Oscillating Multiple Giants

Ryo Suzuki
(Shing-Tung Yau Center of Southeast University)

arXiv:2101.05310

@Titech, June 2021

Plan of Talk

- 1. Motivation
- 2. Finite group methods
- 3. Weak coupling
- 4. Strong coupling
- 5. Summary and Outlook

Motivation

AdS/CFT and integrability

AdS/CFT is usually a conjecture in the planar large Nc limit Maximally supersymmetric theories in this limit are "integrable"

 $\mathcal{N}=4$ super Yang-Mills in D=4

$$\lambda = N_c \, g_{
m YM}^2$$

Single-trace operators with R-charge L

$$\operatorname{tr}(Z^{L-M}Y^M)+\dots$$

Superstring on $AdS_5 \times S^5$

$$\lambda = rac{R^4}{lpha'^2} = rac{N_c \, g_s}{4\pi}$$

Strings with angular momentum L

Planar large N_c limit: $N_c\gg L\gg 1$

Computations reformulated as integrable system, predicting

Asymptotic term + Wrapping corrections (usually negligible if $L\gg 1$ or $\lambda\ll 1$)

AdS/CFT and integrability

The integrability prediction is exact in λ , but has limitations due to the planarity:

- Integrability seems lost on the non-planar level
- Hard to solve the multi-trace mixing problem
- Even the $1/N_c$ corrections to the BPS 4pt are complicated

[Beisert, Kristjansen, Staudacher (2003)] + many more

[Bellucci, Casteill, Morales, Sochichiu (2004))] + many more

[Bargheer, Caetano, Fleury, Komatsu, Vieira (2017,2018)]

Difficult because non-planar effects ~ string coupling (quantum gravity) corrections

Possible directions:

AdS/CFT and integrability

The integrability prediction is exact in λ , but has limitations due to the planarity:

- Integrability seems lost on the non-planar level
- Hard to solve the multi-trace mixing problem
- Even the $1/N_c$ corrections to the BPS 4pt are complicated

[Beisert, Kristjansen, Staudacher (2003)] + many more

[Bellucci, Casteill, Morales, Sochichiu (2004))] + many more

[Bargheer, Caetano, Fleury, Komatsu, Vieira (2017,2018)]

Difficult because non-planar effects ~ string coupling (quantum gravity) corrections

Possible directions:

- \Join Refine perturbative computations of $\mathcal{N}=4$ SYM, or AdS₅ \times S⁵ string
- ★ Look for hints from other approaches (bootstrap, localization, ...)
- ightharpoonup Study non-planar large Nc limits

AdS/CFT at non-planar large N_c

Non-planar large N_c limit : $L\gtrsim N_c\gg 1$

Operators with huge dimensions

$$L = O(N_c^1)$$

$$L \geq O(N_c^2)$$

Deforming $AdS_5 \times S^5$ background

Giant gravitons (D-branes)

LLM geometry

This setup is generally not integrable. An exception is

Single trace + determinant-like operator \leftrightarrow Open strings ending on a single D-brane

Spin chain with integrable boundaries

[Hofman, Maldacena] (2007) and many more

AdS/CFT at non-planar large N_c

Non-planar large N_c limit : $L\gtrsim N_c\gg 1$

Operators with huge dimensions

$$L = O(N_c^1)$$

$$L \geq O(N_c^2)$$

Deforming $AdS_5 \times S^5$ background

Giant gravitons (D-branes)

LLM geometry

This setup is generally not integrable. An exception is

Single trace + determinant-like operator ←→ Open strings ending on a single D-brane

Spin chain with integrable boundaries

[Hofman, Maldacena] (2007) and many more

Generalize these objects by using finite group methods (not integrability)

AdS/CFT at non-planar large N_c

Non-planar large N_c limit : $L\gtrsim N_c\gg 1$

Operators with huge dimensions

Deforming $AdS_5 \times S^5$ background

$$L = O(N_c^1)$$

$$L \geq O(N_c^2)$$

Giant gravitons (D-branes)

LLM geometry

This setup is generally not integrable. An exception is

Single trace + determinant-like operator \leftrightarrow Open strings ending on a single D-brane

Spin chain with integrable boundaries

[Hofman, Maldacena] (2007) and many more

LLM geometry

General half-BPS regular solutions of IIB supergravity with the residual symmetry $\,\mathfrak{psu}(2|2)^2$

$$ds^2 = -2y \cosh G \left(dt + V_i \, dx^i \right)^2 + rac{dy^2 + (dx^i)^2}{2y \cosh G} + ye^G d\Omega_{S^3} + ye^{-G} d\Omega_{\tilde{S}^3}$$

Droplet pattern: $\tanh G(x^1, x^2, y = 0) = \pm 1$, either S^3 or \tilde{S}^3 collapses

 $AdS_5 \times S^5$

Giant graviton

Concentric circles

Schur operators

• General multi-trace half-BPS operators of $\mathcal{N}=$ 4 SYM $\prod_i \operatorname{tr} Z^{n_i} = \operatorname{tr}_L(\alpha Z^{\otimes L})$

$$\prod_i \operatorname{tr} Z^{n_i} = \operatorname{tr}_L(lpha Z^{\otimes L})$$

Multi-trace structure of $\operatorname{tr}_L(\alpha Z^{\otimes L}) \leftrightarrow \operatorname{Cycle} \operatorname{type} \operatorname{of} \alpha \in S_L$

• Organize multi-trace operators into the basis labeled by a Young diagram $m{R}$

$$\mathcal{O}^R(Z) = rac{1}{L!} \sum_{lpha \in S_L} \chi^R(lpha) \operatorname{tr}_L \left(lpha Z^{\otimes L}
ight)$$

$$\chi^R(\alpha) = S_L$$
 character of irrep R

$$Z = \operatorname{diag}(z_1, z_2, \dots, z_{N_c}) \ \Rightarrow \ \mathcal{O}^R(Z) = \operatorname{Schur} \ \operatorname{polynomial} \ \operatorname{of} \ \{z_i\}$$

LLM/Schur as AdS/CFT

[Lin, Lunin, Maldacena] (2004)

Half-BPS states labeled by Young diagram $\mathcal{B} = \text{Concentric droplets in supergravity}$

Young diagram is huge: edge lengths $oldsymbol{x_i}$, $oldsymbol{y_i}$ are order $oldsymbol{N_c}$

LLM/Schur as AdS/CFT

[Lin, Lunin, Maldacena] (2004)

