Oscillating Multiple Giants

Ryo Suzuki

(Shing-Tung Yau Center of Southeast University)
arXiv:2101.05310
@Titech, June 2021




Plan of Talk

1.Motivation
2.Finite group methods
3.Weak coupling

4.5trong coupling

5.Summary and Outlook




Motivation




AdS/CFT and integrability

AdS/CFT is usually a conjecture in the planar large Nec limit

Maximally supersymmetric theories in this limit are “integrable”

N = 4 super Yang-Mills in D=4 Superstring on AdS; x S°
R? Ne gs
A= N,.g? A= —
Tym a’? 47
Single-trace operators with R-charge L Strings with angular momentum L

tr (ZL"MyM) 4 ... OO

Planar large N¢ limit: N > L > 1

Computations reformulated as integrable system, predicting

Asymptotic term + Wrapping corrections (usually negligible if L > 1 or A < 1)




AdS/CFT and integrability

The integrability prediction is exact in A, but has limitations due to the planarity:

S |ntegrabi|ity seems lost on the non—planar level [Beisert, Kristjansen, Staudacher (2003)] + many more
> Hard to solve the multi-trace mixing problem [Bellucci, Casteill, Morales, Sochichiu (2004))] + many more

> Even the 1/N. corrections to the BPS 4pt are complicated [Bargheer, Caetano, Fleury, Komatsu, Vieira (2017,2018)]

Difficult because non-planar effects ~ string coupling (quantum gravity) corrections

Possible directions:
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AdS/CFT and integrability

The integrability prediction is exact in A, but has limitations due to the planarity:

|ntegrabi|ity seems |05t on the non_p|anar |eve| [Beisert, Kristjansen, Staudacher (2003)] + many more
Hard to solve the multi-trace mixing problem [Bellucci, Casteill, Morales, Sochichiu (2004))] + many more

Even the 1/N. corrections to the BPS 4pt are complicated [Bargheer, Caetano, Fleury, Komatsu, Vieira (2017,2018)]

Difficult because non-planar effects ~ string coupling (quantum gravity) corrections

Possible directions:

w Refine perturbative computations of N=4 SYM, or AdSs x S5 string

w Look for hints from other approaches (bootstrap, localization, ...)

w Study non-planar large Ne limits




AdS/CFT at non-planar large N,

Non-planar large N¢limit: L 2 N> 1

Operators with huge dimensions Deforming AdS; x S° background
L =0O(N}) Giant gravitons (D-branes)
L > O(N?) LLM geometry

This setup is generally not integrable. An exception is

Single trace + determinant-like operator €«— Open strings ending on a single D-brane

N\ /"

Spin chain with integrable boundaries

[Hofman, Maldacena] (2007)
and many more




AdS/CFT at non-planar large N,

Non-planar large N¢limit: L 2 N> 1

Operators with huge dimensions Deforming AdS; x S° background
L =0O(N}) Giant gravitons (D-branes)
L > O(N?) LLM geometry

This setup is generally not integrable. An exception is

Single trace +|determinant-likeloperator €«— Open strings ending on|a single D-brane

N\ /"

Spin chain with|integrable boundaries

[Hofman, Maldacena] (2007)
and many more

Generalize these objects by using finite group methods (not integrability)
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L =0O(N}) Giant gravitons (D-branes)
L > O(N?) LLM geometry

This setup is generally not integrable. An exception is

Single trace + determinant-like operator €«— Open strings ending on a single D-brane
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LLM geometry

General half-BPS regular solutions of IIB supergravity with the residual symmetry psu(2]2)?

