Lectures on superstring theories

Abstract

This article is based on the lectures of superstring theory given by Nathan
Berkovits at ICTP-SAIFR in 2016, Sdao Paulo; note taken by Ryo Suzuki.!
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0 Plan of the lectures

We are going to survey several formulations of perturbative superstring. The lectures are
mostly about tree-level. We also work on general curved backgrounds.

As prerequisites, the readers are supposed to have the knowledge of bosonic string and
some superstring.

We first explain Ramond-Neveu-Schwarz (RNS) and Green-Schwarz (GS) superstring
theories. RNS has the N' = 1 worldsheet supersymmetry. GS has the x symmetry,
and has the manifest spacetime supersymmetry. Then we discuss Pure-Spinor (PS) and
Twistor superstring theories. PS can be used to study the AdSs x S° background, though
this part is less established.

All of the RNS, GS and PS theories have the same spectrum as the light-cone (LC)
superstring:

RNS : N/ = 1 worldsheet susy

\

GS : kK symmetry LC superstring

PS : Super-Poincaré

Twistor theories do not fit into this framework, but they are useful for studying N’ = 4
Super-Yang-Mills (SYM) in 4 dimensions, or N’ = 1 SYM in 10 dimensions. The following
two twistor string theories may be related to the o = 0 limit of PS.

e Ambitwistor string [1, 2, 3].

e Witten’s twistor string, which describes SYM plus conformal supergravity [4].
There is also a “doubly supersymmetric” superstring theory based on twistors, meaning

that it has both worldsheet and spacetime supersymmetry [5].
The first half of this lecture course is a review; please consult textbooks.



1 RNS superstring

1.1 Lecture 1

1.1.1 Heterotic action

Heterotic superstring has N' = (1,0) worldsheet supersymmetry. Let us define worldsheet

superfield
XM= X"+ g™, K* =0, (1.1)
and superderivative,
0 0 0
D= _—+r— D*=—. 1.2
Ok + "o 0z (1.2)

We introduce the action?
Sp = / d=dz / dk DX"JX,,, = / / (6 + KOX) (3X + kDY)
(1.3)
= / dzdz (0X™0 X, — V" O0Uy) -

This system has the central charges (cr,cr) = (15, 10). Introduce the ghosts
Sy = / dzdz(ﬂ@fy + bdc + boe ) (1.4)
(11,00 (=26,0)  (0,—26)

Thus, Sy + Sen has (cz, cr) = (0,—16). Usually we add right movers, like

S, = /gfagf (I=1,2,...,32), (1.5)

where &7 are SO(32) vectors, and have the conformal weight (0,1/2).
Let us rewrite ghosts in superspace, so that A' = (1,0) worldsheet susy is manifest:

B = 5+ kb, C =c+ kv, B = b+ kk, C =c+ kh, (1.6)

Then

/ dzdz / dk BOC = / dzdz (B0y + bdc) ,
/ dzdz / dxBDC = / dzdz (B¢ + k)

One finds that the right-moving components (k, h) do not propagate.

2The factors like 1/(4ma’) in actions will be omitted. See Appendix A.1 for the correct numbers.



We introduce supersymmetric stress-energy tensors [6, 7],
1

T = :—§DXm5Xm:
= 18Xm 18X”‘3X = "0 1.8
__5 ¢m+/{(_§ m+§¢ wm)7 ()
Ten = : —C(D*B) + %(DC)(D]B%) - g(DQ(C)]B%
=:—¢(9B) + %fyb — 2(80)5 + K {c(ab) +2(0c)b — %’y(aﬁ) - g(afy)ﬁ}: . (19

1.1.2 Type II action

We introduce the N' = (1, 1) worldsheet superfield
X" = X™ 4 g™ + g™ + kRF™,
b 9 N El o o (1.10)

o o2 ok 0z

The type II action is,

Sy = /dQZ/dZK;DXmDXm = / (zﬂ + kOX + RF + K,/_ﬁa@;) (c.c.)
(1.11)
_ / 022 (DX™ DX,y — 67Dy — GO — FFy)

F is an auxiliary field. This system has (¢, cr) = (15,15). The supersymmetric ghosts
are
B =038+ kb+ kf + kkg, C=c+ ky+ Kh+ Kk, (1.12)

leading to

/d2 /d2/<;IB%D(C— / (B4 Kb+ ...) (h+ROc+ Kkl — kEDY)
(1.13)

:/d z(b80+587—gh—f€),
and similarly for BD C. The first two terms of (1.13) give (cp,cg) = (—26 + 11,0), and
the last two terms are auxiliary.

1.1.3 Vertex operators

Vertex operators can be found by coupling external fields and evaluating the action.
The vertex operator in open superstring is

A, (X) = )+ kY 0p A (X)),
/ (A OX™ 4 ™" Oy Ay + O™ A,



We will neglect the last term 0™ A,, which is the gauge variation of X™A,,. No ghosts
enter here. On the boundary we impose the conditions

_ 2=z, K=K (Rez > 0)
DX™ = DX™ (1.15)
2=z, K==R (Rez < 0)
It implies
_ ) =2z, Rez>0
oXT — X" (2ez), gmo TV (E=F Rez>0) (1.16)
+e" (z=2, Rez<0)

where + corresponds to NS fermions and — corresponds to R fermions. To see this, recall
that

1/2 .,
z=e T = e P(p) = (%) P(z) = K\/E) (1.17)

The condition (o = 7) = (0 = ) is mapped to 1 (z < 0) = —¢)(z < 0), which kills NS
(integer) modes of ¥(z).

-

Figure 1: Boundary conditions on fermions on z-plane.

The NS vertex operator in heterotic superstring follows from
S = / &2z / dﬁ{Dxﬁxn (gran(X) + b (X)) + DX™AA €16, TA (X) + T(X)}, (1.18)

where 7' is tachyon field which is classically massless. We will omit 7". By expanding the
first term of (1.18) in x,?

(1.19)
= / (0X™"OX + V" Vby,)

*Here we used 9mn (X) = gmn(X) + K¢p8p9mn(X) and gmn = gmn (X)



where?
vz/}m = (Gmn + bimn) 51/’n + 1/}p(wpmn + Hpmn)anv a[pgm]n = Wpmn - (1.20)

The fermion bilinear term, ¥1)(w + H)JX, resembles ¢p0A in (1.14). On the curved
spacetime, we should use ¥*V, in place of 9™V, where 1, = e 1™ and €2, is the
vierbein. In textbooks, the vertex operators are given in Fourier space, using

Gmn(X) = Nin + P (X) = Dy + /de; ﬁmn(k‘)eikx ) (1.21)

The NS vertex operator in type II superstring follows from

S = / a2z / dﬁ{pmexn (G (X) + bmn(X))}, (1.22)
- / P{ (DXTIX" 4 45" + T+ F"E") (g + b
£ DX G0 (G + b) + (€:02) + U0 0,0, G+ )}
= [{(OX"0X,0 4 67T+ TV ) TP R+ D)}, (123)
where we neglected F? in the last line, and
Vb = (Gumn + binn) O™ + VPOX™ (Wprmn — Hpmn)- (1.24)

Switching z <> Z flips the sign of b,,, , and thus H — —H in (1.24).

All terms in (1.22) are necessary to preserve worldsheet supersymmetry, though his-
torically they were discovered by imposing the conformal invariance. PS vertex operators
have similar structure.

1.2 Lecture 2
1.2.1 Tree amplitudes

The tree superstring amplitudes can be computed in several “pictures”. We first introduce
a usual way which can be readily extended to loop amplitudes. Then we discuss unusual
ways, which are valid only for trees, but related to PS amplitudes.

We consider open superstrings, using the worldsheet superfield

X" = X" + g™ 4+ RY™ + kRF™, (1.25)
and imposing the boundary conditions DX = DXm|,€:i,g . We take the vertex operators

V=c0X"A,, U={bV}=0X"A,, (1.26)

4Here the indices are raised or lowered by Gumn + bmn -



where Ap(X) can be written as
A, = "¢, k™€, =0, k2 =0. (1.27)

An N-point bosonic tree amplitude is given by

An = (Vi(21)Va(22)V3(23) /dz4U(z4) ) ../dZNU(zN)>

(1.28)
= SC(Zl)C(Zz)C(Z'g)Z (U1(21)Us(22)Us(23) /dz4U(z4) . /dzNU(zN»mat
=(z1-22)(2~73) (23 —21)
For supersymmetric amplitudes, we take
V =CDX"A,(X) =C{¢™ A + k& (0X™ Ay, + V" 0 An)) } - (1.29)
The question is how to choose C. One guess is
?
=W =CDX™A,,(X
V=W (X) (1.30)

~cpA+ k(WA + cOXA+ cppdA).

This quantity has manifest worldsheet supersymmetry, but its conformal weight is not
same as (1.26) due to k. Thus we use

V= / AW = 4™ Ay + ¢ (0X™ Ay, + ™" 01 Ary) (1.31)
U=1{bV} =0X"A, + " "0 Ay . (1.32)

Now U has the conformal weight 0.

Recall that we introduced an unintegrated vertex operator V' in (1.26) to kill the zero
mode integration of the tree amplitude (1.28). In superstring, we also need to kill the
zero modes of fv ghosts by introducing he delta function,

degcg =1 <« dyo 0(y0) = 1. (1.33)
/ /

A common way to define d(7p) is to bosonize 37y ghosts,

v = n e g =% 0 (1.34)
~— ~— \/3-/ ’ —~— N~ ’
weight—% 1 2 weight % 2 1

where 7, £ are anti-commuting fields satisfying®

nyn(z) ~0,  néz) ~y—2)"  &Wé(z) ~0, (1.35)

5The OPE (1.36) says that e™¥ are anti-commuting, :e¥(*) ::e?(W): ~ — :e#(W) 1 e#(2)




and ¢(z) is a chiral boson satisfying

o(y)p(z) ~ —log(y — 2), emeW) ene2) o (y — z)7mn, (1.36)
Thus we identify
d(y0) ~ e ¥. (1.37)
It follows that
OOy () ~ (y = 2) (1.38)
Since the bosonization changes the BC OPE, the ghost supersymmetric stress-energy
tensor takes a different form.% The new Ty, is given by

T, = :~C/(D*B) + %(DC/)(DIB%’) - ;(DQC/)IB%’: (1.39)
=:—2c0(e ¥9E) +ne?b—3(dc)e ¥ I + K {c(ab) +2(9c)b — n(0¢€) — %(&0)2 - 8290} -

Let us count the number of supermoduli on sphere. A primary field ¢ with conformal
weight (h, h) behaves as
¢ = 127" (|2] = 00), (1.40)
which implies that ¢ with i < 0 blows up at infinity. For h = —1 we have ¢ — 22, leaving
us three zero modes O(1),0(z),0(z?). In general,

The number of zero modes on sphere = —2h + 1, (1.41)

where h is the conformal weight of ghost. Concretely, ¢ has conformal weight —1, and it
kills 3 zero modes. 7 has conformal weight —1/2, and kills 2 zero modes. Thus we need
two 0(7)’s in the tree amplitude.