Half-BPS states labeled by Young diagram $\mathcal{B} = \text{Concentric droplets in supergravity}$

Young diagram is huge: edge lengths $oldsymbol{x_i}$, $oldsymbol{y_i}$ are order $oldsymbol{N_c}$

Two types of non-BPS huge operators

Operators dual to multi giant gravitons \sim Young diagram R with p long columns

Operators dual to LLM geometry \sim Young diagram ${m R}$ with big blocks


```
# (white / gray boxes) = # (Z/Y)
for O_R = Sum of multi-traces (ZZZ....YY....)
```

Two types of non-BPS huge operators

Operators dual to multi giant gravitons

~ Young diagram $m{R}$ with $m{p}$ long columns

- ullet Operators having different Young diagrams $oldsymbol{R}$ mix under renormalization
- ullet One-loop mixing at large Nc takes a simple form
- Mixing of gray boxes (excitations) is diagonalized by
 Gauss graph basis [de Mello Koch, Ramgoolam] (2012)
- Mixing of white boxes (background) gives a set of coupled harmonic oscillators

$$D-J\sim -\sum_{\substack{i,j=1\i
eq j}}^p n_{ij}(\sigma)\Delta_{ij}$$
 Non-negative Difference integers operators

An AdS/CFT proposal

We *propose* an all-loop ansatz for the p = 2 excited (spherical) giant gravitons

$$\Delta-J=f_1(\lambda)\,n_{12}\,rac{m}{N_c}\,,\quad (1\leq m\leq \left\lceil N_c-rac{n_Z}{2}+1
ight
ceil),\quad f_1(\lambda)=rac{\lambda}{\pi^2}+O(\lambda^2)$$

An AdS/CFT proposal

We *propose* an all-loop ansatz for the p = 2 excited (spherical) giant gravitons

$$\Delta - J = f_1(\lambda) \, n_{12} \, rac{m}{N_c} \,, \quad (1 \leq m \leq \left\lceil N_c - rac{n_Z}{2} + 1
ight
ceil), \quad f_1(\lambda) = rac{\lambda}{\pi^2} + O(\lambda^2)$$

- The dispersion relation is gapless at large Nc
- Dual to the classical motion of oscillating D-branes (not open strings)
- ... but there are critical assumptions / caveats which need to be justified

Why important?

1. Possible "non-planar integrability" at large Nc

Planar large Nc	Non-planar large Nc
Spectrum of string motions	Spectrum of D-brane motions
Yangian (quantum)	Finite group (classical)

Is the psu $(2|2)^2$ symmetry centrally extended again?

- 2. Possible relation to the "TTbar deformation" of $\mathcal{N}=4$ SYM / AdS₅ × S⁵
- ullet TTbar deformation in D=2 is exactly solvable, giving a square-root dispersion
- TTbar deformation in D=4 also preserves the psu(2|2)² symmetry

Finite group methods

Schur-Weyl duality

Let V be a fundamental representation of U(N)

$$V^{\otimes L} = igoplus_{R dash L} V_R^{U(N)} \otimes V_R^{S_L}$$

= duality between the Lie group $\mathbf{U}(\mathbf{N})$ and the permutation group S_L

Examples at
$$L=2$$
 : Assume $\psi^i \in V, \; (i=1,2,\ldots,N)$

$$\psi_1^i \, \psi_2^j = \psi_1^{(i} \, \psi_2^{(j)} + \psi_1^{[i} \, \psi_2^{(j)}$$

$$N^2 = rac{N(N+1)}{2} + rac{N(N-1)}{2}$$

Example at L=3:

$$\phi_{i_1}(x_1) \, \phi_{i_2}(x_2) \, \dots \, \phi_{i_L}(x_L) \equiv |1, 2, \dots, L\rangle \,, \quad (i_k = 1, 2, \dots, N, N \geq L)$$

$$\boxed{1\ |2\ |3} = \frac{1}{\sqrt{6}} (|123\rangle + |231\rangle + |312\rangle + |132\rangle + |321\rangle + |213\rangle)$$

$$\frac{\boxed{1}}{2} = \frac{1}{\sqrt{6}} \left(|123\rangle + |231\rangle + |312\rangle - |132\rangle - |321\rangle - |213\rangle \right)$$

$$\begin{pmatrix} \boxed{1} \ \boxed{2} \\ \boxed{3} \end{pmatrix}_{1} = \frac{1}{\sqrt{12}} \left(2 \ |123\rangle + 2 \ |213\rangle - |321\rangle - |312\rangle - |132\rangle - |231\rangle \right)$$
 irrep

$$\left(\boxed{\frac{1}{2}}\right)_1 = \frac{1}{2}\left(|132\rangle + |231\rangle - |321\rangle - |312\rangle\right)$$

$$\left(\boxed{\frac{1}{3}}\right)_2 = \frac{1}{2}\left(|132\rangle + |312\rangle - |321\rangle - |231\rangle\right)$$

$$\left(\frac{1}{2} \right)_{2}^{2} = \frac{1}{\sqrt{12}} \left(2 |123\rangle - 2 |213\rangle + |321\rangle - |312\rangle + |132\rangle - |231\rangle)$$

multiplicity

Schur-Weyl duality

Counting the dimensions from the Schur-Weyl duality

$$\dim V^{\otimes L} = igoplus_{R dash L} \, \dim \left(V_R^{U(N)} \otimes V_R^{S_L}
ight)$$

$$\Rightarrow N^L = \sum_{R \vdash L} \underline{\mathrm{Dim}_N(R)} \underline{d_R}$$

dimension as $\mathbf{U}(\mathbf{N})$ rep dimension as S_L rep

General formula to count powers of N

$$N^{C(\alpha)} = \sum_{R \vdash L} \operatorname{Dim}_N(R) \underbrace{\chi^R(\alpha)}_{}$$

number of cycles in α

 $oldsymbol{S_L}$ character

Application: multi-trace 2pt

Denote a multi-trace operator by

$$ext{tr}_L\left(lpha Z^{\otimes L}
ight) \equiv \sum_{i_1,i_2,...,i_L=1}^{N_c} Z_{i_{lpha(1)}}^{i_1} Z_{i_{lpha(2)}}^{i_2} \dots Z_{i_{lpha(L)}}^{i_L}$$