N2 dy? + (dz*)? _
ds? = —2y cosh G (dt + V; dx*)" | 2 CO(Sh G) - ye“dQgs + ye “dQss

Droplet pattern: tanh G (z',z*,y = 0) = £1, either S° or S3 collapses

AdS; x S5 Gilant graviton Concentric circles




Schur operators

» General multi-trace half-BPS operators of N=4 SYM H tr Z™ = trp(aZ%")

Multi-trace structure of tr;(aZ%®%) <« Cycle type of a € Sy,

« Organize multi-trace operators into the basis labeled by a Young diagram R

1

O (Z) = =

Z Y (o) trr (aZ‘X’L)
aESyt

Y *(a) = St character of irrep R

Z = diag(z1,22,-..,2N.) = OF(Z) = Schur polynomial of {z;}

[Corley, Jevicki, Ramgoolam (2001)]




LLM/Schur as AdS/CFT

Lin, Lunin, Maldacena] (2004)

Half-BPS states labeled by Young diagram ‘B = Concentric droplets in supergravity

_______
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Young diagram is huge :edge lengths a; , y; are order N¢




LLM/Schur as AdS/CFT

Lin, Lunin, Maldacena] (2004)

Half-BPS states labeled by Young diagram ‘B = Concentric droplets in supergravity

_______

L Y3
Y3 T2
/C"y2
2 o =
% — y2 U1
: X -
\
BRRRRERLEEEEERLELEEEE oo neee - excitations

Young diagram is huge :edge lengths a; , y; are order N¢




Two types of non-BPS huge operators

Operators dual to multi giant gravitons
~Young diagram R with p long columns

R =

R —

# (white / gray boxes) =#(Z/Y)

Operators dual to LLM geometry
~Young diagram R with big blocks

r1 X (Nc - yl)

z2 X (Ne — y1 — y2)

for Or = Sum of multi-traces (ZZZ ... YY ...




Two types of non-BPS huge operators

Operators dual to multi giant gravitons
~Young diagram R with p long columns

e Operators having different Young diagrams R mix
under renormalization

e One-loop mixing at large Nc takes a simple form

P e Mixing of gray boxes (excitations) is diagonalized by
Gauss graph basis [de Mello Koch, Ramgoolam] (2012)

e Mixing of white boxes (background) gives a set of

coupled harmonic oscillators
D

? D—J~— Z nij(a)Aij
1,7 =1
i7£]

Non-negative Difference

1 integers operators




An AdS/CFT proposal

We propose an all-loop ansatz for the p = 2 excited (spherical) giant gravitons
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[RS (2021)]




An AdS/CFT proposal

We propose an all-loop ansatz for the p = 2 excited (spherical) giant gravitons

m
A—szl()\)’nlzﬁ,

C

(1

<

m

nz

~

1), A = 5 +00%)

J

« The dispersion relation is gapless at large Nec

« Dual to the classical motion of oscillating D-branes (not open strings)

« ... butthere are critical assumptions / caveats which need to be justified

[RS (2021)]




Why important?

1. Possible “non-planar integrability” at large Nc

Planar large Nc

Non-planar large Nc

Spectrum of string motions

Spectrum of D-brane motions

Yangian (quantum)

Finite group (classical)

s the psu(2]2)2 symmetry centrally extended again?

2. Possible relation to the “TTbar deformation” of N=4 SYM / AdSs x S5

bar deformation in D=2 is exactly solvable, giving a square-root dispersion

bar deformation in D=4 also preserves the psu(2|2)2 symmetry

[Zamolodchikov, (2004)] [Caetano, Peelaers, Rastelli (2020)]




Finite group methods




Schur-Weyl duality

Let V' be a fundamental representation of U(IN)

V@L — 69 Vlg(N) X VEL
RFHL

= duality between the Lie group U(IN) and the permutation group St
Examplesat L = 2 : Assume ¢¥* €V, (1=1,2,...,N)

Wi pd = o pd) 4 ol

veo NOV+1D) NV -1

2 2




Example at L = 3 :

¢i, (1) @i, (x2) ... ¢, () = |1,2,..., L), (tx=1,2,...,N,N > L)

(1132) 4 |312) — |321) — |231))

|
T12]3] = —— (|123) + [231) + |312) + |132) + [321) + [213))
V6
S |
2 = —— (|123) + [231) + |312) — |132) — |321) — |213))
31 V6
L21) — L (2]123) + 2 [213) — [321) — [312) — [132) — |231))
p vi2 irrep
1 1
> = 5 (1132) + [231) — [321) — [312)) nultiplicity
1 two
~ 2