An N-point superstring tree amplitude is given by

Ay = (VD )V ED () VO (29) / A2l (24) . . / denU(ey)),  (1.42)

where
VED = cemvyY™mA,,
(1.43)
VO = / dk C DX™A,(X)  =ne? P Ay + ¢ (0X™ A + V™" 0pn Any)
using (1.14). Note that V(© =V is given in (1.31). Thus

An = (29 — 23)(23 — 21) {(DXA), (DXA)Q%/dz4U(z4) . /dzNU(zN»m. (1.44)

The matter part of the super-amplitude (1.44) is not same as the matter part of the
bosonic amplitude (1.28), because the former does not contain tachyons while the latter
does. This method can be generalized to loops.

For example, ¥(z)8(0) = O(z71) + O(1)+ : 2 {nd¢ + 1 (9p)* + 30%p} : +..., and the O(z) terms
contribute to Ty, .



1.2.2 Picture changing

The coefficient in front of ¢ is called picture (V™ ~ e"¥), which is measured by

P = ]{dz (Op +&n) . (1.45)

It follows that v, 8 have picture 0.
For each picture, we have a copy of the same Hilbert space

Hohys C Hex = {e”‘” |v)

v € Hpiys, n €L}, (1.46)

which introduces too many states.” The extended Hilbert space Hey is needed because the
super-Poincare algebra does not close on a fixed picture. The amplitude (1.44) is called
F2 picture. An alternative but equivalent expression is

Ay = (21— 2)(22 — 2) (25 — 21) (V3T Ts / a0 (24) . . /dzNU'(zN)>mat, (1.47)

which is called F1 picture.
Let us introduce the picture-changing operator

Z={Q,¢, v =.zy®. (1.48)

Here () is the BRST charge,

1
fQﬂ'Z/dl{ C(T+2Tgh)

:]{ =17 2b+ 57U 0Xm + T+ 0. ): (1.49)

¢ Toat = = COX"IX,, + S C M O, + bede — S C 0B — g Bo-.

The BRST charge is nilpotent for the critical superstring. If we redefine (3,v) to (713, z),
it changes () but not the OPE. Thus () remains nilpotent for any x. By choosing x = 2
and rewriting @ in terms of the bosonized variables (1.39), we find

Q= ]{ —none** b+ ne? PrOX,, + cTip + 0(...):
(1.50)

¢ ot = —5 COX™"X,, — 3 C Y™y, + bede — endE — 5(690)2 — .

One can check {Q, VDY = VO from (1.43), using the fact that (e=?e#) gives a double
zero.

"The zero mode of ¢ was ambiguous in f = 9¢ e~%?, which is why we needed the extended Hilbert
space; compare (1.51) and (1.52).

10



The picture-changing operator is not BRST-trivial on the physical Hilbert space Hphys ,
because the physical BRST-exact operator f should be written as

f=A1Q, F}, F=F(X,b,cpB,7). (1.51)

However, 07 = {Q, 0¢} is BRST-trivial, because

{Q, 06} e? ~{Q, 087} = {Q, 5} (1.52)
Let us introduce the normalization
(Z7 c(0c)(0%c) e %) =1, (1.53)
with
1 m 1 2 1 2
7 = cO¢ — 5 e?Y"OX,, — 2 (On)e*f b — 18(776 “b). (1.54)

Recall that we do not have Z’s in the usual 8~ system, and we do not have Z nor e2¢
in the bc system. We rewrite (1.44) as

Ay = (ZVO), (ZVO), VO / a0 (24) . . / ol (2 s
o } . (1.55)
(27 6(06)(8%) e29) (T3 T Vs / 2l (24) . / don T (2x ) Dot

W may assign Z to other V© because 0Z is BRST trivial. Up to normalization, this
quantity (1.55) is same as the tree amplitude in the F1 picture (1.47).

We do not know pictures of picture-changing in PS or twistor formalism. We know
the PS analog of the gluon vertex operator V ~ dX™A,, + YY" O Ay -

11



2 Green-Schwarz superstring

2.1 Lecture 3
2.1.1 Light-cone gauge

RNS and GS formalisms have the following dynamical degrees of freedom in light-cone
(LC) gauge,

LC

RNS:  X™ ™ be, By - X7 )l (j=1,2,...,8), (2.1)
GS:  X™ 9, IS XTI = (vt (A=1,2,...,8), (2.2

1
where 7+ = (8 O) kills the first 8 components of 6.

From the SO(8) triality, vectors 97, spinors #*, anti-spinors Y4 are equivalent. One

can bosonize 1) as
PR gt = Tk (K =1,2,3,4). (2.3)

The o’s are chiral spinors satisfying
07(2)ok(0) ~ 05k log(2). (2.4)

They are related to 64 and YA as
R N e {eg(al+ag+a3+a4)

B 76_%(Ul+a2+ag+a4>} o (25)

g .

EA _ {EJF,,,’“'}7 _ {65(01702703704)’_“}. (26)

It implies that e2°% has the weight 1/8 since 64, >4 have the weight 1/2. The actions in
LC gauge are given by

S = / d*x (0X70X7 + ¢/ 0y) (RNS), (2.7)
- / &z (8Xj5Xj + 04904 + zAazA) (GS, 1IA), (2.8)
= / 4’z (0X70X7 + 0400 + 6"06") (GS, 1IB), (2.9)

2.1.2 Covariant particle action

We seek for the covariant description. The Nambu-Goto action for supersymmetric mas-

S = —m/ \/(Xm - %9’%19)2, (2.10)

8The conjugation § = #4° is not necessary because our vy is proportional to the identity matrix 16 .

sive particles is given by®

12



having the global spacetime supersymmetry
0X™ = %G'yme, 00 = e. (2.11)
Note that the worldsheet susy is no longer manifest. In the first order form, it becomes
S = /Pm (Xm —~ %9’7’“9) +e (PP —m?). (2.12)
We can set m = 0 in this expression, giving the constraint P2 = 0. The momentum

conjugate to 0° is

oL 1

W= = == P"(7,.0)u 2.13
po = 552 = =5 P" (1) (2.13)
namely
1

do = pg + §(P9)a ~ 0, (2.14)
where ~ means that it vanishes on-shell. It turns out that d, ~ 0 is a second-class
constraint,

{da ) dﬁ} = (’Vm)ocﬁpm ) (2.15)
where {, } is the Poisson bracket. One also finds that (Pd)“ is a first-class constraint,

{(Pd)*, (Pd)’} = (PPP)* x P2 =0. (2.16)

The first-class constraints imply gauge symmetry.” So the equation (2.16) suggests that

(Pd)™ are the generators of the so-called k-symmetry. We use k, for 16 Grassmann-odd

gauge variation parameters. The s-symmetry generators act as'’

{Fa(PD)*, 7Y = (kP)) = 80" = (Pr)", (2.17)
(RalPA", X"} = SKPY™ = 6X™ = 67" Pr, (2.18)

as well as de = %éo‘ﬁa, where we used d, =~ 0.
Let us fix the xk-symmetry gauge by =6 = 0. Then

: 1. U .
07"0 = 50y, "0 = SO0 = S0y 0 = 0770, (2.19)

where we used {7y™,7"} = 2n™". The action (2.12) with m = 0 becomes
S = / (Pme + Py 0yt 0 + erPm> : (2.20)

We can rescale 6 to absorb P, and diagonalize y*. Then 0’s are 8 free fermions satisfying!!

{64,607} = 2048 . (2.21)

9Such gauge symmetry is local. See [8] for the quantization of constrained systems.
YHere P, in (kP)® is a parameter for gauge variation, and should not act on X™ in (2.18).
'The momentum conjugate to @ is proportional to 6.

13



Since {, } is the Poisson bracket, we can think of 6’s as four coordinates and four momenta.
Or # may be regarded as y-matrices. The wave-function of one-particle state, which
contains 8 bosonic and 8 fermionic degrees of freedom can be written by using 64 as

PP PECRACAIIACY -

Fa(X) +04(07) 44 £5(X).

2.1.3 Superstring action

Consider the action of heterotic superstring,

Shet = /dea (Hmﬁm + .. ) ,
(2.23)

1 —m = 1 =
I =0X™ — 3 o0y™0, I =0X™ — 3 o0~™0.

We chose the conformal gauge, and the Virasoro constraints 112, = ﬁfn = 0 are imposed.
Note that II"™, II* are invariant under the spacetime supersymmetry (2.11). Additional
terms are needed in the action in order to preserve k-symmetry and to reproduce the LC
spectrum.

Again, the spacetime supersymmetry shows up with the first-class constraints: the k-
symmetry. The k-symmetry transformation on the coordinates (9%, X™) can be obtained
by replacing P™ with II" in (2.17) and (2.18),

1
6" = (AR)*,  6X™ = 2 69" x. (2.24)

It follows that
O (V" NK) + -+ = —(90)y" Mk,

ST = —(00)y™ Mk (not ).

The action (2.23) transforms as

(2.25)

8Shet = — / (00K + OOYIHIK + ....) . (2.26)

2

m?

The second term is proportional to Il ; which vanishes by the Virasoro constraints. To
cancel the first term, more terms have to be added to the action.

Consider the new action

Shet = / (Hmﬁm W, — Hme>, .

W = %8«9%19, W = = 007y,,0.

DO | —

14



This action is invariant under the global spacetime supersymmetry (2.11). We can find it
from

SW, I — 6T, 1T = —% (0/(677¢0X,) = D (07" 0,0

+ % [8 (G’yme 59%19) — 0 (0y™e 39%19)}
_ %[(09’ym9)(897m6) + (6700)(907™€) + (909 00)(676)|, (2.28)

where the last term vanishes from the Fierz-like identity (A.44). The action is also in-
variant under the k-symmetry. To see it, consider

0 Shet = /H’”é(ﬁm — W) + 5™ + W™ L, + (WML, — 6TI™W,,,). (2.29)

The first term is proportional to FI?> = 0. The second term vanishes by the equations of
motion

DOX™ — W = oIl = 0. (2.30)

The last term takes the form similar to (2.28), and vanishes from the Fierz-like identity.
The added term in (2.27) can be interpreted as a B-field. Let us combine bosonic and
fermionic coordinates as ZM = (X™, %) € RM/16 and write

B = Bun0ZM0ZY, Bam = —Bma = (Ym)as?’, Bas = Bmn = 0. (2.31)

We write the three-form H = dB by using the “worldvolume” coordinates (7, 0,¢) as

H = 0pByn0ZMozNo. 2", S, = / drdoB = / drdo / déH,

(2.32)
ZM(r,0,6 =1) = ZM(1,0), ZM(1,0,6 =0) = 0.
The two-form B has gauge symmetry'?
6Bun = 0Ny, 05, = [ O(ADZ) — O(NDZ). (2.33)

By using the gauge degrees of freedom one choose H such that Hugm = (Vm)as are the
only non-vanishing components. H becomes manifestly spacetime supersymmetric if we
replace 0Z™ to II"™. The k-symmetry variation is

SH = Yinas 0 (II™ 00% 0:0°) + (cyclic),
—(009™ ) Y1:(007,,0¢0) + O(KYL) YL OO + 96 Y1 O¢ (V) + (cyclic).