The tree-level two-point function of U(N) $\mathcal{N}=4$ SYM is

$$\frac{\left\langle \operatorname{tr}_{L}\left(\alpha Z^{\otimes L}\right)(x) \operatorname{tr}_{L}\left(\beta \overline{Z}^{\otimes L}\right)(0)\right\rangle = \left|x\right|^{-2L} \sum_{\sigma \in S_{L}} N_{c}^{C(\alpha\sigma\beta\sigma^{-1})}}{= \left|x\right|^{-2L} \sum_{R \vdash L} \sum_{\sigma \in S_{L}} \operatorname{Dim}_{N_{c}}(R) \chi^{R}(\alpha\sigma\beta\sigma^{-1})}$$

$$\mathbf{U(N)}$$
 $\leftarrow \cdots \rightarrow S_L$ duality

Representation matrices

Young tableaux = Numbers filled in a Young diagram in the standard way

$$R = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 4 \\ 2 & 3 \end{bmatrix}, (i = 1, 2, \dots, d_R)$$

Determine the matrix elements of irreducible representations: $\ D^R_{ij}(\sigma) \ ext{ for } \sigma \in S_L$

Decompose the permutation as a product of transpositions: $\{(1,2),\ (2,3),\dots(L-1,L)\}$

Young-Yamanouchi form

$$D^R \Big((a,a+1) \Big) \; |R,i
angle = rac{1}{d_{a,a+1}} \; |R,i
angle + \sqrt{1 - rac{1}{d_{a,a+1}^2}} \; |R,(a,a+1)i
angle \;$$

$$d_{a,a+1}=c_i(a+1)-c_i(a), \quad c_i(a)=N_c+x-y, \quad a$$
-th box sits at (x,y) of $|R,i\rangle$

Restricted Schur operators

Multi-trace operators of length L in the su(2) sector of N=4 SYM

$$ext{tr}_L\left(lpha\cdot Z^{\otimes n_Z}Y^{\otimes n_Y}
ight) \equiv \sum_{i_1,i_2,...,i_L=1}^{N_c} Z^{i_1}_{i_{lpha(1)}}Z^{i_2}_{i_{lpha(2)}}\dots Z^{i_{n_Z}}_{i_{lpha(n_Z)}}Y^{i_{n_Z+1}}_{i_{lpha(n_Z+1)}}Y^{i_{n_Z+2}}_{i_{lpha(n_Z+2)}}\dots Y^{i_L}_{i_{lpha(L)}}$$
 $lpha\in S_L \ \ (L=n_Y+n_Z)$

The restricted Schur operators give a basis of multi-trace operators (diagonal at tree-level)

$$\mathcal{O}^{R,(r,s),
u_+,
u_-} = rac{1}{n_Z!\,n_Y!}\sum_{lpha\in S_L}rac{\chi^{R,(r,s),
u_+,
u_-}(lpha)}{\chi^{R,(r,s),
u_+,
u_-}(lpha)}\,\mathrm{tr}_L\left(lpha\cdot Z^{\otimes n_Z}Y^{\otimes n_Y}
ight)$$

Restricted Schur character

 $r \sim \text{irrep for } Z$, $s \sim \text{irrep for } Y$, $R \sim \text{product of } (r,s)$

• Two ways to specify the representation of $oldsymbol{Y}$'s

An example at
$$p=3$$
, $s=(4,2,1), \quad R/r=(3,2,2)$

Adjacency matrix

$$n_{i o j} = ext{(how many i's appear}$$
 in the j -th column of $R/r)$

$$\{n_{i o j}\} = egin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$$

• Two ways to specify the representation of $oldsymbol{Y}'$ s

An example at
$$p=3$$
, $s=(4,2,1), \quad R/r=(3,2,2)$

$$s = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 \\ 1 \\ 1 \end{bmatrix}, \qquad R/r = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

Adjacency matrix

$$n_{i o j} = ext{(how many i's appear}$$
 in the j -th column of $R/r)$

$$\{n_{i o j}\} = egin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$$

• Two ways to specify the representation of $oldsymbol{Y}$'s

An example at
$$p{=}3$$
, $s=(4,2,1), \quad R/r=(3,2,2)$

Adjacency matrix

$$n_{i o j} = ext{(how many i's appear}$$
 in the j -th column of $R/r)$

$$\{n_{i o j}\} = egin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$$

• Two ways to specify the representation of $oldsymbol{Y}$'s

An example at
$$p=3$$
, $s=(4,2,1), \quad R/r=(3,2,2)$

Adjacency matrix

$$n_{i o j} = ext{(how many i's appear}$$
 in the j -th column of $R/r)$

$$\{n_{i o j}\} = egin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$$

The column label (1,2,...,p) becomes important

Gauss graph basis

• Take a "good" linear combination of the restricted Schur operators

$$O^{R,r}(\sigma) = |H| \sqrt{n_Y!} \sum_{j,k} \sum_{s \vdash n_Y} \sum_{\nu_-,\nu_+} D^s_{jk}(\sigma) \, B^{s \to 1_H,\nu_-}_j \, B^{s \to 1_H,\nu_+}_k \mathcal{O}^{R,(r,s),\nu_+,\nu_-}$$
 to symmetrize \boldsymbol{Y} 's within the same column

Gauss graph basis

• Take a "good" linear combination of the restricted Schur operators

$$O^{R,r}(\sigma) = |H| \sqrt{n_Y!} \sum_{j,k} \sum_{s \vdash n_Y} \sum_{\nu_-,\nu_+} D^s_{jk}(\sigma) \, B^{s \to 1_H,\nu_-}_j \, B^{s \to 1_H,\nu_+}_k \mathcal{O}^{R,(r,s),\nu_+,\nu_-} \\ \frac{1}{\text{to symmetrize Y's within the same column}}$$

• Simplified notation for a fixed σ

$$\mathcal{O}(ec{\ell})$$
 for $r=(l_1,l_2,\ldots,l_p)\vdash n_Z$, $n_{ij}(\sigma)=n_{i o j}+n_{j o i}$ adjacency matrix

Adjacency matrix satisfies Gauss graph constraints
 (= conservation of the number of arrowheads, "in" and "out")

$$\sum_{j=1}^p n_{i\to j} = \sum_{i=1}^p n_{i\to j}$$

Weak coupling

Dilatation operators (1)

Expand the dilatation operator of $\mathcal{N}=4$ SYM at weak coupling

$$D(g_{ ext{YM}}) = \sum_{\ell=0}^{\infty} \left(rac{g_{ ext{YM}}}{4\pi}
ight)^{2\ell} D_{\ell}$$

