
Lectures on superstring theories

Abstract

This article is based on the lectures of superstring theory given by Nathan

Berkovits at ICTP-SAIFR in 2016, São Paulo; note taken by Ryo Suzuki.1
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0 Plan of the lectures

We are going to survey several formulations of perturbative superstring. The lectures are

mostly about tree-level. We also work on general curved backgrounds.

As prerequisites, the readers are supposed to have the knowledge of bosonic string and

some superstring.

We first explain Ramond-Neveu-Schwarz (RNS) and Green-Schwarz (GS) superstring

theories. RNS has the N = 1 worldsheet supersymmetry. GS has the κ symmetry,

and has the manifest spacetime supersymmetry. Then we discuss Pure-Spinor (PS) and

Twistor superstring theories. PS can be used to study the AdS5×S5 background, though

this part is less established.

All of the RNS, GS and PS theories have the same spectrum as the light-cone (LC)

superstring:

GS : κ symmetry

RNS : N = 1 worldsheet susy

PS : Super-Poincaré

LC superstring

Twistor theories do not fit into this framework, but they are useful for studying N = 4

Super-Yang-Mills (SYM) in 4 dimensions, or N = 1 SYM in 10 dimensions. The following

two twistor string theories may be related to the α′ = 0 limit of PS.

• Ambitwistor string [1, 2, 3].

• Witten’s twistor string, which describes SYM plus conformal supergravity [4].

There is also a “doubly supersymmetric” superstring theory based on twistors, meaning

that it has both worldsheet and spacetime supersymmetry [5].

The first half of this lecture course is a review; please consult textbooks.
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1 RNS superstring

1.1 Lecture 1

1.1.1 Heterotic action

Heterotic superstring has N = (1, 0) worldsheet supersymmetry. Let us define worldsheet

superfield

Xm = Xm + κψm, κ2 = 0, (1.1)

and superderivative,

D =
∂

∂κ
+ κ

∂

∂z
, D2 =

∂

∂z
. (1.2)

We introduce the action2

S0 =

∫
dzdz̄

∫
dκDXm∂̄Xm =

∫∫
(ψ + κ∂X)

(
∂̄X + κ∂̄ψ

)
=

∫
dzdz̄

(
∂Xm∂̄Xm − ψm∂̄ψm

)
.

(1.3)

This system has the central charges (cL, cR) = (15, 10). Introduce the ghosts

Sgh =

∫
dzdz̄

(
β∂̄γ︸︷︷︸
(11,0)

+ b∂̄c︸︷︷︸
(−26,0)

+ b̄∂c̄︸︷︷︸
(0,−26)

)
(1.4)

Thus, S0 + Sgh has (cL, cR) = (0,−16). Usually we add right movers, like

S1 =

∫
ξI∂ξI (I = 1, 2, . . . , 32), (1.5)

where ξI are SO(32) vectors, and have the conformal weight (0, 1/2).

Let us rewrite ghosts in superspace, so that N = (1, 0) worldsheet susy is manifest:

B = β + κb, C = c+ κγ, B̄ = b̄+ κk, C̄ = c̄+ κh, (1.6)

Then ∫
dzdz̄

∫
dκB∂̄C =

∫
dzdz̄

(
β∂̄γ + b∂̄c

)
,∫

dzdz̄

∫
dκ B̄DC̄ =

∫
dzdz̄

(
b̄∂c̄+ kh

)
.

(1.7)

One finds that the right-moving components (k, h) do not propagate.

2The factors like 1/(4πα′) in actions will be omitted. See Appendix A.1 for the correct numbers.
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We introduce supersymmetric stress-energy tensors [6, 7],

T = :−1

2
DXm∂Xm :

= −1

2
∂Xmψm + κ

(
−1

2
∂Xm∂Xm +

1

2
ψm∂ψm

)
, (1.8)

Tgh = :−C(D2B) +
1

2
(DC)(DB)− 3

2
(D2C)B : ,

= :−c(∂β) +
1

2
γb− 3

2
(∂c)β + κ

{
c(∂b) + 2(∂c)b− 1

2
γ(∂β)− 3

2
(∂γ)β

}
: . (1.9)

1.1.2 Type II action

We introduce the N = (1, 1) worldsheet superfield

Xm = Xm + κψm + κ̄ψ̄m + κκ̄Fm,

D =
∂

∂κ
+ κ

∂

∂z
, D̄ =

∂

∂κ̄
+ κ̄

∂

∂z̄
.

(1.10)

The type II action is,

S0 =

∫
d2z

∫
d2κDXmD̄Xm =

∫∫ (
ψ + κ∂X + κ̄F + κκ̄∂ψ̄

)
(c.c.)

=

∫
d2z
(
∂Xm∂̄Xm − ψm∂̄ψm − ψ̄m∂ψ̄m − FmFm

)
.

(1.11)

F is an auxiliary field. This system has (cL, cR) = (15, 15). The supersymmetric ghosts

are

B = β + κb+ κ̄f + κκ̄g, C = c+ κγ + κ̄h+ κκ̄`, (1.12)

leading to

−
∫
d2z

∫
d2κBD̄C = −

∫∫
(β + κb+ . . .)

(
h+ κ̄∂̄c+ κ`− κκ̄∂̄γ

)
=

∫
d2z
(
b∂̄c+ β∂̄γ − gh− f`

)
,

(1.13)

and similarly for B̄D C̄. The first two terms of (1.13) give (cL, cR) = (−26 + 11, 0), and

the last two terms are auxiliary.

1.1.3 Vertex operators

Vertex operators can be found by coupling external fields and evaluating the action.

The vertex operator in open superstring is

Am(X) = Am(X) + κψn∂nAm(X),∫∫
:AmDXm : =

∫∫
: (A+ κψ∂A) (ψ + κ∂X + κ̄F + . . .) :

=

∫
d2z :

(
Am∂X

m + ψmψn∂[mAn] + ∂mAm
)

: .