The first term vanishes from the Fierz-like identity if the cyclic permutations are added,

(2.34)

and the remaining terms vanish from JI? = 0.

12The chain rule OA = 0ZM Oy, A is used.

15



For type II superstring, we double the fermionic coordinates,

1 1.y - 1 - 1
0™ = 0X™ — 200y"0 — S 06y"8, T =0X™ — J06y"0 — 50670, (2.35)

W™ =~ (96y™0 — 96y™9) W™ =~ (9040 — 067™0) . (2.36)

N | —

1
2
The action in (2.27) now takes the form:

=m

Sy = / (0T, + W T, — WL, + }l (9070 000 — 900 90770) ). (237

This action is invariant under a pair of k-symmetry transformations,

- 1
560° = (Mk)™*,  66% =0, OX™ = — 67" Ix, (2.38)
5° =0, 5 = (R)',  OX" =~ 67" TR (2.30)

The type 1IB action has the symmetry 6 <> 6 and z <> z. In type IIA 6,6 have the
opposite chirality. By using ZM = (X™, 6*,0%) € R in type 1IB, we get

BQB = (7m>a797(7m)3&9_ﬁa Hopm = (Ym)as, H&Bm = _(Vm)dﬁ- (2.40)
In the LC gauge v~0 = 70 = 0, the IIB action becomes
Su = / [0x70X,, — (6v*0)0X.. — By 000X, + ...}, (2.41)
where ... are the terms higher order in 6, 6.

2.2 Lecture 4

We continue the discussion on GS. The action is
S = / d*z (I, + B) . (2.42)
For type II, the equation (2.37) reads
1 1 . .- - — - 1= 1-- _
I =0X™ — 5 00~ — 5 00~™0, II,, = 0X™ — 5 00~y — 5 060~"0, (2.43)
1 - - 1, = -
B = —3 OX™ (0078 — 007,,0) + 2 (067™8) (00~mb) — (9 > 9) . (2.44)
The second term can be written as [ d*2B = [ d*zH, where

H = dB = Yo 0n0°0a0°05 X™ — 745, 0n 000709 X™ + ..

2.45
= Hapc 0Z2402802°¢. (2.45)
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For open superstring, we impose the boundary conditions such as

OX™=09X™ | _.

D9-brane _ (2.46)
904 = 906 |z:2
OX™=09X™ | _. m=0,1,...7

D7-brane IX™ = —9gX™ ‘ , m=8,9 (2.47)

Note that i7/® has the eigenvalues £1. The D7-brane boundary conditions can also be
written as

=1 | m=0,1,...7
VIO =10 ¢ qIm=—I | m=8,9 (2.48)
6 = (i7*6)" |

z2=Z

Massless vertex operators can be constructed by the marginal deformation of the
action. For gluons and gluinos, we deform the action by the boundary term as

S — S—i—e/dzAM(:v,Q)@ZM,
(2.49)
—Ste / dz (Am(a;)axm + Fy(2) (09™0) X, + .. )

In RNS formalism, we had V' = A,,0X™ for bosonic string and V' = A,,0X™ + F,,,,,y"" "

for superstring. Thus, p,0% roughly corresponds to ¥™"™, which can be seen from

Pa = (770),0X™, {0%,ps} =05 «— {Y™, "} =0"". (2.50)

2.2.1 Curved backgrounds

In curved backgrounds, we replace (2.42) by

S = /d2z (nab TeTT’ + B) ,

n° =gy, 0z, 0'=E40ZN, B=Byy0ZMoz".

(2.51)

where EY; is a super-vielbein. In the flat space it reduces to E¢, = §% and E2 = (v%),56".
The action (2.51) is not s-invariant unless the background spacetime solves the equations
of motion. Nor is it supersymmetric in spacetime unless the Killing spinor exists.
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We expand the first term of (2.51) in 6,0 and obtain component fields. The on-shell
degrees of freedom for type IIB are'?

Gmn = Gmn + (efym)a Xz + (é'Yn)B Xﬁ + (va)a(ﬁ_%)ﬁ faB —+ ... s
Gag = (07")a(07")g Grun + - -+, (2.52)
Gaﬁ = (efym)a(é’}/n)ﬁ Imn + -5

with!*
Gmn = M BmEL . [ = Fo (7)) + Fape (7"*)*” + Fapeae (7°7)°. (2.53)

Here F,, Fue, Fopeqe are RR fields, which come from the odd number of #’s and the
odd number of §’s. From this result, one can read off the massless vertex operators
corresponding to each field. We can do the same computation for the second term of
(2.51), )

B = bon + (07m)a(0) 5 F7, ... (2.54)

Compare the GS action (2.51) with the bosonic part of RNS,
5= / [9ndX™OX™ 4 b, DX ™OX™ + 'oR|. (2.55)

One finds that the dilaton term is missing in GS action. In general, the classical &
symmetry imposes the (generalized) supergravity equations of motion on G and B, but
does not fix the dilaton coupling. Weyl symmetry may be broken as in non-critical strings.

2.2.2 AdSs x §°

In the flat spacetime, superstring possesses super-Poincaré symmetry containing so(1,9)
satisfying

{90 a8} = (VapPms  {8a:703 = (")apPm s (2.56)
which leads to the symmetry

00" = €, 60% = &, ox™ = ey™0 + ex™0. (2.57)

In AdSs x Ss, superstring has the psu(2,2|4) symmetry containing su(2,2) x su(4) ~
50(2,4) x s0(6). The generators can be represented as a 32 x 32 matrix

155 16
Generators ~ B : (511(2,2))‘ (2.58)
16, 15p su(4)

3Tt is straightforward but tedious to relate each component field to the dynamical degrees of freedom,
because one needs to solve the equations of motion. At the leading order in 6, one can square the degrees
of freedom of super Yang-Mills in 10 dimensions. We discuss more details in Section 3.

14The v matrix with mixed indices ('y“)"‘ﬁ does not exist in the flat space.

18



A | a a [ab] [ab] a &
Range |[0~4 5~9 dim=10 dim=10 dim=16 dim =16
Direction | AdS;  S°  SO(1,4) SO(5)  Fermionic Fermionic

Table 1: The values of A. The generators Mjap) of SO(6) decompose into {Mja) , M6}
of SO(5), where A, B=1,...,6 and a,b=1,...,5.

Let us denote the 16, generators by ¢’ x, and 16, by ¢" 7, K =1,.. . 4and K = 1,... 4.
They satisfy ) ) )
{¢";, @'k} = RE 07+ R ;0% (2.59)

where R | R’ ; are some bosonic generators.
The AdSs x S° action can be written by super-vielbein describing a supercoset,

S0(2,4) . S0(6) _ PSU(2,2[4)

Ads; = 2022 _ 500 |
S:=somn 7 T som Y% E 550500

(2.60)

The supercoset has 10 bosonic and 32 fermionic variables. The group element ¢ is defined
modulo g ~ gh with h € SO(1,4) x SO(5), and ¥ € PSU(2,2|4) acts by g — Xg. The
1-form currents are defined by

JA=(g7"09)", T =(g7'0g)", (2.61)

The label A takes the values of (2.58), which is summarized in Table 1. Under the gauge
transformation g — gh, the 1-form behaves as J — h~'Jh + h™10h.

o {(h—ljh + h1oh)A A = [ab], [ab] | (262
(h=Jh)4 otherwise
The group and coset elements can be parametrized as
g=oxp (2°P" + T°P" + 0°Qa + 0°Qs) . h =l Mgy + hNL (2.63)
We define the super-vielbein as
" =J*= (¢ '0mg)*02" &  EY =(9'0m9)% (2.64)
and similarly for I1¢. The three-form H = dB is
Hupe = ViaBpe) + Tias” Beyp (2.65)
where T4 5¢ is the super-torsion,
[Va, V5] = Rapc”McP + Tap“Ve . (2.66)
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In the flat background, we have
Tog™ = (Y")as TdBm = (7m>aB’ (2.67)
which is required by supersymmetry {Q., Qs} = (7")ap Om , and®®
Hapc =Tapc - (2.68)

The other components of the torsion tensor vanish.
In AdS5 x S®, the torsion tensor has other non-vanishing components,
mﬁ v8 — (.01234\+3
ay R ) 0" = (’Y ) ) (269)
AdS

where R aqg is the radius of AdSs and S°. The powers of R4 are introduced to express
6

[Va 78m} - Tamév/j’ ) Tamﬁ - (’Ym)

that Tamﬁ has the mass dimension one.'® The new torsion appears for the following

reason. Let us organize the supersymmetry charges
Go+iGs = 47,  Ga—i0a = 7'k (2.70)

Then ¢,¢ commute in the flat background, but {q,q} # 0 from (2.59) in AdSs x S°. In
other words, R-R or NS-NS fluxes are related to the torsion. For R-R

faB — (,Yabcde)a,@ 7& O, (271>
and for NS-NS
Hepp = Via By + TogBap + Top® Bag # 0, (2.72)
as well as H.z # 0. Other components of H are zero, so (2.68) is not satisfied in
AdSs x S5.17 In the flat background, a constant and Lorentz-covariant B-field does not
solve the equation (2.68). In AdSs x S° a constant and psu(2, 2|4)-covariant B-field can
solve (2.72) as,
B4, (Jajﬁ . Jajﬂ) . (2.73)
From (2.51), the GS action on AdSs x S° becomes
S:/d2z <77abJ“J_b+/£6aB (J“jé—j“Jfé)) , (2.74)
The coefficient k can be fixed by sugra equations of motion, or by the k-symmetry.

We do not know how to covariantly quantize the GS action. Neither we know how to
construct massive vertex operators in a psu(2, 2|4)-covariant way. Massless vertex opera-
tors can be obtained by the deformation of the action, which correspond to supergravity
states, dilaton mode and [-deformations.

15See (A.34) for an explanation of (2.68).

6The mass dimension of torsion components is given by (the dimensions of lower indices) — (the
dimensions of upper indices).

"Here is an intuitive argument for Hap® # Tap®. The indices of H can be raised by 575/RA(15,

which is the unique dimensionful quantity. However, R44s should measure the strength of R-R flux, not
NS-NS.
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3 Pure spinor superstring

3.1 Lecture 5

3.1.1 Superparticle action

Let X™, 0% be ten bosonic and sixteen fermionic coordinates, m = 0,...,9 and a =
1,...,16. The Brink-Schwarz action for a massless superparticle (m = 0 in (2.12)) is
. 1 .
S = / dr (Pm (Xm - 5977"9) + erPm) . (3.1)

Its covariant quantization using Dirac brackets ends up with solving eight first-class and
eight second class constraints, 10 —2 = 16 — 8.
The PS action for a massless superparticle is

S = /dT (Pme + Pab® + WA + eP™ P, + émm)\) . (3.2)

The pairs (pa,0) are 16 worldsheet fermions in the Majorana-Weyl representations of
SO(1,9). The pairs (wq, A%) are 16 worldsheet bosons in the complex Weyl representations
of SO(1,9).