Introduce three different expressions of the dilatation in the su(2) sector

1. In terms of $\mathcal{N}=4$ SYM fields,

$$D_1=-2: {
m Tr}\,[Y,Z][\check{Y},\check{Z}]:$$

satisfying $\mathbf{U}(N_c)$ Wick contraction rule:

$$\operatorname{Tr}\left(A\check{\Phi}B\Phi\right)=\operatorname{Tr}\left(A\right)\operatorname{Tr}\left(B\right),\quad \operatorname{Tr}\left(A\check{\Phi}\right)\operatorname{Tr}\left(B\Phi\right)=\operatorname{Tr}\left(AB\right),\quad \operatorname{Tr}\left(1\right)=N_{c}$$

Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with $(n, m) = (n_Z, n_Y)$

$$D_1\,O^{R,(r,s)jk}(Z,Y) = -2\,\sum_{T,(t,u)lq} N_{T,(t,u)lq}^{R,(r,s)jk}\,O^{T,(t,u)lq}(Z,Y)$$

$$\begin{split} N_{T,(t,u)lq}^{R,(r,s)jk} &= \sum_{R'} \sqrt{\frac{f_R \, f_T}{f_{R'} \, f_{T'}}} \, \frac{n \, m}{(n+m)} \, \sqrt{\frac{d_R \, d_T}{d_r \, d_s \, d_t \, d_u}} \, \times \\ & \frac{1}{d_{R'}} \, \text{Tr} \Big(\Big[D^R((1,m+1)), P_{R \to (r,s)jk} \Big] I_{R'T'} \Big[D^T((1,m+1)), P_{T \to (t,u)ql} \Big] I_{T'R'} \Big) \end{split}$$

- ullet This expression is very complicated, but exact in N_c
- The k-loop dilatation D_k moves k boxes of the Young diagrams

Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with $(n, m) = (n_Z, n_Y)$

$$D_1\,O^{R,(r,s)jk}(Z,Y) = -2\,\sum_{T,(t,u)lq} N_{T,(t,u)lq}^{R,(r,s)jk}\,O^{T,(t,u)lq}(Z,Y)$$

Product of box weights (N_c dependent)

$$\begin{split} N_{T,(t,u)lq}^{R,(r,s)jk} &= \sum_{R'} \sqrt{\frac{f_R \, f_T}{f_{R'} \, f_{T'}}} \frac{n \, m}{(n+m)} \, \sqrt{\frac{d_R \, d_T}{d_r \, d_s \, d_t \, d_u}} \, \times \\ & \frac{1}{d_{R'}} \, \mathrm{Tr} \Big(\Big[D^R((1,m+1)), P_{R \to (r,s)jk} \Big] I_{R'T'} \Big[D^T((1,m+1)), P_{T \to (t,u)ql} \Big] I_{T'R'} \Big) \\ & \text{permute } \textbf{\textit{Y}} \text{and } \textbf{\textit{Z}} \quad \text{projector} \quad \text{intertwine } \textbf{\textit{R}'} \text{ and } \textbf{\textit{T}'} \\ & R' = (\text{one box removed from } \textbf{\textit{R}}) = \textbf{\textit{T}''} \end{split}$$

- ullet This expression is very complicated, but exact in N_c
- The k-loop dilatation D_k moves k boxes of the Young diagrams

Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with $(n, m) = (n_Z, n_Y)$

$$D_1\,O^{R,(r,s)jk}(Z,Y) = -2\,\sum_{T,(t,u)lq} N_{T,(t,u)lq}^{R,(r,s)jk}\,O^{T,(t,u)lq}(Z,Y)$$

$$\begin{split} N_{T,(t,u)lq}^{R,(r,s)jk} &= \sum_{R'} \sqrt{\frac{f_R \, f_T}{f_{R'} \, f_{T'}}} \, \frac{n(m)}{(n+m)} \, \sqrt{\frac{d_R \, d_T}{d_r \, d_s \, d_t \, d_u}} \, \times \\ & \frac{1}{d_{R'}} \, \mathrm{Tr} \Big(\Big[D^R((1,m+1)), P_{R \to (r,s)jk} \Big] I_{R'T'} \Big[D^T((1,m+1)), P_{T \to (t,u)ql} \Big] I_{T'R'} \Big) \\ & \qquad \qquad \sim O(1) \end{split}$$

- When $R \sim T \sim r \sim t$ are "big" and $s \sim u$ are "small", most factors cancel
- If we move a box over a "long" distance, the commutator terms almost vanish

Distant corners approximation

Consider the case $n_Z = O(N_c) \gg 1$ and $n_Y = O(1)$; r has p long columns, l_i = length of the i-th column; The corners of r are separated by long distances

$$n_Z = \sum_{i=1}^p l_i = O(N_c) \gg 1, \quad l_i - l_{i+1} \gg 1$$

Distant corners approximation

Consider the case $n_Z = O(N_c) \gg 1$ and $n_Y = O(1)$; r has p long columns, l_i = length of the i-th column; The corners of r are separated by long distances

$$n_Z = \sum_{i=1}^p l_i = O(N_c) \gg 1, \quad l_i - l_{i+1} \gg 1$$

Approximation has two consequences:

- 1. Truncation of mixing matrix
 - Moving a box to the (p+1)-th column is negligible
 - \rightarrow Hamiltonian of an effective $\mathbf{U}(p)$ theory
- 2. Large Nc continuum limit

The Hamiltonian becomes a differential operator

Dilatation operators (3)

3. Acting on of the Gauss graph basis, after distant corners approximation (before continuum limit)

$$D^G(g_{ ext{YM}}) = \sum_{\ell=0}^{\infty} \left(rac{g_{ ext{YM}}}{4\pi}
ight)^{2\ell} D_\ell^G$$

$$D_1^G = -\sum_{i
eq j=1}^p n_{ij}(\sigma) \Delta_{ij}^{(1)}$$

$$D_2^G = -\sum_{i
eq j=1}^p n_{ij}(\sigma) \left\{ (L-2N_c) \, \Delta_{ij}^{(1)} + \Delta_{ij}^{(2)}
ight\}$$

adjacency matrix related to $oldsymbol{Y}$

difference operators related to Z

We call $m{D}^G$ the Hamiltonian of an effective f U(p) theory

Effective U(p) theory

• To see the $\mathbf{U}(p)$ symmetry, introduce a set of harmonic oscillators

$$d_i^- \, O(\vec{l}) = \sqrt{h(i,l_i)} \, O(\dots,l_i-1,\dots)$$
 $d_i^+ \, O(\vec{l}) = \sqrt{h(i,l_i+1)} \, O(\dots,l_i+1,\dots)$ $\hat{h}_i \, O(\vec{l}) = h(i,l_i) \, O(\vec{l}) = (N_c+i-l_i) \, O(\vec{l})$