(1.14)
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We will neglect the last term ∂mAm which is the gauge variation of XmAm . No ghosts

enter here. On the boundary we impose the conditions

DXm = D̄Xm

{
z = z̄, κ = κ̄ (Re z > 0)

z = z̄, κ = ±κ̄ (Re z < 0).
(1.15)

It implies

∂Xm = ∂̄Xm (z = z̄), ψm =

{
+ψ̄m (z = z̄, Re z > 0)

±ψ̄m (z = z̄, Re z < 0)
(1.16)

where + corresponds to NS fermions and − corresponds to R fermions. To see this, recall

that

z = eτ+iσ ≡ eρ, ψ(ρ) =

(
∂ρ

∂z

)1/2

ψ(z) =
ψ(z)√
z
. (1.17)

The condition ψ(σ = π) = ψ̄(σ = π) is mapped to ψ(z < 0) = −ψ̄(z̄ < 0), which kills NS

(integer) modes of ψ(z).

ψ = ψ̄ψ = ±ψ̄

z

Figure 1: Boundary conditions on fermions on z-plane.

The NS vertex operator in heterotic superstring follows from

S =

∫
d2z

∫
dκ
{
DXm∂̄Xn (gmn(X) + bmn(X)) +DXmAAm ξIξJ T

A
IJ(X) + T (X)

}
, (1.18)

where T is tachyon field which is classically massless. We will omit T . By expanding the

first term of (1.18) in κ,3

S =

∫ {
(gmn + bmn)

(
∂Xm∂̄Xn + ψm∂̄ψn

)
+ ψmψp∂p(gmn + bmn)∂̄Xn

}
,

=

∫ (
∂Xm∂̄Xm + ψm∇̄ψm

)
,

(1.19)

3Here we used gmn(X) = gmn(X) + κψp∂pgmn(X) and gmn = gmn(X).
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where4

∇̄ψm = (gmn + bmn) ∂̄ψn + ψp(ωpmn +Hpmn)∂̄Xn, ∂[pgm]n ≡ ωpmn . (1.20)

The fermion bilinear term, ψψ(ω + H)∂̄X, resembles ψψ∂A in (1.14). On the curved

spacetime, we should use ψa∇̄ψa in place of ψm∇̄ψm, where ψa = eamψ
m and eam is the

vierbein. In textbooks, the vertex operators are given in Fourier space, using

gmn(X) = ηmn + hmn(X) = ηmn +

∫
dDk h̃mn(k)eikX . (1.21)

The NS vertex operator in type II superstring follows from

S =

∫
d2z

∫
dκ
{
DXmD̄Xn (gmn(X) + bmn(X))

}
, (1.22)

=

∫
d2z
{(
∂Xm∂̄Xn + ψm∂̄ψn + ψ̄m∂ψ̄n + FmF n

)
(gmn + bmn)

+ ∂Xmψ̄nψp∂p(gmn + bmn) + (c.c.) + ψmψ̄nψpψ̄q ∂p∂̄q(gmn + bmn)
}
,

'
∫ {(

∂Xm∂̄Xm + ψm∇̄ψm + ψ̄m∇ψ̄m
)

+ ψmψ̄nψpψ̄q (Rmnpq + ∂mHnpq)
}
, (1.23)

where we neglected F 2 in the last line, and

∇ψm = (gmn + bmn) ∂ψn + ψp∂̄Xn(ωpmn −Hpmn). (1.24)

Switching z ↔ z̄ flips the sign of bmn , and thus H → −H in (1.24).

All terms in (1.22) are necessary to preserve worldsheet supersymmetry, though his-

torically they were discovered by imposing the conformal invariance. PS vertex operators

have similar structure.

1.2 Lecture 2

1.2.1 Tree amplitudes

The tree superstring amplitudes can be computed in several “pictures”. We first introduce

a usual way which can be readily extended to loop amplitudes. Then we discuss unusual

ways, which are valid only for trees, but related to PS amplitudes.

We consider open superstrings, using the worldsheet superfield

Xm = Xm + κψm + κ̄ψ̄m + κκ̄Fm, (1.25)

and imposing the boundary conditions DXm = D̄Xm|κ=±κ̄ . We take the vertex operators

V = c ∂XmAm , U = {b, V } = ∂XmAm , (1.26)

4Here the indices are raised or lowered by gmn + bmn .
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where AM(X) can be written as

Am = eikXεm , kmεm = 0, k2 = 0. (1.27)

An N -point bosonic tree amplitude is given by

AN = 〈V1(z1)V2(z2)V3(z3)

∫
dz4U(z4) . . .

∫
dzNU(zN)〉

= 〈c(z1)c(z2)c(z3)〉︸ ︷︷ ︸
=(z1−z2)(z2−z3)(z3−z1)

〈U1(z1)U2(z2)U3(z3)

∫
dz4U(z4) . . .

∫
dzNU(zN)〉mat

(1.28)

For supersymmetric amplitudes, we take

V = CDXmAm(X) = C
{
ψmAm + κ

(
∂XmAm + ψmψn∂[mAn]

)}
. (1.29)

The question is how to choose C. One guess is

V
?
= W ≡ CDXmAm(X)

∼ c ψA+ κ (γψA+ c ∂XA+ c ψψ∂A) .
(1.30)

This quantity has manifest worldsheet supersymmetry, but its conformal weight is not

same as (1.26) due to κ. Thus we use

Ṽ =

∫
dκW = γ ψmAm + c

(
∂XmAm + ψmψn∂[mAn]

)
, (1.31)

Ũ = {b, Ṽ } = ∂XmAm + ψmψn∂[mAn] . (1.32)

Now Ũ has the conformal weight 0.