(\V)

V)
DO

(
(
(
(

OV
—

DO — Qo

> irrep
(2 [123) — 2 |213) + |321) — [312) + [132) — |231))




Schur-Weyl duality

Counting the dimensions from the Schur-Weyl duality

dim V& = ) dim (Vi @ V")

= N'= ) Dimyn(R)dr
R-L -
dimensionas U(N) rep  dimension as St rep

General formula to count powers of N

N = %" Dimpy(R) x* ()
T RFFL

number of cycles in a St character




Application: multi-trace 2pt

Denote a multi-trace operator by
N
QLY — Z i1 iz ir
'i]_,’iz,...,’iL:]_

The tree-level two-point function of U(IN) N=4 SYM is

(tre (@z®%) () trr, (82°7) (0)) = |2 728 Y NP7

ocESt
=|z|7** ) ) Dimp, (R) x"(acBo™")
RHL O'ESL
U(N) D il > STt

duality




Representation matrices

Young tableaux = Numbers filled in a Young diagram in the standard way

R — :>{123 1124 134}, (i

4 Y 3 Y 2 :1?29°“9dR)

Determine the matrix elements of irreducible representations: Df;.(a) for o € S,

Decompose the permutation as a product of transpositions:  {(1,2), (2,3),...(L —1,L)}

Young-Yamanouchi form

1 1
DR((a'va'l_ 1)) R, 1) = R, %) + \/1 > R, (a,a + 1))
da,a—l—l d

a,a+1

dg,a+1 = ci(a+1) —c;(a), ci(a) = N.+x —1y, a-th box sits at (z,y) of |R,?)




Restricted Schur operators

Multi-trace operators of length L in the su(2) sector of N=4 SYM
N, | | . . . .
trp (- Z8m2Y®™) = Y zh o ozi gz yleztr yiezts oy

. . ta(1) T ta(2) la(ng)  ta(ng+1)  ta(nz42) " 7 ta(L)
Zl,’l;z,...,’I,L:]_

acSy, (L=ny +nz)
The restricted Schur operators give a basis of multi-trace operators (diagonal at tree-level)

ORa('ras)aV—l— V— —

. Z XR’(T’S)’V-I-?V— (a) trr (Oﬂ . Z®nZY®nY)
nz!ny!
aESL

Restricted Schur character

r ~irrep for Z, s ~irrep for Y, R ~ product of (r, s)




Excitation labels

1
« Two ways to specify the representation of Y's 5
1{2]3
1
An example at p=3, P P | R/r — 5
s=(4,2,1), R/r=(3,2,2) i
3
« Adjacency matrix
n;_; = (how many 2’ 2 11
i—sj = y 1’s appear
{'n,,;_m-} =10 1 1
in the j-th column of R/7r) 1 0 0O




Excitation labels

« Two ways to specify the representation of Y's

2[3 G\Z
An example at p=3, P P | R/r — b
s=(4,2,1), R/r=(3,2,2) EJ
_3/

« Adjacency matrix

n;—; = (how many #’s appear (/2 1 1\)

in the j-th column of R/r)




Excitation labels
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« Two ways to specify the representation of Y's ( 5
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Excitation labels

1
« Two ways to specify the representation of Y's 5
1{2]3
1
An example at p=3, P P | R/r — 5
s=(4,2,1), R/r=(3,2,2) i
3
« Adjacency matrix
n;_; = (how many 2’ 2 11
i—sj = y 1’s appear
{'n,,;_m-} =10 1 1
in the j-th column of R/7r) 1 0 0O