The last term of (3.2) is the PS condition, which removes 5 complex bosons from A“.
In addition, another 5 complex bosons of w,, are redundant, because the action is invariant
under the gauge transformation

dwa = A" (YmA)q - (3.3)

Let us count the degrees of freedom in detail. We perform Wick rotation to SO(10)
and take a U(5)-covariant basis, A% — \°1:°2:%8:50% with s, = 1. Here \*152:%3:54% are

created or annihilated by v, _ = (Y2k—1 £ 172x) as
’Yk,— )\81,52753,84,55 ~ (1 T Sk) )\51,82783,84,55‘ (34)

See Appendix A.3 for details. The 32 components of A\%1:°2:53:54:%5 gplit into those with an
even or odd number of —’s. Each group has a definite chirality according to (3.4).

Suppose a chiral fermion has an even number of —’s. We start from AT+ =£ (0 and
generate the other 15 components by applying 7 — repeatedly. There are 10 components
like AT~ and 5 components like AT~~~~, which corresponds to 16 = 1$10® 5 under
SO(10) — U(5). We can write

Eabcde )\bc>\de

AT = AT Ny = U AT = — 2 F (a=1,...,5), (3.5)
which will be explained in Appendix A.3. Here uy,, = —uy, are the harmonic variables of
the coset SO(10)/U(5), and the AT fixes the overall scale.'® Thus

. SO(10)
d C)=11. 3.6
me (%G ) 30

8The generators of so(10) can be written as {t4, uqy, v1%}, where {t%} generate u(5).
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Similarly, an eight-dimensional PS has seven components from dim¢ ( SUO(S? X C).

By analogy with the Brink-Schwarz action, let us introduce

1
da = Pa + 5 (Pe>a7 Q = Aadow (37>
and interpret ) as the BRST charge. () is nilpotent owing to the PS condition,

{Q.Q} = "N P =0. (3.8)

In GS, we removed extra spacetime fermions by the LC gauge. In PS, we gauge them
away by putting the gauge variation parameters A* on the curved background.

Roughly speaking, the BRST quantization of the Brink-Schwarz particle action gives
the PS particle action. Both actions lead to the spectrum of a supersymmetric gauge
theory in ten-dimensions. This is a surprising fact, because the gauge theory shows up
from the particle action without gauge fields, thanks to supersymmetry. This gauge
symmetry is abelian.'® It is not known if one can obtain non-abelian gauge theories or
N =1,d = 10 supergravity from a particle action.

The equivalence between (3.1) and (3.2) can be shown in the LC gauge [9]. One can also
compute the BRST cohomology to see that it agrees with the spectrum of supersymmetric
gauge theory in ten-dimensions [10]. However, the computation of cohomology is tedious.
Below we introduce gauge fields in superspace from the beginning and discuss the BRST
cohomology.

3.1.2 Gauge theory in superspace

Define

0 1 0

= st 5 (Mg (39)

Vm:8m+Am(X>6‘)> Va:Da+Aa<X79)a Da aXm7

where A,,, A, are ten-dimensional on-shell superfields,?® and D, is the covariant super-
derivative satisfying

{Da. D5} = ") - (3.10)

and V, satisfies
{Va, Vsl =(V")apVim+ Fap,  Fag=DaAg+ DgAa — (7")ap Am - (3.11)

Notice the similarity between D, and d,, in (3.7).
A symmetric bispinor in d = 10 can be decomposed into the direct sum of 1-form and
5-form,
Fog = Fin(7")ap + Frnper (V"™ )ap - (3.12)

19Tn non-abelian gauge theories, the nilpotency condition (3.8) should become {Q + V,Q + V} = 0.
20For partially off-shell formulation, see [11].
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We should impose
Fag = DaAg + DﬂAa - (’}/m)aﬁ Am = 0, (313)

to describe gauge theory, which has 2-form field strength only. The residual gauge trans-
formation is

0A;, = 02, 0As = DS (3.14)
Let us expand ten-dimensional superfields into components as
Q=f+ga 0"+ hap0*0° + ...,
Ag = ao + Aag 0° + anp, 0°07 + . .., (3.15)
A = U+ Qo ¢+ ...

The gauge transformation 64, = g, + gas 0° + ... removes a, and anti-symmetric part
of a,s. The symmetric part of a,s is determined by F,3 = 0 as

o+ aga = (V" )ap Om = aaﬁ(vm”pqr)a'g =0. (3.16)

In this way, we obtain all on-shell degrees of freedom in d = 10 super Maxwell or super
Yang-Mills.
We also define
Vo, Vil = Fom, Vi, Vil = Fon (3.17)

and impose the Bianchi identity

{Vi:Vs}, Vol = =(")@sFyym = 0, (3.18)

where we used F,3 = 0. From (A.44), we write a solution of this identity as

1 1
Fan = o W = W= L mpipy, = Lm0, 4, - Dya,). 19)
The Bianchi identity with (m,n,a) gives®!
VaFmn + Vm(’YnW)oc - Vn(’YmW)oc =0, (320>

and the Bianchi identity with («, 5, m) is

{vm [Vﬁ7 Vm]} - {Vﬁ7 [vmv Va]} + [vmv {VCH Vﬁ}] =0

(3.21)
= Va(mW)s+ V(v W)a — (") apFmn = 0.
Multiplying the last equation by (7")“ we find
(Y™ VoW (m)ss + 10 VW — (") 5 Fppyy = 0. (3.22)
We take the ansatz V,W*? = 26,° + y (v9)? ,F},, . Using (A.38), we get
1
VWP =2 (y™ E . (3.23)

4
21We use the notation Vo Fopp = Do Fon + [Aa, Py, and similarly for V,,,W<. The commutator term
vanishes in super-Maxwell theories.
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3.2 Lecture 6
3.2.1 BRST cohomology of superparticles

We rederive the spectrum of super-Maxwell in PS formalism as the cohomology of the
BRST operator,

1
Q = \d,, dy = pa + 5 (") o P - (3.24)

The nilpotency Q? = 0 follows from the PS condition on A\*. Here d, is the worldline
version of the supercovariant derivative (3.9), and the gauge parameters A\* parametrize
the curved space Sg((;;)) x C.?2

We assign the ghost number +1 to the pure spinor A* and BRST operator @), so that

J = wa A is the ghost number current. For super-Maxwell theory, we assign the ghost
number +1 to the photon vertex operator V = A*A4,(X,#) and require that V' belongs to
the cohomology of @,

QV =0. (3.25)
In addition, we impose gauge symmetry. The gauge transformation should be written
as 0V = QN for some (X, 0) having zero ghost number. Since d,) = D, for super-

particles, we find
oV =0Q0=X\D,Q) = 06A,= D). (3.26)

The condition QV = 0 gives
0= A"Dy (N Ag) = XN*N D, Ap)

1 m af mi...m af (327>
= L L0000 0™ 78) () } Dol
where we used an identity for a symmetric bispinor A*)\?); see (A.39).
The first term of (3.27) vanishes due to the PS condition, so
(’le...mg,)aﬁ DaA,B =0. (328)
Since (V™) as(Yapgrs)*? = 0, from (3.13) we can write
1
A,, = g('ym)o‘ﬂDaAg : (3.29)

For non-Abelian gauge symmetry (SYM), we modify (3.25) to QV + [V, V] = 0. The
gluon vertex operator now contains Chern-Paton factor, VI = A\*AL. See [12] for the
non-Abelian case.

The (massless) spectrum depends on the ghost number of V. If V' has the ghost
number zero, then QV = 0 gives D,V = 0. Therefore V is constant. If V' has the ghost
number two, we get

V =XN'B,s(X,0),  06Bas = DuSs. (3.30)

22The BRST cohomology would be trivial if A* lived in the flat space, since @ reduces to a linear
combination of % at zero momentum P, = 0.
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It means that one can get rid of 1-form by gauge transformation. Let us choose the gauge
(Y™)apB* = 0. Actually B,z is an anti-field of SYM in BV formalism, giving the same
spectrum as SYM. The superfield and anti-superfield are related by

Ay = am (V") o + (X 1m@) (Y00 + ...,
\a/(v Ja + (XTm8)(Y™0)

gluon gluino (3 31>
Bag = (X"%mnl ) (7"0)a(V'O)s +  ar,  (770)a(7"0)5(0700) + - ...
anti—gluino anti—gluon

The role of the equations of motion and gauge transformations is interchanged between
fields and anti-fields. The gluon and gluino obey

0" Opman) = 0, " (Ymx) = 0, 0y = O\, (3.32)
while the anti-fields obey

Sty = Oy 0N = O (ke Ol =0, (3.33)

m

where x is another gauge transformation parameter. In BV formalism, the BRST coho-
mology has the duality of flipping the ghost number.
If V has the ghost number three, we write

V = AN\ o, (X, 0), QV =0, 6Copy = DuQs . (3.34)
Since (A\y™#) is BRST exact at zero-momentum, we rewrite
V= (M"0)(AY"0)(MP0) Crnnp (X, 6). (3.35)

The 3-form C,,,, is related to an anti-symmetric bispinor by Ciuup(7™™)as = Cap, and
the gauge transformation of (3.34) precisely removes this degree of freedom. Thus V is a
constant,

V= (A"0) (M) (X0"0) (0mnpt) ~ O(X°0°). (3.36)

This term itself cannot be BRST exact, because the Lorentz-invariant combination of
O()\?69) is annihilated by Q,*

Qa - { (1" 8) 1" 0) (070p) (07016 } = 0. (3.37)

There is no vertex operator with #4,(V) < 0. We need w, to create such states, but
w, is not gauge invariant. The vertex operator with #,, (V) > 4 contains A*A*A7\°| and
such an operator does not contribute to the (perturbative) string amplitudes.?!

The BRST cohomology of an open bosonic string (in RNS) can be studied similarly.
The BRST operator is

Q= / (cOXIX + bcdc) . (3.38)

23Recall (Ymnp)as = —(Vmnp) o and that X’s are bosons and 6’s are fermions on the worldsheet.
24See Footnote 29 for further discussion.
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In the sector of the ghost number #,4, = 0, 1,2, 3, one finds the states
1, cOX™A,,(X), cOcOX™Ar (X), cOcd’c. (3.39)

Here Ay, is the anti-field of A,,, . The spectrum is invariant under #g4, — 3—#,, . It is not
possible to find a non-trivial state with the ghost number three, because W = ¢ dc 9%cf(X)
is BRST exact:

{Q,cd*cf(X)} = cOcdcf(X). (3.40)

Let us return to the superparticle case. Massive vertex operators can be found in the
sector with the same ghost number as the massless vertex operators. In super-Maxwell
or SYM, the first massive vertex operator has one derivative as

Vinassive = A* {0X " Bpa (X, 0) + 00° Bog(X, 0) } . (3.41)

In open superstring, the first massive vertex operators have the conformal weight one
[13],%°

(3.42)

v [eoxmoxn B (X) (#on = 1),
T cocoxmoxn B (X) (#qn = 2).