Recall that we introduced an unintegrated vertex operator V in (1.26) to kill the zero

mode integration of the tree amplitude (1.28). In superstring, we also need to kill the

zero modes of βγ ghosts by introducing he delta function,∫
dc0c0 = 1 ↔

∫
dγ0 δ(γ0) = 1. (1.33)

A common way to define δ(γ0) is to bosonize βγ ghosts,

γ︸︷︷︸
weight− 1

2

= η︸︷︷︸
1

eϕ︸︷︷︸
− 3

2

, β︸︷︷︸
weight 3

2

= e−ϕ︸︷︷︸
1
2

∂ξ︸︷︷︸
1

, (1.34)

where η, ξ are anti-commuting fields satisfying5

η(y)η(z) ∼ 0, η(y)ξ(z) ∼ (y − z)−1, ξ(y)ξ(z) ∼ 0, (1.35)

5The OPE (1.36) says that e±ϕ are anti-commuting, :eϕ(z) ::eϕ(w) : ∼ − :eϕ(w) ::eϕ(z) : .
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and ϕ(z) is a chiral boson satisfying

ϕ(y)ϕ(z) ∼ − log(y − z), emϕ(y) enϕ(z) ∼ (y − z)−mn. (1.36)

Thus we identify

δ(γ0) ∼ e−ϕ. (1.37)

It follows that

〈δ(γ(y))δ(γ(z))〉 ∼ (y − z)−1. (1.38)

Since the bosonization changes the BC OPE, the ghost supersymmetric stress-energy

tensor takes a different form.6 The new Tgh is given by

T′gh = :−C′(D2B′) +
1

2
(DC′)(DB′)− 3

2
(D2C′)B′ : (1.39)

= :−2c ∂(e−ϕ ∂ξ) + ηeϕ b− 3(∂c) e−ϕ ∂ξ + κ

{
c(∂b) + 2(∂c)b− η(∂ξ)− 1

2
(∂ϕ)2 − ∂2ϕ

}
: .

Let us count the number of supermoduli on sphere. A primary field φ with conformal

weight (h, h) behaves as

φ→ |z|−2h (|z| → ∞), (1.40)

which implies that φ with h < 0 blows up at infinity. For h = −1 we have φ→ z2, leaving

us three zero modes O(1), O(z), O(z2). In general,

The number of zero modes on sphere = −2h+ 1, (1.41)

where h is the conformal weight of ghost. Concretely, c has conformal weight −1, and it

kills 3 zero modes. γ has conformal weight −1/2, and kills 2 zero modes. Thus we need

two δ(γ)’s in the tree amplitude.

An N -point superstring tree amplitude is given by

AN = 〈V (−1)(z1)V (−1)(z2)V (0)(z3)

∫
dz4Ũ(z4) . . .

∫
dzNU(zN)〉, (1.42)

where

V (−1) = c e−ϕψmAm ,

V (0) =

∫
dκCDXmAm(X) = η eϕ ψmAm + c

(
∂XmAm + ψmψn∂[mAn]

)
,

(1.43)

using (1.14). Note that V (0) = Ṽ is given in (1.31). Thus

AN = (z2 − z3)(z3 − z1) 〈(DXA)1 (DXA)2 Ṽ3

∫
dz4Ũ(z4) . . .

∫
dzN Ũ(zN)〉mat. (1.44)

The matter part of the super-amplitude (1.44) is not same as the matter part of the

bosonic amplitude (1.28), because the former does not contain tachyons while the latter

does. This method can be generalized to loops.

6For example, γ(z)β(0) = O(z−1) + O(1)+ : z {η∂ξ + 1
2 (∂ϕ)2 + 1

2∂
2ϕ} : + . . . , and the O(z) terms

contribute to T′gh .
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1.2.2 Picture changing

The coefficient in front of ϕ is called picture (V (n) ∼ enϕ), which is measured by

P =

∮
dz (∂ϕ+ ξη) . (1.45)

It follows that γ, β have picture 0.

For each picture, we have a copy of the same Hilbert space

Hphys ⊂ Hex =
{
enϕ |v〉

∣∣∣ v ∈ Hphys , n ∈ Z
}
, (1.46)

which introduces too many states.7 The extended Hilbert space Hex is needed because the

super-Poincare algebra does not close on a fixed picture. The amplitude (1.44) is called

F2 picture. An alternative but equivalent expression is

AN = (z1 − z2)(z2 − z3)(z3 − z1) 〈Ṽ1Ṽ2Ṽ3

∫
dz4Ũ(z4) . . .

∫
dzN Ũ(zN)〉mat, (1.47)

which is called F1 picture.

Let us introduce the picture-changing operator

Z = {Q, ξ}, V (p+1) =:ZV (p) : . (1.48)

Here Q is the BRST charge,

Q = −
∮

dz

2πi

∫
dκ :C

(
T +

1

2
Tgh

)
:

=

∮
:−1

4
γ2b+

1

2
γ ψm∂Xm + c Ttotal+ ∂(. . . ) :

c Ttotal = − c
2
∂Xm∂Xm +

c

2
ψm∂ψm + bc∂c− c

2
γ∂β − 3c

2
β∂γ.

(1.49)

The BRST charge is nilpotent for the critical superstring. If we redefine (β, γ) to (x−1β, xγ),

it changes Q but not the OPE. Thus Q remains nilpotent for any x. By choosing x = 2

and rewriting Q in terms of the bosonized variables (1.39), we find

Q =

∮
:−η∂η e2ϕ b+ η eϕ ψm∂Xm + c T ′total + ∂(. . . ) :

c T ′total = − c
2
∂Xm∂Xm −

c

2
ψm∂ψm + bc∂c− cη∂ξ − c

2
(∂ϕ)2 − c ∂2ϕ.

(1.50)

One can check {Q, ξV (−1)} = V (0) from (1.43), using the fact that 〈e−ϕe2ϕ〉 gives a double

zero.

7The zero mode of ξ was ambiguous in β = ∂ξ e−ϕ, which is why we needed the extended Hilbert

space; compare (1.51) and (1.52).
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The picture-changing operator is not BRST-trivial on the physical Hilbert spaceHphys ,

because the physical BRST-exact operator f should be written as

f = {Q,F}, F = F (X, b, c, β, γ). (1.51)

However, ∂Z = {Q, ∂ξ} is BRST-trivial, because

{Q, ∂ξ} e−ϕ ' {Q, ∂ξe−ϕ} = {Q, β}. (1.52)

Let us introduce the normalization

〈ZZ c(∂c)(∂2c) e−2ϕ〉 = 1, (1.53)

with

Z = c∂ξ − 1

2
eϕ ψm∂Xm −

1

4
(∂η)e2ϕ b− 1

4
∂(ηe2ϕb). (1.54)

Recall that we do not have Z’s in the usual βγ system, and we do not have Z nor e−2ϕ

in the bc system. We rewrite (1.44) as

AN = 〈(ZV (0))1 (ZV (0))2 V
(0)

3

∫
dz4Ũ(z4) . . .