The column label (1,2, ..., p) becomes important




Gauss graph basis

« Take a“good”linear combination of the restricted Schur operators

OF" (o) = [H|Vny! Y > Y Di(o) By " By oRe(rad v

Jak" S l_nY Vv,V

to symmetrize Y's within the same column




Gauss graph basis

« Take a“good”linear combination of the restricted Schur operators

0% (o) = [H|Vny!>. S 3 Di(o) By 1" By M QR

Jak S I_""/Y Vv,V

to symmetrize Y's within the same column

* Simplified notation for a fixed

O(Z) for r = (ll,lz, c oo ,lp) - nz ., nij(a') — Ni—j —+ NG54

adjacency matrix

« Adjacency matrix satisfies Gauss graph constraints

(= conservation of the number of arrowheads, “in” and “out”)




Weak coupling




Dilatation operators (1)

Expand the dilatation operator of N=4 SYM at weak coupling

D(gym) = i (gY—M>2£ D,

—o 47t

Introduce three different expressions of the dilatation in the su(2) sector

1. In terms of N=4 SYM fields,
Dy = —-2:Tr|Y, Z||Y, Z]:

satisfying U (IN.) Wick contraction rule:

Tr (A®PB®) = Tr (A) Tr (B), Tr(A®)Tr (B®) = Tr (AB), Tr(1) = N,




Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with (n, m)=(nz, ny)

D+ OR,(r,s)jk(Z’ Y) = —2 Z NR ,(r,8)jk OT,(t,u)lq(Z’ Y)

T,(tyu)lg
T,(t,u)lg
R(rs)gk Z fRfT nm dr dr
O fre frr (n+m) \ d,dsd; d.,
g Tr([DR((l, m + 1)), PR—)(r,s)jk} IriT: [DT((L m + 1)), PT—)(t,u)ql} IT’R’)
R/

® This expression is very complicated, but exactin N

» The k-loop dilatation Dx moves k boxes of the Young diagrams




Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with (n, m)=(nz, ny)

D+ OR,(r,s)jk(Z’ Y) = —2 Z NR ,(r,8)jk OT,(t,u)lq(Z’ Y)

T,(t,u)lq
T,(tyu)lq
Product of box weights (IN. dependent)
R('rs)gk Z fRfT nm dr dr
N upla = fr fr|(n+m) \ d,ds d; d,
- Tr( DR((1,m + 1)), Proy(rain | I | DT((L,m + 1)), Proy gyt | Irvme )
R/

permute Yand Z projector intertwine R'and T"
R'= (one box removed from R) =T"

® This expression is very complicated, but exactin N

» The k-loop dilatation Dx moves k boxes of the Young diagrams




Dilatation operators (2)

2. In terms of the restricted Schur basis (properly normalized), with (n, m)=(nz, ny)

Dl OR,(’P,S)jk(Z’ Y) — —92 Z N’_ZI':‘?;,(E::;f))quk OT’(t’u)lq(Z, Y)
Ta(tau)lq

NR,(r,s)jk fR fT

. i [
=3 G g Gy \ B
. Tr([DR((l, m + 1)), PR—)(r,s)jk} Ir/T/ [DT((la m + 1)), PT—)(t,u)ql} IT’R’)

~0O(1)

dR/

* When R~T~r~t are”“big”and s~ wu are“small”, most factors cancel

» |f we move a box over a“long”distance, the commutator terms almost vanish




Distant corners approximation

Consider the case nnz=0(INN¢) » 1 and ny=0(1);
r has p long columns, I; = length of the 2-th column; r= , R=
The corners of r are separated by long distances

p

nz=>» Li=0(N;)>1, li—1li1>1 ] b

1=1




Distant corners approximation

Consider the case nnz=0(INN¢) » 1 and ny=0(1);
r has p long columns, I; = length of the 2-th column; r= , R=
The corners of r are separated by long distances

) .
nz=>» Li=0(N;)>1, li—1li1>1 ] b

1=1

Approximation has two consequences:

1. Truncation of mixing matrix

Moving a box to the (p+1)-th column is negligible 2

— Hamiltonian of an effective U(p) theory

2. Large Ne continuum limit

The Hamiltonian becomes a differential operator




Dilatation operators (3)