= Weight of a box at the end of the i-th column in R

Effective U(p) theory

• To see the $\mathbf{U}(p)$ symmetry, introduce a set of harmonic oscillators

$$egin{aligned} d_i^- \ O(ec{l}) &= \sqrt{h(i,l_i)} \ O(\dots,l_i-1,\dots) \ \\ d_i^+ \ O(ec{l}) &= \sqrt{h(i,l_i+1)} \ O(\dots,l_i+1,\dots) \ \\ \hat{h}_i \ O(ec{l}) &= h(i,l_i) \ O(ec{l}) = (N_c+i-l_i) \ O(ec{l}) \end{aligned}$$

= Weight of a box at the end of the i-th column in R

- Commutation relations
 - nutation relations
- $\mathbf{GL}(p)$ generators
- Hamiltonians

$$d_i^+ d_i^- = \hat{h}_i \,, \quad \left[d_i^+, d_j^-
ight] = \delta_{ij}$$

$$E_{ij} \equiv d_i^+ \, d_j^-, \quad [E_{ij} \, , E_{kl}] = \delta_{jk} \, E_{il} - \delta_{il} \, E_{kj}$$

$$\Delta_{ij}^{(1)} = -\left(d_i^+ - d_j^+
ight)\left(d_i^- - d_j^-
ight)$$

$$\Delta_{ij}^{(2)} = -\left(d_i^+ - d_j^+\right)\left(1 + d_i^+ d_j^- + d_j^+ d_i^-\right)\left(d_i^- - d_j^-\right)$$

Commutation relations (2-loop)

• Rewrite the dilatation operators (here \mathcal{H} denotes Δ)

$$D_1^G \sim \sum_{i
eq j} n_{ij}(\sigma) \mathcal{H}_{1,ij}, \quad D_2^G \sim \sum_{i
eq j} n_{ij}(\sigma) \left\{ \left(L - 2N_c
ight) \mathcal{H}_{1,ij} + \mathcal{H}_{2,ij}
ight\}$$

It turns out that

$$[\mathcal{H}_{1,ij},\mathcal{H}_{2,ij}]=0$$

• When p > 2, we want to check

$$[D_1^G, D_2^G] = 0 \quad \Leftrightarrow \quad [\mathcal{H}_{1,ij}, \mathcal{H}_{2,ik}] + [\mathcal{H}_{1,ik}, \mathcal{H}_{2,ij}] = 0$$

which is true if we take the continuum limit (large N_c in the distant corners approximation)

ullet The commutation implies that the eigenstates (for the mixing of Z's) are one-loop exact

Commutation relations (2-loop)

• Rewrite the dilatation operators (here \mathcal{H} denotes Δ)

$$D_1^G \sim \sum_{i
eq j} n_{ij}(\sigma) \mathcal{H}_{1,ij}, \quad D_2^G \sim \sum_{i
eq j} n_{ij}(\sigma) \left\{ \left(L - 2N_c
ight) \mathcal{H}_{1,ij} + \mathcal{H}_{2,ij}
ight\}$$

It turns out that

$$[\mathcal{H}_{1,ij},\mathcal{H}_{2,ij}]=0$$

• When p > 2, we want to check

$$[D_1^G, D_2^G] = 0 \quad \Leftrightarrow \quad [\mathcal{H}_{1,ij}, \mathcal{H}_{2,ik}] + [\mathcal{H}_{1,ik}, \mathcal{H}_{2,ij}] = 0$$

which is true if we take the continuum limit (large N_c in the distant corners approximation)

- ullet The commutation implies that the eigenstates (for the mixing of Z's) are one-loop exact
- ullet What if $[D^G(g),D^G(g')]=0 \quad \Leftrightarrow \quad [D^G_\ell,D^G_m]=0, \quad (orall l,m)$

Commutation relations (all-loop)

Ansatz for higher-loop dilatations

$$D_\ell^G = \sum_{k=1}^\ell N_c^{\ell-k} x_{\ell,k} \, \mathcal{H}_k, \quad \mathcal{H}_\ell = \sum_{i
eq j}^p n_{ij}(\sigma) \, \mathcal{H}_{\ell,ij}$$

• At p = 2, the commutation for any values of n_{ij} requires that

$$[\mathcal{H}_{\ell,ij}\,,\mathcal{H}_{\ell',ij}]=0 \quad (orall \ell,\ell')$$

Commuting charges

$$\mathcal{Q}_{ab,ij} \equiv (d_i^\dagger - d_j^\dagger)^a : \left(d_i^\dagger d_j + d_j^\dagger d_i
ight)^b : (d_i - d_j)^a \,, \quad (a = \ell - b = 0, 1, \dots, \ell)$$

• Large N_c continuum limit

$$\mathcal{Q}_{km,ij} \simeq (2N_c)^m : \left(rac{lpha}{4} \, y_{ij}^2 - rac{1}{lpha} \, rac{\partial^2}{\partial y_{ij}^2}
ight)^k :, \quad h(i,l_i) = N_c + i - y_i \sqrt{lpha N_c}$$

 $x_{l,k} = 0$ at k = 0, and the k = 1 terms are proportional to the one-loop dilatation

All-loop ansatz

• One-loop dimensions for p = 2 (= spectrum of a finite oscillator)

$$\Delta - J = rac{\lambda}{\pi^2} \, n_{12} rac{m}{N_c} + O(\lambda^2), \qquad (m = 1, 2, \ldots, \left\lceil N_c - rac{n_Z}{2} + 1
ight
ceil)$$

• All-loop dimensions for p = 2

$$\Delta-J=f_1(\lambda)\,n_{12}\,rac{m}{N_c}\,,\quad f_1(\lambda)=rac{\lambda}{\pi^2}+O(\lambda^2)$$

We guessed possible forms of D_l based on perturbative data, solve the commutation relations. In the large Nc continuum limit, all remaining terms are proportional to D_1

Critical assumption

$$[D^G(g),D^G(g')]=0 \quad \Leftrightarrow \quad [D_\ell^G\,,D_m^G]=0, \quad (orall l,m)$$