∫
dzN Ũ(zN)〉mat ,

= 〈ZZ c(∂c)(∂2c) e−2ϕ〉〈Ṽ1Ṽ2Ṽ3

∫
dz4Ũ(z4) . . .

∫
dzN Ũ(zN)〉mat .

(1.55)

W may assign Z to other V (0) because ∂Z is BRST trivial. Up to normalization, this

quantity (1.55) is same as the tree amplitude in the F1 picture (1.47).

We do not know pictures of picture-changing in PS or twistor formalism. We know

the PS analog of the gluon vertex operator Ṽ ∼ ∂XmAm + ψmψn∂[mAn] .

11



2 Green-Schwarz superstring

2.1 Lecture 3

2.1.1 Light-cone gauge

RNS and GS formalisms have the following dynamical degrees of freedom in light-cone

(LC) gauge,

RNS: Xm, ψm, bc, βγ
LC−→ Xj, ψj (j = 1, 2, . . . , 8), (2.1)

GS: Xm, θα,
LC−→ Xj, θA = (γ+θ)A (A = 1, 2, . . . , 8), (2.2)

where γ+ =

(
0 1

0 0

)
kills the first 8 components of θα.

From the SO(8) triality, vectors ψj, spinors θA, anti-spinors ΣȦ are equivalent. One

can bosonize ψ as

ψ2k−1 ± iψ2k = e±iσk (k = 1, 2, 3, 4). (2.3)

The σ’s are chiral spinors satisfying

σJ(z)σK(0) ∼ δJK log(z). (2.4)

They are related to θA and ΣȦ as

θA =
{
θ++++, θ++−−, . . . , θ−−−−

}
=
{
e
i
2

(σ1+σ2+σ3+σ4), . . . , e−
i
2

(σ1+σ2+σ3+σ4)
}
, (2.5)

ΣȦ =
{

Σ+−−−, . . .
}
, =

{
e
i
2

(σ1−σ2−σ3−σ4), . . .
}
. (2.6)

It implies that e
i
2
σK has the weight 1/8 since θA,ΣȦ have the weight 1/2. The actions in

LC gauge are given by

S =

∫
d2x

(
∂Xj ∂̄Xj + ψj ∂̄ψj

)
(RNS), (2.7)

=

∫
d2x

(
∂Xj ∂̄Xj + θA∂̄θA + ΣȦ∂ΣȦ

)
(GS, IIA), (2.8)

=

∫
d2x

(
∂Xj ∂̄Xj + θA∂̄θA + θ̄A∂θ̄B

)
(GS, IIB), (2.9)

2.1.2 Covariant particle action

We seek for the covariant description. The Nambu-Goto action for supersymmetric mas-

sive particles is given by8

S = −m
∫ √(

Ẋm − 1

2
θ̇γmθ

)2

, (2.10)

8The conjugation θ̄ = θγ0 is not necessary because our γ0 is proportional to the identity matrix 116 .
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having the global spacetime supersymmetry

δXm =
1

2
θγmε, δθ = ε. (2.11)

Note that the worldsheet susy is no longer manifest. In the first order form, it becomes

S =

∫
Pm

(
Ẋm − 1

2
θ̇γmθ

)
+ e

(
PmP

m −m2
)
. (2.12)

We can set m = 0 in this expression, giving the constraint P 2
m = 0. The momentum

conjugate to θα is

pα ≡
∂L
∂θ̇α

= −1

2
Pm(γmθ)α , (2.13)

namely

dα ≡ pa +
1

2
(6Pθ)α ≈ 0, (2.14)

where ≈ means that it vanishes on-shell. It turns out that dα ≈ 0 is a second-class

constraint,

{dα , dβ} = (γm)αβPm , (2.15)

where {, } is the Poisson bracket. One also finds that (6Pd)α is a first-class constraint,

{(6Pd)α , (6Pd)β} = (6P6P6P )αβ ∝ P 2
m = 0. (2.16)

The first-class constraints imply gauge symmetry.9 So the equation (2.16) suggests that

(6Pd)α are the generators of the so-called κ-symmetry. We use κα for 16 Grassmann-odd

gauge variation parameters. The κ-symmetry generators act as10

{κα(6Pd)α, θβ} = (κ6P )β ⇒ δθα = (6Pκ)α , (2.17)

{κα(6Pd)α, Xm} =
1

2
κ6Pγmθ ⇒ δXm = −1

2
θγm6Pκ , (2.18)

as well as δe = 1
2
θ̇ακα, where we used dα ≈ 0.

Let us fix the κ-symmetry gauge by γ−θ = 0. Then

θ̇γmθ =
1

2
θ̇{γ−, γ+}γmθ =

1

2
θ̇γ+γ−γmθ =

1

2
θ̇γ+γ−γ+θ = θ̇γ+θ , (2.19)

where we used {γm, γn} = 2 ηmn. The action (2.12) with m = 0 becomes

S =

∫ (
PmẊ

m + P+ θ̇γ
+θ + ePmP

m
)
. (2.20)

We can rescale θ to absorb P+ and diagonalize γ+. Then θ’s are 8 free fermions satisfying11

{θA, θB} = 2δAB . (2.21)

9Such gauge symmetry is local. See [8] for the quantization of constrained systems.
10Here Pm in (κ6P )α is a parameter for gauge variation, and should not act on Xm in (2.18).
11The momentum conjugate to θ is proportional to θ.
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Since {, } is the Poisson bracket, we can think of θ’s as four coordinates and four momenta.

Or θ may be regarded as γ-matrices. The wave-function of one-particle state, which

contains 8 bosonic and 8 fermionic degrees of freedom can be written by using θA as

f(X, θ) =

f j(X) + θA(σj)AȦ f
Ȧ(X)

fȦ(X) + θA(σj)AȦ fj(X).
(2.22)

2.1.3 Superstring action

Consider the action of heterotic superstring,

Shet =

∫
dτdσ

(
ΠmΠm + . . .

)
,

Πm = ∂Xm − 1

2
∂θγmθ, Π

m
= ∂̄Xm − 1

2
∂̄θγmθ.

(2.23)

We chose the conformal gauge, and the Virasoro constraints Π2
m = Π

2

m = 0 are imposed.