3. Acting on of the Gauss graph basis, after distant corners approximation (before continuum limit)

D% (gym) = i (gY—M>2£ Dy

—o 47

D
DF = — Y ny(o)Ay
1%£7=1

D
DS =— Y ni(o) {(L —2N,) A 4+ A(2)}
1%£7=1

adjacency matrix relatedto Y difference operators related to Z

We call DG the Hamiltonian of an effective U(p) theory '




Effective U(p) theory

« To see the U(p) symmetry, introduce a set of harmonic oscillators
d; O1) = /h(i, 1) O(...,l; —1,...)
df O(l) = Vh(i,l; + 1) O(...,1; +1,...)
hi O(l) = h(i,1;) O(l) = (Ne + i —1;) O(1)

= Weight of a box at the end of the 2-th columnin R




Effective U(p) theory

« To see the U(p) symmetry, introduce a set of harmonic oscillators
d; O1) = /h(i, 1) O(...,l; —1,...)
df O(l) = Vh(i,l; + 1) O(...,1; +1,...)
hi O(l) = h(i,1;) O(l) = (Ne + i —1;) O(1)
= Weight of a box at the end of the 2-th columnin R

o Commutation relations djdi_ = h;, [dQL, dj_] = 0i;
 GL(p) generators E;; = d;;" d;, [Eij s Ert] = 95k B — 041 Eij
« Hamiltonians Af,(;gl-) — = (d;l_ - d;_) (di_ - d:z_)

AP = _ (d;r _ dj) (1 +did; + djd;) (d._ _ d._)

2 J




Commutation relations (2-loop)

° Rewrite the dilatation operators (here ‘H denotes A)

DE ~ » ni(o)Hii, D5~ ) nii(o) {(L—2N.) Haij + Haij}
i3] 17£]

® |t turns out that H1ij, Haii] = O
® When p >2, we want to check
[Dfa DzG] =0 & [Hiij,Houk + [Hiik, Heij] =0

which is true if we take the continuum limit (large IN¢ in the distant corners approximation)

® The commutation implies that the eigenstates (for the mixing of Z’s) are one-loop exact




Commutation relations (2-loop)

° Rewrite the dilatation operators (here ‘H denotes A)

DE ~ » ni(o)Hii, D5~ ) nii(o) {(L—2N.) Haij + Haij}
ij ij

® [t turns out that H1ij, Haii] = O
® When p >2, we want to check
(DS, D$1=0 < [Hiu4,Hon] + [Hiin, Haii] =0
which is true if we take the continuum limit (large IN¢ in the distant corners approximation)

® The commutation implies that the eigenstates (for the mixing of Z’s) are one-loop exact

o Whatif ~ [D%(g),D%(¢')] =0 < [Dy,D,]=0, (VI,m)




Commutation relations (all-loop)

Ansatz for higher-loop dilatations
¢ p
Df — Z Nfi_kwﬁ,k Hi, He= Z Tvi (0) Hﬁ,ij
k=1 ey
At p =2, the commutation for any values of n;; requires that

[Heij» He i) =0 (VE, L)
Commuting charges

b
Quvis = (df —df)* (djdj 4 dj.d,,-,) :(di —d))*, (a=£—b=0,1,...,¢)

Large IN. continuum limit
1 92
Q Byfj

o
Qrm,ij = (2N)™ - (4 yi;

k
) .o h(’l,,lz) :NC I ) Y; (XNC

x1,r=0at k=0,and the k =1 terms are proportional to the one-loop dilatation




All-loop ansatz

e One-loop dimensions for p =2 (= spectrum of a finite oscillator)

A
A_J:_nlzm | O()\Z)’ (m:1929°°°7[Nc e | 1—|)

T2 N,

 All-loop dimensions for p =2

A
A—T=fiNma—, F() =5 +00N)

C

We guessed possible forms of D; based on perturbative data, solve the commutation relations.
In the large Ne continuum limit, all remaining terms are proportional to D;

e Critical assumption

[D%(9), D%(g")] =0 <« [Dy,D;]=0, (VI,m)




