways 

‣ High-energy states are paired with low-energy states, 
“duality” among multi-trace or multi-string states

Eigenvalue curves specify an operator/branch modulo i

Large Nc zero-modes of double-trace type

Product of Konishi operators,  tr(fi fi)

Symmetry through non-unitarity