Note that Πm,Π
m

are invariant under the spacetime supersymmetry (2.11). Additional

terms are needed in the action in order to preserve κ-symmetry and to reproduce the LC

spectrum.

Again, the spacetime supersymmetry shows up with the first-class constraints: the κ-

symmetry. The κ-symmetry transformation on the coordinates (θα, Xm) can be obtained

by replacing Pm with Πm in (2.17) and (2.18),

δθα = (6Πκ)α , δXm = −1

2
θγm6Πκ. (2.24)

It follows that

δΠm = −1

2
∂ (θγm6Πκ) + · · · = −(∂θ)γm6Πκ,

δΠ
m

= −(∂̄θ)γm6Πκ (not 6Π).
(2.25)

The action (2.23) transforms as

δShet = −
∫ (

∂θ6Π6Πκ+ ∂̄θ6Π6Πκ+ . . .
)
. (2.26)

The second term is proportional to Π2
m, which vanishes by the Virasoro constraints. To

cancel the first term, more terms have to be added to the action.

Consider the new action

Shet =

∫ (
ΠmΠm +WmΠm − ΠmWm

)
,

Wm =
1

2
∂θγmθ, Wm =

1

2
∂̄θγmθ.

(2.27)
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This action is invariant under the global spacetime supersymmetry (2.11). We can find it

from

δWmΠ
m − δWmΠm = −1

2

[
∂
(
θγmε ∂̄Xm

)
− ∂̄ (θγmε ∂Xm)

]
+

1

12

[
∂
(
θγmε ∂̄θγmθ

)
− ∂̄ (θγmε ∂θγmθ)

]
− 1

6

[
(∂θγmθ)(∂̄θγ

mε) + (θγm∂̄θ)(∂θγ
mε) + (∂̄θγm∂θ)(θγ

mε)
]
, (2.28)

where the last term vanishes from the Fierz-like identity (A.44). The action is also in-

variant under the κ-symmetry. To see it, consider

δShet =

∫
Πmδ(Π

m −Wm
) + δ(Πm +Wm) Πm + (WmδΠm − δΠmWm). (2.29)

The first term is proportional to 6Π2 = 0. The second term vanishes by the equations of

motion

∂∂̄Xm − ∂Wm
= ∂Π

m
= 0. (2.30)

The last term takes the form similar to (2.28), and vanishes from the Fierz-like identity.

The added term in (2.27) can be interpreted as a B-field. Let us combine bosonic and

fermionic coordinates as ZM = (Xm, θα) ∈ R1,9|16 and write

B = BMN ∂Z
M ∂̄ZN , Bαm = −Bmα = (γm)αβθ

β, Bαβ = Bmn = 0. (2.31)

We write the three-form H = dB by using the “worldvolume” coordinates (τ, σ, ξ) as

H = ∂[PBMN ]∂Z
M ∂̄ZN∂ξZ

P , Sb ≡
∫
dτdσB =

∫
dτdσ

∫ 1

0

dξH,

ZM(τ, σ, ξ = 1) = ZM(τ, σ), ZM(τ, σ, ξ = 0) = 0.

(2.32)

The two-form B has gauge symmetry12

δBMN = ∂[MΛN ] , δSb =

∫
∂(Λ∂̄Z)− ∂̄(Λ∂Z). (2.33)

By using the gauge degrees of freedom one choose H such that Hαβm = (γm)αβ are the

only non-vanishing components. H becomes manifestly spacetime supersymmetric if we

replace ∂Zm to Πm. The κ-symmetry variation is

δH = γmαβ δ
(
Πm ∂̄θα ∂ξθ

β
)

+ (cyclic),

= −(∂θγm)6Πκ(∂̄θγm∂ξθ) + ∂̄(κ6Π) 6Π ∂ξθ + ∂̄θ 6Π ∂ξ(6Πκ) + (cyclic).
(2.34)

The first term vanishes from the Fierz-like identity if the cyclic permutations are added,

and the remaining terms vanish from 6Π2 = 0.

12The chain rule ∂Λ = ∂ZM∂MΛ is used.
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For type II superstring, we double the fermionic coordinates,

Πm = ∂Xm − 1

2
∂θγmθ − 1

2
∂θ̄γmθ̄, Π

m
= ∂̄Xm − 1

2
∂̄θγmθ − 1

2
∂̄θ̄γmθ̄, (2.35)

Wm =
1

2

(
∂θγmθ − ∂θ̄γmθ̄

)
, W

m
=

1

2

(
∂̄θγmθ − ∂̄θ̄γmθ̄

)
. (2.36)

The action in (2.27) now takes the form:

SII =

∫ (
ΠmΠm +Wm Πm −Wm

Πm +
1

4

(
∂θγmθ ∂̄θ̄γmθ̄ − ∂̄θγmθ ∂θ̄γmθ̄

))
. (2.37)

This action is invariant under a pair of κ-symmetry transformations,

δθα = (6Πκ)α , δθ̄α̂ = 0, δXm = −1

2
θγm6Πκ, (2.38)

δ̄θα = 0 , δ̄θ̄α̂ = (6Πκ)α̂, δ̄Xm = −1

2
θ̄γm6Πκ. (2.39)

The type IIB action has the symmetry θ ↔ θ̄ and z ↔ z̄. In type IIA θ, θ̄ have the

opposite chirality. By using ZM = (Xm, θα, θ̄α̂) ∈ R1,9|32 in type IIB, we get

Bαβ̂ = (γm)αγθ
γ(γm)β̂γ̂ θ̄

γ̂, Hαβm = (γm)αβ, Hα̂β̂m = −(γm)α̂β̂ . (2.40)

In the LC gauge γ−θ = γ−θ̄ = 0, the IIB action becomes

SII =

∫ {
∂Xm∂̄Xm − (θγ+∂̄θ)∂X+ − (θ̄γ+∂θ̄)∂̄X+ + . . .

}
, (2.41)

where . . . are the terms higher order in θ, θ̄.