3.2.2 Heterotic superstring in PS

The PS formalism can be generalized from superparticles to superstrings. The action for
the heterotic (or open) superstring is

g = / d%(% OX™HX,, + pad® — waé)\“). (3.43)

The pairs (pa,0*) are the free fermionic bc system on the worldsheet with conformal
dimensions (1,0), describing 16 spacetime fermions. The pairs (w,, A%) are the curved
By system on the worldsheet with conformal dimensions (1,0), describing 11 spacetime
bosons.?® The (classical) energy-momentum tensor 7 is

1 1
T = —2 0X"MOX,), — padf® — wadN = — = IT™IL,,, — dyd8® — wadN® 3.44
2 —— —— —— 2 ( . )
10 —32 22

where the numbers indicate the central charges, explained in Appendix A.1.
The BRST charge is*”

Q- / d20d, . dy = po— %axm(%e)a + é (170) o (907m0). (3.45)

25Recall that the conformal weight of ¢ is —1, and that of 0 is +1.

26We flipped the sign in front of w,OA for later purposes.

2TThe sign of the second term of d,, is flipped owing to the OPE X™(z,2)X™(0) ~ —n™" log |2|2. Also,
the symbol for normal-ordering will be omitted.
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The last term did not appear in the super-particle case, because the equations of motion
read 6 = 0. This d, satisfies®®

do st = —(v)as T [do TI"] = —(408),, TI™ = OX™ — 2 004™0.  (3.46)
B B 9

The integrated massless vertex operator (without the plane-wave factor e*¥X) is

V= \Au(z, 0), (3.47)
= am (AM"0)a + (X1mb) (A"0) + 0™ a™ (AY"0) (0 ymnpt) + - - -

with QV = 0. The components at higher orders in # are determined by the lower-order
terms through the equations of motion. Below we compute the tree-level amplitude of
superstrings. We will not discuss loop amplitudes in this lecture.

3.2.3 Tree-level amplitudes

Consider the 3-point amplitude on a disk (V;V5V3). In the bosonic case, we normalize the
vev as (cdcd?c) = 1. In supersymmetric case, we normalize

(Vo) =1, Vo= (M"0)(M"0)(MP0)(07mnpt) ~ \°0°, (3.48)

because Vj is BRST trivial as shown in (3.34). Therefore, the amplitude (V;V2V3) can be
computed by picking up the term O(A30°) after the substitution of (3.47).%
We find
(ViVaVs) = ai'a Opn(as)n + X7 (d2)as x5 + (cyclic), (3.49)

which is the standard 3-point interaction of ten-dimensional SYM.
The 4-point amplitude is given by

(Vi(21)Va(22)V3(23) / dzyU(24)), V =X\"4A,, QU =0V, (3.50)
oy
where we integrate over the boundary of the disk (Figure 2). The integrations over
the interval [z1, 29|, [22, 23], [23, 21] correspond to different channels in gauge theory, which
guarantees the crossing symmetry of the 4pt amplitude.
The unintegrated massless vertex operator U is given by

1 1
U = 06" Ao + I Ay + AW + 5 Ny ™, Nop = 5 6%\ (3.51)
28The notation {4, B} = C or [A, B] = C means ng A(z)B(0) = C(0).
29 Another explanation goes as follows. The 11 zero modes of A cancel out part of 16 zero modes of 6,
leaving 6° behind. To explain A3, notice that the ghost current J = w has the ghost number anomaly
of (—8). This can be cancelled by the 11-dimensional integral of PS zero mode, giving 11 — 8 = 3 [14].
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Figure 2: 4-point functions on a disk.

up to BRST-exact terms. Here A,,(X,0) is an on-shell vector superfield, N,,, are the
SO(1,9) generators, F,,,, and W are the field strengths defined in (3.17) and (3.19). The
equations of motion (3.29) and the Bianchi identity (3.23) imply that

1

Am = (9m)¥Dads, VoW’ = 2(4"™) aFn (3.52)
The component at O(6°) is*
1 1
U o™ amOX™ 4 Opnan) 5 wy™N\ + §p’ym”0 ) (3.53)
-0

In bosonic string theory, we have V = ¢ A,,0X™ and U = A,,0X™, which agrees with
the bosonic part of (3.53).
One can check QU = 9V by using the OPE which follow from (3.43). More explicitly,
we have
ON*Ay) = N0 Ag0X™ + A0 A,00° + 0N A, , (3.54)
(1) (2) (3)

which should match

QU = — (NP D3AL)00% + 0N Ay + (N Dg A, )TT™ + A, (A\y™06)
e N—— ~ ~ 4 N

@) 3) M @
B a o 1 B mn 1 a mn <355)
— (D) = (NI 45 (P DsF™) Ny + 5 () daF™
@) i) S >

term by term. From the equations of motion in Section 3.1.2 and PS constraint, we find
QU — OV = N {DsgA,, — W*(m)ap} II™ — 120, AgOX™
— )\’B {DﬁAa - Am(’ym)ag + ﬁaAﬁ} 600‘
1 1 3.56
— )\ {DBWQ _ Z (an)aﬁan} d, + 5 Wa(vmn)aw)‘w)‘ﬁDﬁan ( )

=0.

30The last term comes from d,W®, where W¢ is gauge degrees of freedom.

6=0

28



The identity (y™")*, A"N’DgFE,,, = 0 can be seen by multiplying A*\7D,, to the abelian
version of (3.23).

The unintegrated vertex operator in RNS formalism is given by (1.32)

U o =0X"a,, + @Dmiﬂna[man] . (3.57)

Here M™" = 1)™™ is the Lorentz current. This is also the generator of level k = 1
Kac-Moody algebra,
ok 5AB fABC JC

AN TB -
TN ~

(3.58)

because ( )
mq,, np M™a pnp
MmN PE ?y _nz)2 + ; _772 + (cyclic). (3.59)

BY comparing (3.57) and (3.53), one identifies

- 1
M™ — M™ = —wYmn + §p'ymn9. (3.60)

DO | —

The first term on RHS has level -3, and the second term has level 4. Thus M™ has level
1, as expected.

It is straightforward to compute n-point tree-level super-amplitude in PS formalism.
In RNS, the computation becomes harder as the number of gluinos increases:

# (gluinos) ‘ 0 2 4 6 8
Complexity ‘ simple doable hard PhD thesis No results

In GS formalism, conformal gauge is troublesome due to the kinetic term of fermions.
In the LC gauge, we need to introduce branch points to compute general n-point am-
plitudes. The computation gets quickly involved since the roots of polynomials of order
(n — 2) appear.

3.3 Lecture 7
3.3.1 Closed superstring in PS

We discuss massless vertex operators for type II closed superstring, which describe ten-
dimensional type II supergravity.

We review PS superstring for type Il in the flat background, generalizing the case of
open string in Section 3.2.2. The action is

S = / d*z (%axmaxm + Pad8Y — Wa DN + §adB™ — @&a&@) . (3.61)
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The holomorphic part of the BRST charge is given by (3.45). The unintegrated vertex
operator is
V = A*A%Au4(2, 0), QV =QV =0, (3.62)

where

Aai = (Gmn + bn + © ) (Y"0)a(7"0) 4
€0 (7"0)a 0205 + €2, 0,05 (Y"0)s + F*°0,05040; + ... (3.63)

This generalizes the vertex operator of bosonic string,
V =ccOX™0X" (Gmn + brn + © M) - (3.64)

The integrated vertex operator satisfies QU = 0V and QU = 0V, which gives
U= AaAy00°00° + Ag Ay 00°TI™ + A A IIM90% + A, A, TIM I

A x o 1 _ _
+WOW dady + 1 F™ F" Ny Ny + .. (3.65)

To compute the tree-amplitude, we normalize the states by (A\*65X30%) = 1.

In general, the closed string vertex operator is the “square” of the open string vertex
operators, because the BRST charges ) and Q do not interact each other. If Ay , Ar are
in the cohomology of @ ,Qg, respectively, then A r = Ap Ag is in the cohomology of
Qrr = QL+ Qg

The equation (3.65) is roughly equivalent to

U~ (Gun + Bun) 0207 + (FRR)“BdacZB + (R +0H)™ N,,, N,y , (3.66)

where ZM = (X™, 0% 0%) € RYB2, Fyy is the RR flux, and R™" is the Riemann tensor.
The GSO projection is manifest in (3.66) if we assign F' = 41 to the worldsheet fermions
with upper index (6%), and F = —1 to those with lower index (d,). There are gauge
degrees of freedom coming from the super-Poincaré rotation and gauge symmetry of B,
which can be fixed by

0=Gap=Gys=Bas=Byj. (3.67)

This gauge choice is also consistent from the spectrum of ten-dimensional supergravity in
the flat spacetime. We have _Gaﬁ =Gp, = B,; = Bj, - The combination (Gafi + BaB)
never appears because the equations of motion tell 00 = 96 = 0.

The field A, of open string satisfies the equations of motion (3.28) and (3.29). In
closed string, we have3!

0= DaA/ga (,ymnpqr>aﬁ — DdAaB (,Ymnpqr)&/3’7 DaA,Ba 4 DBAad _ (P)/m)a,BGmola (3.68)

31Here Aga = Ap As and Goa = AmAs,.
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in the gauge choice (3.67).

Recall that the constant dilaton does not appear in GS action, since it is not known
how to incorporate the o’ corrections without breaking x symmetry. In PS, we can add
the dilaton to (3.66) by modifying (R + H) to (R + 0H + o/®r).?> At the non-linear
level, g, and @ in (3.63) mix as Gy = G €70 + 020¢.