Finite oscillator

e One-loop mixing is solvable at p=2 Df = —2n12 Hi,12

[(11—12)/2]
> f(@)O(ly — x,lz + x)

213=—l2

e Introduce the coordinate & through the ansatz

<
]

e Hamiltonian of the finite oscillator

Hi12 = h(L, 1) + h(2,12) — Vh(1,11) k(2,12 + 1) e % — \/h(1,1; + 1) h(2,1;) e
e The eigenfunction is related to the matrix elements of the su(2) basis rotation

. (—1)7+7 23 23 o .
1(jsJ1 | J>ds)s = . ixi) it o F1(—J — j3, —3 — J1; —234; 2)
1

27 73

Young diagram constraints = the wave-functions must be parity-odd

[N. Atakishiyev, G. Pogosyan, and K. Wolf (2005)] [Carlson, de Mello Koch, Lin] (2011)




Strong coupling




Single spherical giant graviton

e A spherical giant graviton is a classical solution of the D3-brane action on AdS5 x S5

Ne

S = _ d? —%./—d t G, C(4))
271'2R4( /24 £e %\/—de b+ ..

e S5 coordinates; X3 — X wraps S3inside S5

X, =R/+/p cosn cos 6, X2 =R/+/p cosn sin 0, X3 =R/+/p sinn cos O
X4 =R/+\/p sinn sin 0, X5 =R\/1—1/p cos ¢ X¢=R\/1—1/p sin¢

[McGreevy, Susskind, Toumbas (2000)]




Single spherical giant graviton

e A spherical giant graviton is a classical solution of the D3-brane action on AdS5 x S5

Ne

S = _ d? —%./—d t G, C(4))
271'2R4< /24 £e %\/—de b+ ..

e S5 coordinates; X3 — X wraps S3inside S5

X, =R/+/p cosn cos 6, X2 =R/+/p cosn sin 0, X3 =R/+/p sinn cos O
X4 =R/+\/p sinn sin 0, X5 =R\/1—1/p cos ¢ X¢=R\/1—1/p sin¢

e Static gauge and 2D ansatz:

(ta 91792777) — (60761952963)9 P — p(ta 77)9 ¢ = ¢(t777)

e BPS solution: p=N./(gsJ)=1/35 = E=1J

[McGreevy, Susskind, Toumbas (2000)]




KK mode analysis

e Perturb around the BPS solution, expand the fluctuations by spherical harmonics on S3

.-) su(2) sector in N=4 SYM

1 ~
p = ; + € p1 (t) (I)k,o,o (’I']), ¢ =t+epPy (t) (I)k,O,O(n)

AS?’(I)kaml yTTL2 (777 01, 02) — _k(k + 2) (I)k,ml yTTL2 (777 01, 92)

e No perturbed solutions exist when the giant graviton is maximal (=0, 1)

cf. [Das, Jevicki, Mathur (2000)] [Sadri, Sheikh-Jabbari (2003)]




KK mode analysis

e Perturb around the BPS solution, expand the fluctuations by spherical harmonics on S3

1 ~
p = ; + € p1 (t) (I)k,O,O (’I']), ¢ =t+epPy (t) (I)k,O,O(n)

AS?’(I)kaml yTTL2 (777 01, 02) — _k(k + 2) (I)k,ml yTTL2 (777 01, 92)
e No perturbed solutions exist when the giant graviton is maximal (=0, 1)

e The solutions to the linearized equations of motion are, for 0 <3< 1,

N, €2c2 (k+1)?
gs 8(1 — ])(k =+ 2)
N. € (c5 + &)

gs 32m2(1 — j)

(k> 0) Expanded
F—J=
(k = 0) Point-like

cf. [Das, Jevicki, Mathur (2000)] [Sadri, Sheikh-Jabbari (2003)]




k > 0 (non-zero KK mode on S3) k =0 (point-like)

Orange: BPS giant Blue: excited giant




AdS/CFT proposal

The finite oscillators (with p =2) should correspond to oscillating giant solutions at large &k