2.2 Lecture 4

We continue the discussion on GS. The action is

S =

∫
d2z
(
ΠmΠm +B

)
. (2.42)

For type II, the equation (2.37) reads

Πm = ∂Xm − 1

2
∂θγmθ − 1

2
∂θ̄γmθ̄, Πm = ∂̄Xm − 1

2
∂̄θγmθ − 1

2
∂̄θ̄γmθ̄, (2.43)

B = −1

2
∂Xm

(
∂̄θγmθ − ∂̄θ̄γmθ̄

)
+

1

4

(
∂θ̄γmθ̄

) (
∂̄θγmθ

)
−
(
∂ ↔ ∂̄

)
. (2.44)

The second term can be written as
∫
d2zB =

∫
d3zH, where

H = dB = γαβm ∂[1θ
α∂2θ

β∂3]X
m − γα̂β̂m ∂[1θ̄

α̂∂2θ̄
β̂∂3]X

m + . . .

≡ HABC ∂Z
A∂ZB∂ZC .

(2.45)
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For open superstring, we impose the boundary conditions such as

D9-brane

∂Xm = ∂̄Xm
∣∣
z=z̄

θα = θ̄α
∣∣
z=z̄

(2.46)

D7-brane


∂Xm = ∂̄Xm

∣∣
z=z̄

m = 0, 1, . . . 7

∂Xm = −∂̄Xm
∣∣
z=z̄

m = 8, 9

θα =
(
iγ89θ̄

)α ∣∣
z=z̄

(2.47)

Note that iγ89 has the eigenvalues ±1. The D7-brane boundary conditions can also be

written as

γ89 6 Π̄ θ = 6Π θ̄ ←


Πm = Π̄m

∣∣
z=z̄

m = 0, 1, . . . 7

Πm = −Π̄m
∣∣
z=z̄

m = 8, 9

θα =
(
iγ89θ̄

)α ∣∣
z=z̄

(2.48)

Massless vertex operators can be constructed by the marginal deformation of the

action. For gluons and gluinos, we deform the action by the boundary term as

S → S + e

∫
dz AM(x, θ)∂ZM ,

= S + e

∫
dz
(
Am(x)∂Xm + Fmn(x) (θγmnpθ) ∂Xp + . . .

)
.

(2.49)

In RNS formalism, we had V = Am∂X
m for bosonic string and V = Am∂X

m +Fmnψ
mψn

for superstring. Thus, pαθ
α roughly corresponds to ψmψn, which can be seen from

pα ≡ (γmθ)α∂X
m, {θα, pβ} = δαβ ←→ {ψm, ψn} = δmn . (2.50)

2.2.1 Curved backgrounds

In curved backgrounds, we replace (2.42) by

S =

∫
d2z
(
ηab ΠaΠ

b
+B

)
,

Πa = Ea
M ∂ZM , Π

a
= Ea

N ∂̄Z
N , B = BMN ∂Z

M ∂̄ZN .

(2.51)

where Ea
M is a super-vielbein. In the flat space it reduces to Ea

m = δam and Ea
α = (γa)αβθ

β.

The action (2.51) is not κ-invariant unless the background spacetime solves the equations

of motion. Nor is it supersymmetric in spacetime unless the Killing spinor exists.
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We expand the first term of (2.51) in θ, θ̄ and obtain component fields. The on-shell

degrees of freedom for type IIB are13

Gmn = gmn + (θγm)α χ
α
n + (θ̄γn)β̂ χ̂

α̂
n + (θγm)α(θ̄γn)β̂ f

αβ̂ + . . . ,

Gαβ = (θγm)α(θγn)β gmn + . . . ,

Gαβ̂ = (θγm)α(θ̄γn)β̂ gmn + . . . ,

(2.52)

with14

gmn = ηabE
a
mE

b
n , fαβ̂ = Fa (γa)αβ̂ + Fabc (γabc)αβ̂ + Fabcde (γabcde)αβ̂. (2.53)

Here Fa , Fabc , Fabcde are RR fields, which come from the odd number of θ’s and the

odd number of θ̄’s. From this result, one can read off the massless vertex operators

corresponding to each field. We can do the same computation for the second term of

(2.51),

Bmn = bmn + (θγm)α(θ̄γn)β̂ f̃
αβ̂, . . . . (2.54)

Compare the GS action (2.51) with the bosonic part of RNS,

S =

∫ [
gmn∂X

m∂̄Xn + bmn∂X
m∂̄Xn + α′ϕR

]
. (2.55)

One finds that the dilaton term is missing in GS action. In general, the classical κ

symmetry imposes the (generalized) supergravity equations of motion on G and B, but

does not fix the dilaton coupling. Weyl symmetry may be broken as in non-critical strings.

2.2.2 AdS5 × S5

In the flat spacetime, superstring possesses super-Poincaré symmetry containing so(1, 9)

satisfying

{qα , qβ} = (γm)αβ pm , {q̄α̂ , q̄β̂} = (γm)α̂β̂ pm , (2.56)

which leads to the symmetry

δθα = εα, δθ̄α̂ = ε̄α̂, δxm = εγmθ + ε̄γmθ̄. (2.57)

In AdS5 × S5, superstring has the psu(2, 2|4) symmetry containing su(2, 2) × su(4) '
so(2, 4)× so(6). The generators can be represented as a 32× 32 matrix

Generators ∼
(

15B 16F

16′F 15B

)
,

(
su(2, 2)

su(4)

)
. (2.58)

13It is straightforward but tedious to relate each component field to the dynamical degrees of freedom,

because one needs to solve the equations of motion. At the leading order in θ, one can square the degrees

of freedom of super Yang-Mills in 10 dimensions. We discuss more details in Section 3.
14The γ matrix with mixed indices (γa)αβ̂ does not exist in the flat space.
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A a â [ab] [âb̂] α α̂

Range 0 ∼ 4 5 ∼ 9 dim = 10 dim = 10 dim = 16 dim = 16

Direction AdS5 S5 SO(1, 4) SO(5) Fermionic Fermionic

Table 1: The values of A. The generators M[AB] of SO(6) decompose into {M[ab] ,M[a6]}
of SO(5), where A,B = 1, . . . , 6 and a, b = 1, . . . , 5.

Let us denote the 16F generators by q̄JK , and 16′F by qK̄ J̄ , K = 1, . . . 4 and K̄ = 1̄, . . . , 4̄.