The NS vertex operator in RNS was given by (1.23),

U= / d2/<a<gmn(X) +bmn(X))DXmDX”,

(3.69)
= (gmn + bmn) aXman + menaXp@men + (Rmnpq + amanq) wmwn@p&q’
which looks very similar to U in (3.66).
3.3.2 The b ghost
We introduce b ghost as the solution of
{Q,b} =T, (3.70)
where T is the chiral energy-momentum tensor given by (3.44),
1
T = —3 ™11, — d,00% — wa, 0N . (3.71)

We may add a total derivative ~ 9%log(A\) as o corrections. To obtain b, consider

{Q7d04} = _(n)‘)a
{Q, MId} = —MQ, J}d — MIFIA = —(Xymd) (AY™06) — LTI (AN) (3.72)
{Q,wdl} = woX + doo,

where we used the OPE (A.17). Here ), is a fixed constant pure spinor, not the complex
conjugate of A. Thus, a solution of (3.70) is

_nd) e 0" NOmd0) (3.73)

b 20\, 20N\,

The last term also guarantees the invariance under the gauge transformation dw, =
A" (v, \)o appeared in (3.3), which can be checked by the formula (A.46).%3

The fixed pure spinor breaks the Lorentz covariance, unless we introduce the extended
PS formalism with non-minimal variables. In the extended PS formalism, we get the
N = 2 worldsheet superconformal symmetry, as will be explained further in Section 4.
Assuming {b,b} = 0 and {b,Q} = {Q,b}, we also obtain the N' = 1 superconformal
generator

G=Q+b = {G .G}=2T (3.74)

32Gee [15] for the discussion on the coupling to the worldsheet curvature.
33The last two terms can be written as —Pg wa00® by using Pg in (A.18).
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The worldsheet superconformal symmetry is realized in different ways in RNS and PS.
There is no ¢ ghost in PS; just A and @) are ghost-like. In addition, the superconformal
generators look different. From (1.8), one finds

GPS ~ Q + b, GRNS =~ wOX + c@ﬁ -+ b’}/ (375)
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4 Untwisting pure spinor

4.1 Lecture 8

We will explain untwisting formalism, which provides pure spinor superstring with man-
ifest A/ = 1 worldsheet superconformal symmetry. The motivations for the untwisting
are

To relate PS and RNS

To describe RR-flux background using N' = 1 worldsheet SCFT

To study loop amplitudes, by somehow avoiding 1/(AX) problem.

To study AdS/CFT using the bi-twistor Ay™A ~ X™.

In the original PS action, all fields have integer conformal dimensions. To define a
worldsheet superconformal generator, we need some fields with half-integer conformal
dimensions. This can be done by twisting the energy-momentum tensor. The twisting
also changes the central charge, so we should extend the PS action by adding non-minimal
PS variables. In the extended PS formalism, the BRST charge and the b-ghost generate
the N = 2 worldsheet superconformal symmetry.

Below we follow the notation of [16].

4.1.1 Worldsheet superconformal symmetry

We look for the N/ = 2 worldsheet superconformal symmetry from the open superstring
action (3.43). The generators are a twisted version of the energy-momentum tensor 7" in
(3.71), GT = Q,G~ = b, and the ghost current J.3* They are given by

1 1 1
T = ——1"11, — da00% — = w0\ + = (Owa ) A" + ...
2 2 2
Gt =)\, + ...
Mid (™) (M) (4.1)
- Wy Tm
G = = —w,00“ + =
N 20N
J = —w A+ ...,
The ... represent o/ corrections (total derivatives and the terms with non-minimal vari-
ables), which we will neglect below. These generators satisfy the ' = 2 OPE (A.10) by
choosing ... properly. The ghost current J satisfies®
+G*
lim J(y) G=(2) ~ : 4.3
lim J(3) G*(2) ~ = (13
34 J is conserved on the flat spacetime, but not on general backgrounds.
35To compute the OPE with 1/A), use
PN = o) 2 (12)

33



The complex structure of N' = 2 algebra is specified by A. The worldsheet fields
transform as

1 1
BLX™ =DM, 80T = AT SN = (YY), bida =TT (7)), (44)

and

) B O L) NP0 V() LN

A\ 22\ 2\
The chiral or anti-chiral operators are defined by GTO = 0 or GO = 0. We may introduce

(4.5)

N = (1,1) superfields annihilated by G* and G~. However, the formulas become messy.
Let use the language of A" = 1 worldsheet superconformal symmetry. We set3

G=G"+G, {G,G} =T, SX™ =0, X" +6 X", - (4.6)

In the original theory, G had the conformal weight +1 and G_ had +2. Now T is given
in (4.1), with an extra total derivative to guarantee that G* have the conformal weight %
These non-minimal variables, (@, A,) and their worldsheet superpartner (s%,r,), should
be added to cancel the extra central charges.®”

The superconformal primaries have a single pole for the OPE with G. Since X™ and
0% are conformal primaries, we promote them to superfields:

Mmd) | (Ay™0)

1 (
XM = X ™, X = = Ay — T _ "
+ Ry YT T T (4.7)
o (AJT)*
©F — 99 1+ kA 50° — A@ = \o ¢ WM 48
+ kA%, + 0 (4.8)

We regard X™, 0% as dynamical degrees of freedom. Then A% is a new unconstrained
spinor which depends on X™ through YI. We remove the X™ dependence by imposing?®

0=T1"5,\= <DXm — %D@’ym@) YA = (wm — %Afym9> YmA 4+ O(K). (4.9)

Introduce a new primary superfield

D, = Oy + Kkhy (4.10)
1 By m
Qo = wa — m(w%n)\)ﬁ Aa s (4.11)
BY m 1 N (YA m
ha = da - m(d%n)‘)('y /\)a - 2()\X)2/\a(/\7 d)Hm (4'12>

This superfield satisfies
P =0, (4.13)

36In terms of OPE, the second equation is lim,_,0 G(y)G(0) ~ T(0)/y.

37The non-minimal variables are not related to the fixed constant PS ), used in (wq, A*) OPE in
(A.18). We will use )\, as a fixed constant PS.

38Recall D = a% + H% and v = V-
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so that ® has 11 components. This equation can be shown by the formula (A.46). It will
be useful to remember

1 m
ym = aymg = LD
2 22\
(@3,) (B ! .
Tm 7 )a
he —dy = ———= "Na+ —=—7p= (V" —=AY"0 ) (AVm)a,
200 {(v ) Iy } (w o )( Ym)
where (A.46) is used in the last line.
4.1.2 Heterotic PS superstring
We write the heterotic PS superstring action using the ' = 1 superfield:
1 s -
5— / Padi [ S TP 4+ B+ 8,00° + QL) (i) + My, (3™ 8)].
| (4.15)
_ / i [ 5 DX"OKp + €,06° + Lo(IN)* + M (39" @) + 0(8)],
where L, , M, are Lagrangian multipliers, and
1 1 _ = 1~
I = DX™ — —DOy™0, 11" =0X™ — -00y™6, II" =0X™ — -00~y"0,
2 : 2 2 (4.16)
B=- [(Dq-)w@) 8X,, — DX (5([-)%@)} .
Let us solve the constraints and reproduce the original action. JIA = 0 gives*’
1 _
0= (v~ 32970) (A", (4.17)
1 1 _
0= <8Xm — 5@977”9 — §A’ymA> (YmA)* . (4.18)
The first line is consistent with (4.14).
Let us expand the action (4.15) by component fields,
1 1 ~ _ _

S = /de <§aXmaXm +3 V", + Q0 OAY + ho00% + .. ) , (4.19)
where ... represents the terms higher order in ©. From (4.14) and the PS constraints,
we obtain®! Sy

mma:%&w—(gkam%)
(4.20)

Lomg, _ (M™d)
SV Om = o
2 22\
39See (1.3) for RNS and (2.27) for GS heterotic superstring actions.

400ne finds from (4.18) that the O(x) component of II'" is equal to II™ — FAY™A.
41T see the second equation, take the derivative of (Av,,0)(Ay™6) = 0 and use 67,,0 = 0.

O(Aymf) + (total derivative).
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The sum of the two gives p,00® ~ d,00°. Similarly, to obtain wd), recall

0, 0N =Q,0 (W{)a + )\“) . (4.21)
AN

The first term vanishes because My ® ~ Ay = 0. We then identify Q, ~ wy. By

working out the details, one can show that the new action (4.15) is equivalent to the old

one (3.43).

In the untwisted formalism, we consider only the A/ = 1 superconformal symmetry
generated by the sum G = @pgrst + b. Roughly speaking, we replace the BRST-closed
condition Q)rsTV = 0 by the superconformal primary condition GV = 0. The two
conditions are more or less equivalent in Siegel gauge by} = 0. The N = 2 structure is
not completely lost, because G and G~ have different ghost numbers.

In ordinary PS, the b ghost does not propagate in Siegel gauge, and the BRST-closed
condition is sufficient for computing tree-level amplitudes. However, the vertex operator
like Vj = A\*A4, is not a conformal primary. The new vertex operator V in (4.24) is a
conformal primary, but more complicated than Vj .

4.2 Lecture 9
4.2.1 Vertex operators
We look for N' = 1 superconformal primary

Vi~ 2 gy~ 2PV,

(4.22)

The vertex operator V' = A\, A% in (3.47) is not superconformal primaries since its OPE
with G~ has a double pole. A supersymmetric version

V = DO A,(X,0) = A®A, + O(x) (4.23)

is not Lorentz covariant because of the dependence on X in A.*> We tentatively give up
the Lorentz covariance, and try an ansatz for superconformal primaries:

V=> V,=DO"A, + " A, + 0, W, (4.24)

where n is the ghost number;

J(y)Va(z) ~ . JVy=nV,. (4.25)

42This is because Ny, (2) A(0) ~ 0. The Lorentz covariance is restored only if the constraints JI\ =
MY ® = 0 are imposed.
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We assign the ghost number +1 to A and —1 to w from (4.1). Let us write down each
term of (4.24),"3

DO" A, ~ A“A, — (A“ + (Af;) ) A, (4.26)
N A, ~ (97— A9 ) Ay = — 2Dy 4.2
(v 39m0) i (4.27)
1 /- _
bW =~ QW = (Cyn)a N™ 4 2o T ) W 4.2
We = QW oo () N7 4 3 T) W (4.28)

where we used (A.45), (3.51). The term A\*A, belongs to Vi, and the others belong to
V_q1. Thus V =V, + V_; in (4.24). Since V is a superconformal primary,

G+‘/1 - 0, G+V_1 + G_V_l = 0, G_V_l - 0 (429)

Consider the s-integrated vertex operator U = [ dxkV. Recall that**

U=DV, DU=0V, D=G"+G",

4.30
G+U0 = 8V1, G_Uo + G+U,2 = 8V,1. ( )
We require “BRST invariance” by imposing
1
(DV)pso=0 &  V=> V. (4.31)

n=—oo

and require Lorentz covariance by imposing

/dz (/ dKJV) = /dz (DV), is independent of . (4.32)
0

This condition is non-trivial, and not gauge-fixing for the superconformal symmetry. Note
that [(DV), agrees with the usual pure spinor vertex operator. If the background space-
time has a Killing spinor, we can make the vertex operator independent of A by choosing
A in the Killing direction.
By writing
U=> Un= Do, + Q:E , (4.33)
m Lorentz covariant  not covariant

we want to show that only Uy contributes to the tree-level amplitude, which is equivalent

to
1
Uy=00%A, +1I"A,, +d W + §NmnFm”, (4.34)

43The last line can be derived by applying the identity (A.45) to (4.11).
4“From (1.2), U = GV up to a total derivative in 2.
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as in (3.51). We apply the chain rule to U = [ dk (D(BaAa +MM"A,, + @aWa) as

/ drf(X,0) = (DX, + DO",) f

k=0

1 (4.35)
= (Wﬂ - §A7m0) Omf + AN Dof,
where D, is the spacetime super-covariant derivative of (3.9). We obtain
1
U=00°A, + A° [(w _ émm@) O Ay + AﬁDBAa] (4.36)
1 1
+ (aXm - 5807’”0 - éAva) A
1 1
- (w - 5/\77”9) [(w - 51\%0) B, A + A“DaAm]
1
R+ Q, [(w - §A7m9> 0, W + Aﬂpﬁwa] .
Then we extract the n = 0 terms, by recalling that (™ — 3Ay™) has n = —1 from
(4.14). We find
1
Up = 09°A, + 1M A,, + {da + (w - §A7m0> (Mm)a}wa + Qo M DIV
1 1
X" = SA9"0) (I Aa = Dadn) + 3 [AQM (2D (0 Ag) — WZLﬂAm)] - (a3D)

By using the identities in Section 3.1.2, one finds that this agrees with (4.34). We use the
identity (3.23) to obtain § N™"F,,, , and the extra term (€, — w,) vanishes from (A.38).
The first term in the second line cancels (h, — d,)WW® in the first line.