Finite oscillator

• One-loop mixing is solvable at p=2

- $D_1^G = -2n_{12}\,{\cal H}_{1,12}$
- ullet Introduce the coordinate $oldsymbol{x}$ through the ansatz
- $\mathcal{O}_f = \sum_{x=-l_2}^{\lceil (l_1-l_2)/2
 ceil} f(x) O(l_1-x,l_2+x)$

Hamiltonian of the finite oscillator

$$\mathcal{H}_{1,12} = h(1,l_1) + h(2,l_2) - \sqrt{h(1,l_1) h(2,l_2+1)} e^{-\partial_x} - \sqrt{h(1,l_1+1) h(2,l_2)} e^{+\partial_x}$$

• The eigenfunction is related to the matrix elements of the su(2) basis rotation

$$J_k |j,j_k\rangle_k = j_k |j,j_k\rangle_k, \quad (j_k = -j,-j+1,\ldots,j)$$

$$_{1}\langle j,j_{1}\,|\,j,j_{3}
angle_{3}=rac{(-1)^{j+j_{3}}}{2^{j}}\,\sqrt{inom{2j}{j+j_{3}}inom{2j}{j+j_{3}}inom{2j}{j+j_{1}}}\,_{2}F_{1}(-j-j_{3},-j-j_{1};-2j;2)$$

Young diagram constraints → the wave-functions must be parity-odd

Strong coupling

Single spherical giant graviton

• A spherical giant graviton is a classical solution of the D3-brane action on $AdS_5 \times S^5$

$$S = rac{N_c}{2\pi^2 R^4} \left(-\int_{\Sigma_4} d^4 \xi \, e^{-arphi} \sqrt{-\det G_{ab}} + \int_{\Sigma_4} C^{(4)}
ight)$$

• S^5 coordinates; $X_3 - X_6$ wraps S^3 inside S^5

$$egin{aligned} X_1 &= R/\sqrt{
ho}\,\cos\eta\,\cos heta_1 & X_2 &= R/\sqrt{
ho}\,\cos\eta\,\sin heta_1 & X_3 &= R/\sqrt{
ho}\,\sin\eta\,\cos heta_2 \ X_4 &= R/\sqrt{
ho}\,\sin\eta\,\sin heta_2 & X_5 &= R\sqrt{1-1/
ho}\,\cos\phi & X_6 &= R\sqrt{1-1/
ho}\,\sin\phi \end{aligned}$$

Single spherical giant graviton

• A spherical giant graviton is a classical solution of the D3-brane action on $AdS_5 \times S^5$

$$S = rac{N_c}{2\pi^2 R^4} \left(-\int_{\Sigma_4} d^4 \xi \, e^{-arphi} \sqrt{-\det G_{ab}} + \int_{\Sigma_4} C^{(4)}
ight)$$

• S^5 coordinates; $X_3 - X_6$ wraps S^3 inside S^5

$$egin{aligned} X_1 &= R/\sqrt{
ho}\,\cos\eta\,\cos heta_1 & X_2 &= R/\sqrt{
ho}\,\cos\eta\,\sin heta_1 & X_3 &= R/\sqrt{
ho}\,\sin\eta\,\cos heta_2 \ X_4 &= R/\sqrt{
ho}\,\sin\eta\,\sin heta_2 & X_5 &= R\sqrt{1-1/
ho}\,\cos\phi & X_6 &= R\sqrt{1-1/
ho}\,\sin\phi \end{aligned}$$

• Static gauge and 2D ansatz:

$$(t, \theta_1, \theta_2, \eta) = (\xi^0, \xi^1, \xi^2, \xi^3), \qquad \rho = \rho(t, \eta), \quad \phi = \phi(t, \eta)$$

ullet BPS solution: $ho = N_c/(g_s J) \equiv 1/j \quad \Rightarrow \quad E = J$

KK mode analysis

 \therefore) su(2) sector in $\mathcal{N}=4$ SYM

ullet Perturb around the BPS solution, expand the fluctuations by spherical harmonics on ${f S}^3$

$$\begin{split} \rho &= \frac{1}{j} + \epsilon \, \tilde{\rho}_1(t) \, \Phi_{k,0,0}(\eta), \quad \phi = t + \epsilon \, \tilde{\phi}_1(t) \, \Phi_{k,0,0}(\eta) \\ \Delta_{\mathrm{S}^3} \Phi_{k,m_1,m_2}(\eta,\theta_1,\theta_2) &= -k(k+2) \, \Phi_{k,m_1,m_2}(\eta,\theta_1,\theta_2) \end{split}$$

• No perturbed solutions exist when the giant graviton is maximal (j = 0, 1)

KK mode analysis

• Perturb around the BPS solution, expand the fluctuations by spherical harmonics on S^3

$$\begin{split} \rho &= \frac{1}{j} + \epsilon \, \tilde{\rho}_1(t) \, \Phi_{k,0,0}(\eta), \quad \phi = t + \epsilon \, \tilde{\phi}_1(t) \, \Phi_{k,0,0}(\eta) \\ \Delta_{\mathrm{S}^3} \Phi_{k,m_1,m_2}(\eta,\theta_1,\theta_2) &= -k(k+2) \, \Phi_{k,m_1,m_2}(\eta,\theta_1,\theta_2) \end{split}$$

- No perturbed solutions exist when the giant graviton is maximal (j = 0, 1)
- The solutions to the linearized equations of motion are, for 0 < j < 1,

$$E-J=egin{cases} rac{N_c}{g_s} rac{\epsilon^2 \, c_k^2 \, (k+1)^2}{8(1-j)(k+2)} & (k>0) & ext{Expanded} \ rac{N_c}{g_s} rac{\epsilon^2 \, (c_0^2+ ilde{c}_0^2)}{32\pi^2(1-j)} & (k=0) & ext{Point-like} \end{cases}$$

k > 0 (non-zero KK mode on S^3)

k = 0 (point-like)

Orange: BPS giant Blue: excited giant

AdS/CFT proposal

The finite oscillators (with p=2) should correspond to oscillating giant solutions at large k

$$E-J\simeq rac{N_c^2\,\epsilon^2}{\lambda}\,rac{\pi\,c_k^2}{2(1-j)}\,k \qquad \leftrightarrow \qquad \Delta-J=rac{ ilde{f}(\lambda)}{N_c}\,n_{12}(\sigma)\,m$$

- Dispersions are gapless; (ϵ , k) explains the factor (1/Nc, m)
- Cannot excite the maximal giant graviton ($r = [1^{Nc}]$)