They satisfy

{qK̄ J̄ , q̄JK} = RK̄
K δ

J
J̄ +RJ

J̄ δ
K̄
K (2.59)

where RK̄
K , R

J
J̄ are some bosonic generators.

The AdS5 × S5 action can be written by super-vielbein describing a supercoset,

AdS5 =
SO(2, 4)

SO(1, 4)
, S5 =

SO(6)

SO(5)
, g(x, θ, θ̄) ∈ PSU(2, 2|4)

SO(1, 4)× SO(5)
. (2.60)

The supercoset has 10 bosonic and 32 fermionic variables. The group element g is defined

modulo g ∼ gh with h ∈ SO(1, 4) × SO(5), and Σ ∈ PSU(2, 2|4) acts by g → Σg. The

1-form currents are defined by

JA =
(
g−1∂g

)A
, J̄A =

(
g−1∂̄g

)A
, (2.61)

The label A takes the values of (2.58), which is summarized in Table 1. Under the gauge

transformation g → gh, the 1-form behaves as J → h−1Jh+ h−1∂h.

JA →
{

(h−1Jh+ h−1∂h)A A = [ab], [âb̂]

(h−1Jh)A otherwise
. (2.62)

The group and coset elements can be parametrized as

g = exp
(
xaP a + x̄âP̄ â + θαQα + θ̄α̂Q̄α̂

)
, h = h[ab]M[ab] + ĥ[âb̂]M̂[âb̂] . (2.63)

We define the super-vielbein as

Πa = Ja = (g−1∂Mg)a∂ZM ⇔ Ea
M = (g−1∂Mg)a, (2.64)

and similarly for Πâ. The three-form H = dB is

HABC = ∇[ABBC] + T[AB
DBC]D , (2.65)

where TAB
C is the super-torsion,[

∇A,∇B

]
= RABC

DMC
D + TAB

C∇C . (2.66)
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In the flat background, we have

Tαβ
m = (γm)αβ , Tα̂β̂m = (γm)α̂β̂ , (2.67)

which is required by supersymmetry {Qα, Qβ} = (γm)αβ ∂m , and15

HABC = TABC . (2.68)

The other components of the torsion tensor vanish.

In AdS5 × S5, the torsion tensor has other non-vanishing components,[
∇α , ∂m

]
= Tαm

β̂∇β̂ , Tαm
β̂ = (γm)αγ

δγβ̂

RAdS

, δγβ̂ ≡ (γ01234)γβ̂ , (2.69)

where RAdS is the radius of AdS5 and S5. The powers of RAdS are introduced to express

that Tαm
β̂ has the mass dimension one.16 The new torsion appears for the following

reason. Let us organize the supersymmetry charges

qα + iq̄α̂ → qKJ , qα − iq̄α̂ → q̄JK . (2.70)

Then q, q̄ commute in the flat background, but {q, q̄} 6= 0 from (2.59) in AdS5 × S5. In

other words, R-R or NS-NS fluxes are related to the torsion. For R-R

fαβ̂ = (γabcde)αβ̂ 6= 0, (2.71)

and for NS-NS

Hαβb = ∇[αBβb] + Tαβ
aBab + Tαb

α̂Bα̂β 6= 0, (2.72)

as well as Hα̂β̂b 6= 0. Other components of H are zero, so (2.68) is not satisfied in

AdS5 × S5.17 In the flat background, a constant and Lorentz-covariant B-field does not

solve the equation (2.68). In AdS5 × S5, a constant and psu(2, 2|4)-covariant B-field can

solve (2.72) as,

B ∝ δαβ̂

(
JαJ̄ β̂ − J̄αJ β̂

)
. (2.73)

From (2.51), the GS action on AdS5 × S5 becomes

S =

∫
d2z
(
ηab J

aJ̄ b + κ δαβ̂

(
JαJ̄ β̂ − J̄αJ β̂

))
, (2.74)

The coefficient κ can be fixed by sugra equations of motion, or by the κ-symmetry.

We do not know how to covariantly quantize the GS action. Neither we know how to

construct massive vertex operators in a psu(2, 2|4)-covariant way. Massless vertex opera-

tors can be obtained by the deformation of the action, which correspond to supergravity

states, dilaton mode and β-deformations.

15See (A.34) for an explanation of (2.68).
16The mass dimension of torsion components is given by (the dimensions of lower indices) − (the

dimensions of upper indices).
17Here is an intuitive argument for HAB

C 6= TAB
C . The indices of H can be raised by δγβ̂/RAdS ,

which is the unique dimensionful quantity. However, RAdS should measure the strength of R-R flux, not

NS-NS.
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3 Pure spinor superstring

3.1 Lecture 5

3.1.1 Superparticle action

Let Xm, θα be ten bosonic and sixteen fermionic coordinates, m = 0, . . . , 9 and α =

1, . . . , 16. The Brink-Schwarz action for a massless superparticle (m = 0 in (2.12)) is

S =

∫
dτ

(
Pm

(
Ẋm − 1

2
θγmθ̇

)
+ ePmPm

)
. (3.1)

Its covariant quantization using Dirac brackets ends up with solving eight first-class and

eight second class constraints, 10− 2 = 16− 8.

The PS action for a massless superparticle is

S =

∫
dτ
(
PmẊ

m + pαθ̇
α + ωαλ̇

α + ePmPm + ẽ λγmλ
)
. (3.2)

The pairs (pα, θ
α) are 16 worldsheet fermions in the Majorana-Weyl representations of

SO(1, 9). The pairs (ωα, λ
α) are 16 worldsheet bosons in the complex Weyl representations

of SO(1, 9).

The last term of (3.2) is the PS condition, which removes 5 complex bosons from λα.

In addition, another 5 complex bosons of ωα are redundant, because the action is invariant

under the gauge transformation

δωα = Λm(γmλ)α . (3.3)

Let us count the degrees of freedom in detail. We perform Wick rotation to SO(10)

and take a U(5)-covariant basis, λα → λs1,s2,s3,s4,s5 with sk = ±1. Here λs1,s2,s3,s4,s5 are

created or annihilated by γk,− ≡ (γ2k−1 ± iγ2k) as

γk,− λ
s1,s2,s3,s4,s5 ∼ (1∓ sk)λs1,s2,s3,s4,s5 . (3.4)

See Appendix A.3 for details. The 32 components of λs1,s2,s3,s4,s5 split into those with an

even or odd number of −’s. Each group has a definite chirality according to (3.4).