4.2.2 Scattering amplitude

After untwisting, the vertex operator V; has conformal weight % The string amplitude at
tree-level is given by

Aumee = X {(QV1)(21)(GV2) (22) (GV3) (23) / v / Vi),

X = (2’1 — 22)(22 — 2’3)(23 — 21).

(4.38)

This does not depend on z 2 3, since G'V; has conformal weight 1. Each factor in Ayee can
have the component with zero ghost number.*> The component of Ay, with zero ghost
number is special, because jgrgt is conserved.

The tree-level amplitude should satisfy superconformal Ward identities when V; are
superconformal primaries. We do not know any prescription to compute loop amplitudes.

45Tn usual PS, we assigned the ghost number (0, 1,2, 3) to (1,V,V* \36°).
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The vertex operator GV is written as

an

GV = ApdX™ + =~ (dy™0 + wy™ ) + . ... (4.39)

One can show that the terms in the parenthesis have the same OPE as 1) which appears
in the gluon tree amplitude in RNS formalism,

AR = (PSS V) [V, VRS = A0X P (140

tree

4.2.3 Unsolved problems

We will discuss the following problems will be discussed in the forthcoming sections.

The first problem is the relation between PS and RNS. The degrees of freedom in NS
sector look similar, but those in R sector look different.

The second problem is to apply the untwisting to AdSs x S°.

The third problem is possible relation to twistors. By expanding the constraint (4.42)
we obtain

1 1 _
0= <aXm — 500770 — 5/\%/\) (T A)®, (4.41)

which implies that A is a bosonic spinor coordinate related to X™ as in twistor theory.

4.3 Lecture 10
4.3.1 Relation to RNS

Recall that we imposed the constraint
1 _
0= (DXm — §D®7m®) YA, (4.42)

which relate two worldsheet superfields X” and ®. This constraint was solved by

1 (M) | (AIy™6)
Xm — xm 2" — _ _ 4.4
o (2 i 2 D) (4.43)
o (A
— o LRI e 4.44
® + K ( o5 ) (4.44)
I = oX™ — %aewe. (4.45)

We define a new variable
0 = 0" +K,, (v"\), (4.46)

such that the above condition is rewritten as

(D®'Y™®") YA = 0. (4.47)
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Now ®’ is independent of X, and more closely related to the worldsheet fermions in RNS
formalism.
The fermionic superfield K,, in (4.46) satisfies the equation®®

[DXm + DK,,(A®') + KMZ\D@')} A =0

1 Y /
Lo 12O (D)
AD® 2\DO’ \ \D®

(4.48)

= K,, =

assuming DX\ = 0 and ADO # 0, which is the supersymmetrization of A\ # 0.
The heterotic action (4.15) can be written as

S = / zdk [%DXmEXer&)aé@’%(}«ymZ) (D®/7m®')+Mm(5\7m<ﬁ>)+0(®/)}, (4.49)

where ® = Q, + khg differs from ® by a shift which absorbs the difference (® — ®).

We can ignore the O(®’) terms because they do not contribute to the tree amplitude.
Let us explain this point in NS sector. Recall that A had the U(1) charge +1 and w had
—1 under J ~ —A%Q, in (4.1). The vertex operators had non-positive U(1) charge as
in (4.33). Since the worldsheet supersymmetry relates 2 ~ w with h, gauge-invariant
quantities with zero U(1) charge with respect to .J = —\*Q,, satisfy

Number of (#) — Number of (h) > 0. (4.50)
At the same time, we need
Number of () — Number of (h) =0 (4.51)

to have the non-vanishing tree amplitude (4.38). Thus, the O(®") terms in worldsheet do
not contribute to the tree amplitude.

We want to argue that the tree amplitude of gluons based on (4.49) is equivalent to that
of RNS formalism (4.40). For this purpose it is sufficient to prove that the components
of ®, ® do not contribute to the tree amplitude. Vertex operators in NS sector are given
in (4.34) or (4.39). If we rewrite the vertex operator using ®', we obtain

1 1 /=~ -
GV = ApdX" + S FpuM™ 4. M = = (mm”A + mmw') . (4.52)
where
O =0+ kA +0(0%),  Oy™A=0. (4.53)
The new variable M'™" have the OPE

M! n
m(p'In)q
M, (2) M, (0) ~ —=2— (4.54)

z

46T show the second line, use (A®")(A®") = 0.
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instead of (3.59). The tree amplitude consists of gauge-invariant quantities with zero
U(1) charges, like M'™". However, M’ does not contribute to the tree amplitude. If Agee
contains the term ((M’)™), one apply the OPE (4.54) repeatedly to reduce it to (M’),
which is zero. We conjecture that only the superconformal primaries with the superfield
X™ contribute to the tree amplitude in NS sector.

What happens in R sector is less clear. The variable # in PS should corresponds to
spin fields with 3y ghosts in RNS.4

4.3.2 Curved NS backgrounds

The heterotic action (4.49) on NS curved backgrounds is given by

S = / d?zdk E DX" X" (G (X) 4 by (X)) + , VO™
+ (ML) (DO'y™0') + Mm(hm@)], (4.55)

where

VO™ = 00" 4 0X™ w3 (X)®'”. (4.56)

We do not know how to put the action on Ramond backgrounds, because we do not know
Ramond vertex operators.

Let us introduce the spacetime superfields Z¥ = (X™ ©“). The heterotic action is
rewritten as

1 _ 1 _ _
S = / d*zdk bnabEj‘\yEf’V DZMozZN + 5 Bun DZMozZN + @, EY, 072M
+ (ML) (ES, DZM) + MG(M%)] . (4.57)

In GS DZM was 0ZM. All ghosts come from the term with ®. This action should be
equivalent to the original PS action on curved backgrounds, which is

1 - 1 _ _ _
Spg = / d*zdk [§nabEg4E§’V GZM82N+§BMN 0ZM97ZN +d ES, aZMWQVA“}, (4.58)

where

VA = 0N + wys™ N 0ZM. (4.59)
Around the flat background, it should behave as

Served = Stat + / d*zV. (4.60)

4TThe ghosts in PS were accounted by X = (21 — 22)(22 — 23)(23 — 21).
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4.3.3 Type IIB

The type IIB action can be obtained by replacing 0 with D and adding right movers,

1 _ 1 _
S = / d*zdk bnabE;ij’v DZMDZN + 5 B DzMDzZN
— O EY DZM + 04 ESY, DZM — 8,8, F°® + (Lagrange multipliers)]. (4.61)

The term with F'*¢ is needed to reproduce vertex operators. The Lagrange multiplier
contains A, which is defined patchwise unless the background has a Killing spinor. This
action is simpler than the original PS action,

1 - 1 _
Sps = / d*zdk [EnabEj‘QEf’v 0ZMozN + 5 Bun ozMozN
+ d ES; 0ZM 4+ dyES; 0ZM 4+ w V™ + 0a VY + dody FO°
+ Rabcd(/\'yabw)<5‘70d@> +da (ﬁab@) o T Cza (7abw> 73b] . (4'62>

We conjecture
S = Sps (4.63)

by integrating s, imposing the constraints, and restricting to the sector of zero ghost
number.
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5 Conclusion

We summarized three formalisms of perturbative superstring theory, RNS, GS and PS.
After the review of each method and relation in between, we introduced untwisting PS
formalism, which realizes the manifest N' = 1 worldsheet superconformal symmetry. This
symmetry will be useful to study AdSs x S® superstring.

We omit the last few lectures from this note, where twistor-string in R*, R, and
AdS; x S° are discussed. Interested readers can consult [17, 16].

Mathematica codes

This lecture note is accompanied by two Mathematica codes. The first code computes the
free-field OPE’s relevant in RNS formailsm. The second implements Gamma matrices in
SO(1,9) which can be used to prove various identities.
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A Notation

In the flat spacetime, we use the following indices:
e m,n,... label vectors; X™

e «,[3,... label spinors; 6
° Q, B, ... label spinors of the opposite chirality; 6%, 6% or 9%
e A, B, ... label superspace; Z4

In the curved spacetime,

e m,n,... label (locally Lorentz) coordinates; X™
e a,b,... label tangent space; e, = e;naxim

We also use a,b =1,2,...,5 for the U(5) fundamental representation.

The indices are symmetrized as

1 1 :
F{alag...an} = E Z Faa(l)aa(g)...aa(n) 9 F[alag...an] = E Z Slgn(U)Fag(UaU@)...ao<n)‘ <A1)

gESy o

A.1 OPE’s

We summarize the OPE’s of worldsheet conformal primaries.
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Let us consider the action

S = L dzdz (1 0X™0X,, — lwm&/}m + BOy + béc> , (A.2)
27 2 2
and take the variation such as 0 = (6)‘2,1 (X, e™®)). This gives the OPE
1

Xin(2,2)Xn(0) ~ =t Tog [2°, 7(2)B(0) ~ =B(2)7(0) ~ -, (A.3)

D 1
U2 (0) ~ —222, (2)b(0) ~ b(z)e(0) ~ - . (A.4)

The stress-energy tensors are,
Ty = :—% 0X™MoX,,:, Ty = :%wm&/}m: , (A.5)
20 —1

Type = :—c(0b) + X0(cb):,  Tp, = :v(0B) — o(vB):, (A.6)

2
which satisfy the OPE’s,

¢ 2T(0)  9T(0)

T(2)T(0) ~ At t— .
D 1\° ) '
CX:D, Ciﬁ:?? Cbc:_12 )\—5 —f-l, 657:12)\(/\—1) — 1.
Here b, ¢ and (3, have the conformal dimensions
1
dim (b,¢) = (M 1—2),  dim (5,7):()\—5,;—)\) (A8)

We set D = 10, A = 2 for the critical superstring in RNS.
When the worldsheet theory has N’ = 1 supersymmetry, we define the stress-energy
tensor superfield T(z) = G(z) + kT'(z). The superconformal current G(z) satisfies

L36O) 9GO) g < TO

222 z 623 2z

T(2)G(0) (A.9)

In the case of N = 2 supersymmetry, the stress-energy tensor multiplet (7,G*, G~,J)

satisfies
160 ~ 20 LT o) 2O 2TO)
G*(2)G(0) ~ % + 2”2@ L 7O t 21O)  JaE©) ~ _iGZi(O) (A1)
J(2)J(0) ~ 3—;

Let us study the OPE of a free chiral boson in detail,

o) plw) = — log(z — w)+ :p(2)p(w): . (A.11)
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An exponential of ¢ satisfies the OPE

©(2) e = —nlog(z — w) : ™™ 4 1 p(z) W) (A.12)

1eMPR) W) = (y —qy) T emelE) enelw) (A.13)
In particular, e*¥ satisfy

:ecp(z) . ezl:lp(’w) — :eiS@(w) - 690(75) e (Z _ w):’:l :ega(z):tcp(w) - (A14>

The exponential operators behave like free fermions ¢,,, . However, they behave like bosons
inside the normal-ordering, :e¥(*)e*¢(W) . = . exe(W)er(2) . — . gr(2)Ep(w) .