E_Jchzez 71'62. " ()
A 2(1—3) N,

* Dispersions are gapless; (¢, k) explains the factor (1/Nec, m)

. Cannot excite the maximal giant graviton (r = [1/V¢] )




AdS/CFT proposal

The finite oscillators (with p =2) should correspond to oscillating giant solutions at large &k

E_Jchzez Wci. " ()
A 2(1—3) N,

* Dispersions are gapless; (¢, k) explains the factor (1/Nec, m)
. Cannot excite the maximal giant graviton (r = [1/V¢] )

® Non-abelian DBI should explain 7 (c) ? Probably no
S . S .
@
7 = 7

Open strings of a finite length costs a lot of energies;
After oscillating D-branes, open strings decouple at large N¢




Length scale of open strings between multiple giants
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Large N, continuum limit — Distance between two non-maximal giants ~ O(+/N)

k
(84 1 82 R =
ka,ij ~ (2Nc)m . ( yz'Zj ) .

4 o 9y

h(zalz) = N¢ + 1 — Yi N,

o [

1




Length scale of open strings between multiple giants

Large N. continuum limit — Distance between two non-maximal giants ~ O(+/N,)

Typical scale in the LLM plane ~ O(N,)

Multiple non-maximal giants are almost coincident in LLM,
except for the outermost giant (= 1st column of R)




Length scale of open strings between multiple giants
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Large N, continuum limit — Distance between two non-maximal giants ~ O(+/N)

Typical scale in the LLM plane ~ O(N,)

Multiple non-maximal giants are almost coincident in LLM,
except for the outermost giant (= 1st column of R)

- The open string energy (= tension X length) between different giants should be large (or

very large) at strong coupling = should decouple

- The open string tension is negligible at weak coupling = no need to decouple

Multiple branes are easy to see only at weak coupling




Integrable open string spectrum

The Z=0 maximal giant gravitons Almost single-trace operator ending
with open strings attached on the determinant of Z’s

111 .1 IN,—
02612 chjlzj2 Z c1><

J1J2-INc ITN-.—1

(X...ZZ...¢1...¢2...ZZ...Xg'gz

boundary mode bulk mode

[Hofman, Maldacena (2007)]

Both states can be described by an su(2]2) integrable spin chain with boundaries

E—J = Z \/1 | sin E —  (tension) X (string length)

This dispersion relation is gapped (unless A « 1)




Possible AdS/CFT scenarios

Weak coupling Strong coupling

Finite oscillator from

1) all-loop commutation:
effective U(p) theory ) P

gapless dispersion,
open string decouples

oscillating giants

R —

(2) no commutation: (o energy?)
gapped dispersion,
anomalous dimensions grow large Y

[Sadri, Sheikh-Jabbari (2003)]




Central extension of su(2|2)?

N¢
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The centrally-extended su(2|2) justifies all-loop ansatz?

A non-trivial central extension of su(2|2) is known
for coherent states of non-maximal giant gravitons

[Berenstein (2013,2014)], [Berenstein,Dzienkowski (2013)]

p Open string on multiple giants = add a“single-trace”
by attaching a single-hook next to p columns

[Kristjansen, Plefka, Semenoff, Staudacher (2002)]
[April, Drummond, Heslop, Paul, Sanflippo, Santagata, Stewart (2020)]

) Do the centers act non-trivially on the long columns?




Central extension of su(2|2)?
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/ The centrally-extended su(2|2) justifies all-loop ansatz?
R =
( A non-trivial central extension of su(2|2) is known
\ for coherent states of non-maximal giant gravitons
[Berenstein (2013,2014)], [Berenstein,Dzienkowski (2013)]

Open string on multiple giants = add a“single-trace”
by attaching a single-hook next to p columns

[Kristjansen, Plefka, Semenoff, Staudacher (2002)]
[April, Drummond, Heslop, Paul, Sanflippo, Santagata, Stewart (2020)]

Do the centers act non-trivially on the long columns?