AdS/CFT proposal

The finite oscillators (with p=2) should correspond to oscillating giant solutions at large k

$$E-J\simeq rac{N_c^2\,\epsilon^2}{\lambda}\,rac{\pi\,c_k^2}{2(1-j)}\,k \qquad \leftrightarrow \qquad \Delta-J=rac{ ilde{f}(\lambda)}{N_c}\,n_{12}(\sigma)\,m$$

- Dispersions are gapless; (ϵ , k) explains the factor (1/Nc, m)
- Cannot excite the maximal giant graviton ($r = [1^{Nc}]$)
- Non-abelian DBI should explain $n_{ij}(\sigma)$? Probably no

Open strings of *a finite length* costs a lot of energies; After oscillating D-branes, open strings decouple at large N_c

Length scale of open strings between multiple giants

Large N_c continuum limit \to Distance between two non-maximal giants $\sim O(\sqrt{N_c})$

$$\mathcal{Q}_{km,ij} \simeq (2N_c)^m : \left(rac{lpha}{4}\,y_{ij}^2 - rac{1}{lpha}\,rac{\partial^2}{\partial y_{ij}^2}
ight)^k :$$

$$h(i,l_i) = N_c + i - y_i \sqrt{\alpha N_c}$$

Length scale of open strings between multiple giants

Large N_c continuum limit o Distance between two non-maximal giants $\sim O(\sqrt{N_c})$

Typical scale in the LLM plane $\sim O(N_c)$

Multiple non-maximal giants are almost coincident in LLM, except for the outermost giant (= 1st column of $m{R}$)

Length scale of open strings between multiple giants

Large N_c continuum limit o Distance between two non-maximal giants $\sim O(\sqrt{N_c})$

Typical scale in the LLM plane $\sim O(N_c)$

Multiple non-maximal giants are almost coincident in LLM, except for the outermost giant (= 1st column of $m{R}$)

- The open string energy (= tension \times length) between different giants should be large (or very large) at strong coupling \Rightarrow should decouple
- The open string tension is negligible at weak coupling \Rightarrow no need to decouple

Multiple branes are easy to see only at weak coupling

Integrable open string spectrum

The Z=0 maximal giant gravitons with open strings attached

Almost single-trace operator ending on the determinant of Z's

$$\mathcal{O}=\epsilon_{j_1j_2...j_{N_c}}^{i_1i_2...i_{N_c}}\,Z_{i_1}^{j_1}Z_{i_2}^{j_2}\ldots Z_{i_{N_c-1}}^{j_{N_c-1}}\, imes \ \ (\chi\ldots ZZ\ldots \psi_1\ldots \psi_2\ldots ZZ\ldots \chi)_{i_{N_c}}^{j_{N_c}}$$
 boundary mode bulk mode

[Hofman, Maldacena (2007)]

Both states can be described by an su(2|2) integrable spin chain with boundaries

$$E-J=\sum_i \sqrt{1+rac{\lambda}{\pi^2}\,\sin^2rac{p_i}{2}} \quad o \quad ext{(tension)} \, imes \, ext{(string length)}$$

This dispersion relation is *gapped* (unless $\lambda \ll 1$)

Possible AdS/CFT scenarios

Weak coupling

Finite oscillator from effective U(p) theory

(1) all-loop commutation: gapless dispersion, open string decouples

Strong coupling

oscillating giants

(2) no commutation: gapped dispersion, anomalous dimensions grow large

spiky strings (∞ energy?)

[Sadri, Sheikh-Jabbari (2003)]

Central extension of su(2 2)?

$$\mathcal{O}_{\text{det}} = \sum_{\substack{i_1, i_2, \dots, i_{N_c}, \\ \vdots}}^{N_c} \epsilon_{j_1 j_2 \dots j_{N_c}}^{i_1 i_2 \dots i_{N_c}} Z_{i_1}^{j_1} Z_{i_2}^{j_2} \dots Z_{i_{N_c-1}}^{j_{N_c-1}} \ (\underbrace{\chi_L \dots ZZ \dots \psi_1 \dots \psi_2 \dots ZZ \dots \chi_R}_{1 \dots i_{N_c}})_{i_{N_c}}^{j_{N_c}}$$

The centrally-extended $\mathbf{su}(2|2)$ justifies all-loop ansatz?

A non-trivial central extension of $\mathbf{su}(2|2)$ is known for coherent states of non-maximal giant gravitons

[Berenstein (2013,2014)], [Berenstein, Dzienkowski (2013)]

Open string on multiple giants = add a "single-trace" by attaching a single-hook next to \boldsymbol{p} columns

[Kristjansen, Plefka, Semenoff, Staudacher (2002)] [April, Drummond, Heslop, Paul, Sanflippo, Santagata, Stewart (2020)]

Do the centers act non-trivially on the long columns?

Central extension of su(2 2)?

$$\mathcal{O}_{ ext{det}} = \sum_{i_1, i_2, \dots, i_{N_c}}^{N_c} \epsilon_{j_1 j_2 \dots j_{N_c}}^{i_1 i_2 \dots i_{N_c}} Z_{i_1}^{j_1} Z_{i_2}^{j_2} \dots Z_{i_{N_c-1}}^{j_{N_c-1}} \left(\underbrace{\chi_L \dots ZZ \dots \psi_1 \dots \psi_2 \dots ZZ \dots \chi_R}_{1 \dots i_{N_c}} \right)_{i_{N_c}}^{j_{N_c}}$$

The centrally-extended $\mathbf{su}(2|2)$ justifies all-loop ansatz?

A non-trivial central extension of $\mathbf{su}(2|2)$ is known for coherent states of non-maximal giant gravitons

[Berenstein (2013,2014)], [Berenstein, Dzienkowski (2013)]

Open string on multiple giants = add a "single-trace" by attaching a single-hook next to p columns

[Kristjansen, Plefka, Semenoff, Staudacher (2002)] [April, Drummond, Heslop, Paul, Sanflippo, Santagata, Stewart (2020)]

Do the centers act non-trivially on the long columns?

Summary and Outlook

Summary

- Studied AdS/CFT in the non-planar large N_c limit
- Mixing of huge operators;

Gauss Graph basis \Rightarrow Effective U(p) theory

Proposed all-loop ansatz and a new AdS/CFT example;

Finite-oscillators at weak coupling = Oscillating giants at strong coupling

Outlook

- Justify the commutation relations (or "one-loop exactness")
- More data to check the proposal; <(giant)(giant)(single-trace)>

[Bak, Chen, Wu (2013)] [Bissi, Kristjansen, Young, Zoubos (2013)], ..., [Jiang, Komatsu, Wu, Yang (2021)]

- (Non-planar) integrability?
- Can we classify the classical motion of D-branes?
- How to find the Gauss graph constraints in the string-brane system?