In PS, we forget v, in (A.2) and replace

boc — pa00%,  dim(p,,0%) = (1,0), c=—2x 16, (A.15)
BOy — —wa 0N, dim (we, A%) = (1,0), c¢=+2x 11, (A.16)

which satisfy the OPE

Pol)0°(0) ~ 7(2) pul0) ~
. ) (A.17)
(2 p(0) ~ T 2oy - T

Since A* is a PS, the metric Pg should be a rank 11 matrix. We can construct P by using
a fixed unconstrained spinor \, as

Po() =g - 5 Ll ) (A9

which satisfies
PE(2)PI(2) =P5(2),  PE(2)N(2) =X%(2),  Pg(2) Mm)al2) =0,

(A.19)
AMYmA(2) Wa (0) ~ wa(2) AYmA(0) ~ 0.

If )\, is a fixed PS, then

(AN)(2) ws(0) ~ —ws(z) (AN)(0) ~ Aﬁz@ . PEAa=rs.  PE(W)’=0. (A20)

We need to be careful about the OPE between T' = —w,0A* and w, ,

T(2) wa(0) ~ P5(0) (”a(m + 8‘”a(0>> . (A.21)

22 z

Since Pg 0w # O(P§ wa), strictly speaking w, is not primary. This is not a serious
problem, because w, appears only in the gauge-invariant combinations such as A“w, or
P§ w, and extra terms vanish.
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For doing calculation, it is simpler to take the U(5) basis w, = (w4 ,wap ,ws) and fix
the gauge by A\, = A, . From (A.53) it implies w® = 0, thus

_ ~ 1
WaON* — w ONT + 5 WapOA? . (A.22)

where (u,t) are chiral scalars. They satisfy the OPE

1 6204 — §ao?
A* ~ A (2) wealy) ~ ——2—2< A2
Eur)~ s A ualy) ~ EE (A.23)
After the untwisting in Section 4, the equation (A.16) becomes
BOy — —wa0NY,  dim (we, AY) = (% , %) , c=—1x11. (A.24)

The difference of the central charges between (A.16) and (A.24) is —33. To cancel it, we
add the following non-minimal PS,

boc — 5°0ry, dim (5% 714) = (% , %) , c=-+1x11, (A.25)
BOy — @0\, dim(@* A\,) = (1,0), c=+2x11, (A.26)

with the PS conditions*®
j‘a(ﬁym)aﬁj‘ﬁ =0, 5\01(7711)0‘57"5 = 0. (A27>

A.2 Curved spacetime with torsion

There are two ways to represent tensors in the curved spacetime,
Nab = €5°€, Gmn s Bap = €5'€y Bnn . (A.28)
Covariant derivatives can be written in two ways,
V" = 0pv"™ + 17,07 Vo ="V = €0 + Wape M, (A.29)

with wepe = €lepVin(ec)n -
The torsion is defined by

(Vi Ve, =V, V) f =TV, f . (A.30)
The covariant derivative satisfies

[Vons Vi = Runp? Vg + Ton? V, . (A.31)

8The quantity 7o (vm)*’rs is trivially zero since 7, are fermionic.
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Note that T,,,,» = 0 does not imply 7,,¢ = 0, because V, acts on vielbeins. The differential
form is given by

p n
(dQ)[m1~-~mp+1] = (VQ)[m1~--mp+1] + 5 (_1)1) T[m1m2 Qm3-~-mp+1]n . (A32>

In string theory it is useful to introduce the generalized metric G,,,, = Gun + Bmn
to maintain O(D, D) covariance. If we require V,,G,, = 0, the Christoffel symbol is
determined uniquely as

1
2., = 3 G" (O G gn + 0nGrg — 0yGinn) - (A.33)
By comparing it with I'P},, = —% TP, we find
Hinp = OpmBrp) = Tonp - (A.34)

A.3 Spinors and Gamma matrices

The Majorana-Weyl spinors exist in ten-dimensional Lorentzian spacetime. By setting
rrt. .. 79 = diag (116, —116), one can decompose a general 32-component spinor into a
pair of 16-component chiral and anti-chiral spinors as

(Z) (A.35)

We use the Majorana-Weyl representation of 32 x 32 SO(1,9) Gamma matrices satisfying

af
= ((’YTS)aB (7 0) > ) (Vm)aﬂ = ('Vm)ﬁom (A'36>
(Y")as() + (7")ap(Y™) = 2057, (A.37)

where ™" has the signature (—,+,...,+) with 7° = —1. From (A.37) it follows that

(Y)ap(rm)™ =1007, (7" Ym)as = =8 (7" )as »
(P ) 0 = 40 65 46 (v s (A.38)
YUY = AT 4 AR =Y AP = AT P — AT

We also find
16 (5[’”1 . 5mf (C=k)
ni ny

. ), (A.39)

tl‘ (fymlmz“me’}/nknkfl“'nl) = {

where ™M M = ylmiyme
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The Majorana-Weyl representation matrix (A.36) can be constructed explicitly as*®

MN=0®0®0 0 ®os, P=0R0Q0 Qo0& 0y,
F3:01®02®03®02®01, F4:01®01®00®01®03,

P=0®0 Q00 0y, =0 ®0 R0 Q0 0, (A.40)
F7:01®01®03®03®03, F8201®01®01®01®01,
M=0®0380Q0)® 0y, ' =0y ® 0y ®0g® 0y ® 0y,

’=—ir?.

The tensor product is defined as

a1 B algB
A®B=|anB anB : (A.41)
All matrix elements of I°, "', ..., T are real and hermitian, and satisfies

(70)04,3 = _(70)(;&’ <7i)aﬁ = (Pyi)aﬁ (Z =1,2,... v9)
(V" = (m)ag (M =0,1,...,9).

The light-cone components satisfy

Yoty (18 08) Yo~ _ (08 08) (A.43)

(A.42)

2 08 08 2 08 18
The matrices v™" for m,n = 0,1,...,9 are real, anti-symmetric and have the eigenvalues
+i. The matrices v for m,n,p =0,1,...,9 are again real and anti-symmetric.

From (A.40) one can derive various identities [18, 20],

0 = Thmn Ya(sVs) (A.44)

(V™) (V)" = 4™ ) (4) 7" — 26285 — 85507 (A.45)

Note that RHS of (A.45) is not manifestly symmetric with respect to « <+ 8 and v < 4.
By multiplying A’\” to (A.44) and using the pure spinor condition for A, we obtain

(Ve O9™)s = =5 (1) () = 0 (A1)

The U(5) basis is suitable for solving the pure spinor condition. Let us write a 32-
component Dirac spinor by \1:92:%3:54:5 yith s, = 4+1. We introduce creation-annihilation
operators by

k—1
1
Vi - \51:52,93,54,85 (H 5]') :gsk [)\81,82783,84,85} , (A47>

S
j:1 Sk Sk

49 Another construction based on the representation of Spin(8) in [18] can be found in [19].
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so that vy 1 kills A\*1525354%5 if g, = 1. The first factor in RHS is needed to make 7’s
anti-commute. One can construct the SO(10) Gamma matrices by

Dok—1 = Y+ + V- Cor = —i (Yot — Vo) - (A.48)

A shortcut to obtain a complex Weyl representation of SO(10) Gamma matrices is to
use (A.40). Then, the state

>\+++++ = {0167 _ia 17 7:7 17 7:7 17 _ia 1) 07 07 07 O’ 07 07 07 0} (A49)

is annihilated by all v, 4 . The 32 components of A%:%2:%3:%4:% gplit into two groups, whether
the number of —’s is even or odd. Each group has a definite chirality. Suppose (A%, x4)
is a pair of 16-component spinors, chiral and anti-chiral.
Consider the PS condition Ay™\ = 0 in the U(5) basis. We write the chiral fermion
as
A=uA" + g (V% A2IAT) + wanea (02,2105, A2AT) (A.50)

where AT = AT+ /Nt and a,b,¢,d = 1,...,5.5° The PS condition is equivalent

to the bilinear conditions

MA=0 & Ulabed = Uah Ued — UYae Und + Uad Usc » (A.51)
MiA=0 & 0 = €defgn ude el (A.52)

The first line solves the second line trivially. We are left with 16 — 5 = 11 degrees of
freedom.

For a pair of chiral spinors, the conditions Ay2A = 0 are equivalent to

UUghed + Ugbed U = Ugp Ued — Uge Upd + Uad Ube T Ued Ugh — Ubd Uge + Upe Uaq (A53)
defgh ~ ~ ’
0=¢ fe (ude Uefgh + Uefgh ude) .

The general solution of these equations is complicated. When A = AT+ or equivalently
('&, ’&ab, aabcd) = (1, 0, O), we have Uabed = 0.

B Literature

Below are the references relevant to the lectures. This list is by no means comprehensive,
because this article is a lecture note rather than a review.

Supergravity. A comprehensive review [21]. Superspace and super Bianchi identity in
11-dimensional supergravity [22, 23].

Super Yang-Mills Supersymmetric Yang-Mills theory in 10 dimensions, and twistor-
like transform [24].

%0The basis {AT, [y , 72 JAT, [v* , 42 ][v¢ ,7¢]AT} corresponds to A’s introduced in (3.5).
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RNS. Review of RNS and GS [25]. Picture changing was introduced in [6, 7]. The
picture-changing at loop level has been recently discussed in [26].

GS. Textbooks on GS [18, 27]. Relation between x symmetry, generalized supergravity
equations of motion and Weyl invariance. [28, 29, 30] Review of GS on AdSs x S° and
integrability. The construction of o-model action using Z, grading [31].

PS. Detailed study of the BRST cohomology in the flat spacetime [10, 32]. More ways
to relate RNS with PS [33, 34]. Application of PS to the anomaly in curved Jv system
[35].

N = 2 worldsheet supersymmetry in the non-minimal PS [36]. The nilpotency of the
b-ghost in the non-minimal PS [37]. Untwisting formalism [16].

Review [9, 38]. Review on the relation between RNS-GS-PS and non-critical strings
[15]. PhD and Master theses. Some basic computations are explained in detail. [19, 12,
39, 40, 41]

Comprehensive study of 10d spinor identities [20].
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