Summary and Outlook




Summary

e Studied AdS/CFT in the non-planar large IN¢ limit
« Mixing of huge operators;

Gauss Graph basis = Effective U(p) theory

« Proposed all-loop ansatz and a new AdS/CFT example;

Finite-oscillators at weak coupling = Oscillating giants at strong coupling




Outlook

o Justify the commutation relations (or “one-loop exactness”)
o More data to check the proposal; <(giant)(giant)(single-trace)>

[Bak, Chen, Wu (2013)] [Bissi, Kristjansen, Young, Zoubos (2013)], ..., [Jiang, Komatsu, Wu, Yang (2021)]
o (Non-planar) integrability?

o Can we classify the classical motion of D-branes?

o How to find the Gauss graph constraints in the string-brane system?
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Representation matrices

Examples:
(2,3 [L[2[3] _ [1]2]3 (23)124__1124,x/§134
2[4 ~ 4 g B IE " Ty |2

- We can proceed without choosing explicit matrix representations (use central elements)
- Explicit matrices are useful for computing the one-loop mixing

. e.g. if two boxes are separated by a long distance, the matrix elements are trivial

1 1
DR((a, a + 1)) IR,%) = - IR, 2) + \/1 2 IR, (a,a 4+ 1))

a,a+1

— ‘Ra (aa a + 1)’&) ’ (lda,a—l—ll > 1)




Restricted Schur characters

Restrict Sy to S,,, ® S,, with L = ny + nz
In the split basis, the representation matrices almost block diagonal

(block diagonal if a € S,,, ® S, )

(D737 (ar) * * )
* D22 (a) D22 (a)
D?J(a) = B ro®s2,21 ro®s2,22 B
* D,izzj2 > () Di;j2 2“(a) %

l trace

Xr2®82,21(a) _ Z D:;,,%S%Zl(a)

192




U(N) structure in Schur-Weyl duality

Introduce another notation, @i, (€1) @iy (T2) - .. i (L) = Piyiy..ir (= [12... L))

Lowering operators: E; 1 ; = ¢;_1 (1=2,3,...,N), E;_1;-¢111... =0

0p;

Highest weight state: Substitute ¢, to the a-th row

]2
3

YV (a=1,b=2)

g

a
b

In this procedure, the permutation-group structure is (apparently) not manifest
Two-column states are spanned by (¢112, ®121 5 P211)

The states should be orthogonal to the single-column state, @111

—> Possible space of HWS are two-dimensional, not four




Example at L = 3 :

¢i, (1) @i, (x2) ... ¢, () = |1,2,..., L), (tx=1,2,...,N,N > L)

(1132) 4 |312) — |321) — |231))

|
T12]3] = —— (|123) + [231) + |312) + |132) + [321) + [213))
V6
S |
2 = —— (|123) + [231) + |312) — |132) — |321) — |213))
31 V6
L21) — L (2]123) + 2 [213) — [321) — [312) — [132) — |231))
p vi2 irrep
1 1
> = 5 (1132) + [231) — [321) — [312)) nultiplicity
1 two
~ 2

(\V)

V)
DO

(
(
(
(

OV
—

DO — Qo

> irrep
(2 [123) — 2 |213) + |321) — [312) + [132) — |231))




Example at L = 3 : in QCD, (¢1,¢2,¢3) = (u,d, s)

¢i1 (2131) ¢i2 (332) I ¢iL (wL) = ¢i1’iz---’iL (: |12 © oo L>)

( 11213 )HWS:¢111

1
( 2 ) = 2> bottaets
3 HWS

oc€ESs3

) % (@612~ duns —rar)
@),
e

Interchanged
if symmetrized
inside the same

columns




Is)J=Jz+ JyorJ=Jy

Question:  The dispersion relation is gapped if J=J7

Then can we excite an open string on the strong coupling side?

Answer: The D-brane wrapping on S3 cannot have non-zero Jy
So indeed, we must introduce an open string carrying Jy

But this open string decouples from D-brane after oscillating it,

because the length between D-branes is too large