Representation matrices

Examples:

- We can proceed without choosing explicit matrix representations (use central elements)
- Explicit matrices are useful for computing the one-loop mixing
- e.g. if two boxes are separated by a long distance, the matrix elements are trivial

$$egin{split} D^R\Big((a,a+1)\Big) \;|R,i
angle &= rac{1}{d_{a,a+1}} \;|R,i
angle + \sqrt{1-rac{1}{d_{a,a+1}^2}} \;|R,(a,a+1)i
angle \ &
ightarrow \;|R,(a,a+1)i
angle \;, \qquad (|d_{a,a+1}|\gg 1) \end{split}$$

Restricted Schur characters

Restrict S_L to $S_{n_Y} \otimes S_{n_Z}$ with $L = n_Y + n_Z$ In the split basis, the representation matrices almost block diagonal (block diagonal if $\alpha \in S_{n_Y} \otimes S_{n_Z}$)

$$D_{IJ}^{R}(\alpha) = B^{T} \begin{pmatrix} D_{i_{1}j_{1}}^{r_{1}\otimes s_{1}}(\alpha) & * & * & * \\ * & D_{i_{2}j_{2}}^{r_{2}\otimes s_{2},11}(\alpha) & D_{i_{2}j_{2}}^{r_{2}\otimes s_{2},12}(\alpha) & * \\ * & D_{i_{2}j_{2}}^{r_{2}\otimes s_{2},21}(\alpha) & D_{i_{2}j_{2}}^{r_{2}\otimes s_{2},22}(\alpha) & * \\ * & * & * & * & \ddots \end{pmatrix} B$$

$$\downarrow \text{ trace}$$

$$\chi^{r_{2}\otimes s_{2},21}(\alpha) = \sum_{i_{2}} D_{i_{2}i_{2}}^{r_{2}\otimes s_{2},21}(\alpha)$$

U(N) structure in Schur-Weyl duality

Introduce another notation, $\phi_{i_1}(x_1) \phi_{i_2}(x_2) \dots \phi_{i_L}(x_L) \equiv \phi_{i_1 i_2 \dots i_L} \ (= |12 \dots L\rangle)$

Lowering operators:
$$E_{i-1,i} = \phi_{i-1} \frac{\partial}{\partial \phi_i}$$
 $(i=2,3,\ldots,N), \quad E_{i-1,i} \cdot \phi_{111\ldots} = 0$

Highest weight state: Substitute ϕ_a to the a-th row

In this procedure, the permutation-group structure is (apparently) not manifest

Two-column states are spanned by $(\phi_{112}, \phi_{121}, \phi_{211})$

The states should be orthogonal to the single-column state, ϕ_{111}

 \Rightarrow Possible space of HWS are two-dimensional, not four

Example at L=3:

$$\phi_{i_1}(x_1) \, \phi_{i_2}(x_2) \, \dots \, \phi_{i_L}(x_L) \equiv |1, 2, \dots, L\rangle \,, \quad (i_k = 1, 2, \dots, N, N \geq L)$$

$$\boxed{1\ |2\ |3} = \frac{1}{\sqrt{6}} (|123\rangle + |231\rangle + |312\rangle + |132\rangle + |321\rangle + |213\rangle)$$

$$\frac{\boxed{1}}{2} = \frac{1}{\sqrt{6}} \left(|123\rangle + |231\rangle + |312\rangle - |132\rangle - |321\rangle - |213\rangle \right)$$

$$\begin{pmatrix} \boxed{1} \ \boxed{2} \\ \boxed{3} \end{pmatrix}_{1} = \frac{1}{\sqrt{12}} \left(2 \ |123\rangle + 2 \ |213\rangle - |321\rangle - |312\rangle - |132\rangle - |231\rangle \right)$$
 irrep

$$\left(\boxed{\frac{1}{2}}\right)_1 = \frac{1}{2}\left(|132\rangle + |231\rangle - |321\rangle - |312\rangle\right)$$

$$\left(\boxed{\frac{1}{3}}\right)_2 = \frac{1}{2}\left(|132\rangle + |312\rangle - |321\rangle - |231\rangle\right)$$

$$\left(\frac{1}{2} \right)_{2}^{2} = \frac{1}{\sqrt{12}} \left(2 |123\rangle - 2 |213\rangle + |321\rangle - |312\rangle + |132\rangle - |231\rangle)$$

multiplicity

Example at
$$L=3$$
: in QCD, $(\phi_1,\phi_2,\phi_3)=(u,d,s)$
$$\phi_{i_1}(x_1)\,\phi_{i_2}(x_2)\,\ldots\,\phi_{i_L}(x_L)\equiv\phi_{i_1i_2...i_L}\,(=|12\ldots L\rangle)$$

$$(\boxed{1\ 2\ 3})_{\mathrm{HWS}}=\phi_{111}$$

$$\left(\boxed{\frac{1}{2}}{\frac{3}{3}}\right)_{\mathrm{HWS},1}=\frac{1}{\sqrt{6}}\sum_{\sigma\in S_3}\phi_{\sigma(1)\sigma(2)\sigma(3)}$$

$$\left(\boxed{\frac{1}{3}}{\frac{3}{2}}\right)_{\mathrm{HWS},1}=\frac{1}{\sqrt{6}}\left(2\phi_{112}-\phi_{211}-\phi_{121}\right)$$
 irrep
$$\left(\boxed{\frac{1}{3}}{\frac{3}{2}}\right)_{\mathrm{HWS},1}=\frac{1}{\sqrt{2}}\left(\phi_{211}-\phi_{121}\right)$$

$$\left(\boxed{\frac{1}{3}}{\frac{3}{2}}\right)_{\mathrm{HWS},2}=0$$
 irrep
$$\left(\boxed{\frac{1}{3}}{\frac{3}{2}}\right)_{\mathrm{HWS},2}=\frac{1}{\sqrt{2}}\left(\phi_{121}-\phi_{211}\right)$$

Is $J = J_Z + J_Y$ or $J = J_Y$

Question: The dispersion relation is gapped if $J=J_Z$

Then can we excite an open string on the strong coupling side?

Answer: The D-brane wrapping on S³ cannot have non-zero J_Y

So indeed, we must introduce an open string carrying J_Y

But this open string decouples from D-brane after oscillating it,

because the length between D-branes is too large