Suppose a chiral fermion has an even number of −’s. We start from λ+++++ 6= 0 and

generate the other 15 components by applying γk,− repeatedly. There are 10 components

like λ+++−−, and 5 components like λ+−−−−, which corresponds to 16 = 1⊕10⊕5 under

SO(10)→ U(5). We can write

λ+ = λ+++++, λab = uab λ
+, λa = −ε

abcde

8

λbcλde
λ+

(a = 1, . . . , 5), (3.5)

which will be explained in Appendix A.3. Here uab = −uba are the harmonic variables of

the coset SO(10)/U(5), and the λ+ fixes the overall scale.18 Thus

dimC

(
SO(10)

U(5)
× C

)
= 11. (3.6)

18The generators of so(10) can be written as {tba, u[ab], v[ab]}, where {tba} generate u(5).
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Similarly, an eight-dimensional PS has seven components from dimC

(
SO(8)
U(4)

× C
)

.

By analogy with the Brink-Schwarz action, let us introduce

dα ≡ pα +
1

2
(6Pθ)α , Q ≡ λαdα , (3.7)

and interpret Q as the BRST charge. Q is nilpotent owing to the PS condition,

{Q,Q} = λαλβ 6Pαβ = 0. (3.8)

In GS, we removed extra spacetime fermions by the LC gauge. In PS, we gauge them

away by putting the gauge variation parameters λα on the curved background.

Roughly speaking, the BRST quantization of the Brink-Schwarz particle action gives

the PS particle action. Both actions lead to the spectrum of a supersymmetric gauge

theory in ten-dimensions. This is a surprising fact, because the gauge theory shows up

from the particle action without gauge fields, thanks to supersymmetry. This gauge

symmetry is abelian.19 It is not known if one can obtain non-abelian gauge theories or

N = 1, d = 10 supergravity from a particle action.

The equivalence between (3.1) and (3.2) can be shown in the LC gauge [9]. One can also

compute the BRST cohomology to see that it agrees with the spectrum of supersymmetric

gauge theory in ten-dimensions [10]. However, the computation of cohomology is tedious.

Below we introduce gauge fields in superspace from the beginning and discuss the BRST

cohomology.

3.1.2 Gauge theory in superspace

Define

∇m = ∂m + Am(X, θ), ∇α = Dα + Aα(X, θ), Dα =
∂

∂θα
+

1

2
(γmθ)α

∂

∂Xm
, (3.9)

where Am, Aα are ten-dimensional on-shell superfields,20 and Dα is the covariant super-

derivative satisfying

{Dα , Dβ} = (γm)αβ
∂

∂Xm
, (3.10)

and ∇α satisfies

{∇α ,∇β} = (γm)αβ∇m + Fαβ , Fαβ = DαAβ +DβAα − (γm)αβ Am . (3.11)

Notice the similarity between Dα and dα in (3.7).

A symmetric bispinor in d = 10 can be decomposed into the direct sum of 1-form and

5-form,

Fαβ = Fm(γm)αβ + Fmnpqr(γ
mnpqr)αβ . (3.12)

19In non-abelian gauge theories, the nilpotency condition (3.8) should become {Q+ V,Q+ V } = 0.
20For partially off-shell formulation, see [11].
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We should impose

Fαβ = DαAβ +DβAα − (γm)αβ Am = 0, (3.13)

to describe gauge theory, which has 2-form field strength only. The residual gauge trans-

formation is

δAm = ∂mΩ, δAα = DαΩ. (3.14)

Let us expand ten-dimensional superfields into components as

Ω = f + gα θ
α + hαβ θ

αθβ + . . . ,

Aα = aα + aαβ θ
β + aαβγ θ

βθγ + . . . ,

Am = am + amα θ
α + . . . .

(3.15)

The gauge transformation δAα = ga + gαβ θ
β + . . . removes aα and anti-symmetric part

of aαβ . The symmetric part of aαβ is determined by Fαβ = 0 as

aαβ + aβα = (γm)αβ am ⇒ aαβ(γmnpqr)αβ = 0. (3.16)

In this way, we obtain all on-shell degrees of freedom in d = 10 super Maxwell or super

Yang-Mills.

We also define

[∇a ,∇m] = Fαm , [∇m ,∇n] = Fmn , (3.17)

and impose the Bianchi identity

[{∇(α ,∇β},∇γ)] = −(γm)(αβFγ)m = 0, (3.18)

where we used Fαβ = 0. From (A.44), we write a solution of this identity as

Fαm = (γm)αβW
β ⇒ Wα =

1

10
(γm)αβFβm =

1

10
(γm)αβ (∂mAβ −DβAm) . (3.19)

The Bianchi identity with (m,n, α) gives21

∇αFmn +∇m(γnW )α −∇n(γmW )α = 0, (3.20)

and the Bianchi identity with (α, β,m) is

{∇α, [∇β,∇m]} − {∇β, [∇m,∇α]}+ [∇m, {∇α,∇β}] = 0

⇒ ∇α (γmW )β +∇β(γmW )α − (γn)αβFmn = 0.
(3.21)

Multiplying the last equation by (γm)εα we find

(γm)εα∇αW
δ(γm)δβ + 10∇βW

ε − (γmn)εβFmn = 0. (3.22)

We take the ansatz ∇αW
β = x δα

β + y (γpq)βαFpq . Using (A.38), we get

∇αW
β =

1

4
(γmn)βαFmn . (3.23)

21We use the notation ∇αFmn = DαFmn+[Aα, Fmn], and similarly for ∇mWα. The commutator term

vanishes in super-Maxwell theories.
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3.2 Lecture 6

3.2.1 BRST cohomology of superparticles

We rederive the spectrum of super-Maxwell in PS formalism as the cohomology of the

BRST operator,

Q = λαdα, dα = pα +
1

2
(γmθ)αPm . (3.24)

The nilpotency Q2 = 0 follows from the PS condition on λα. Here dα is the worldline

version of the supercovariant derivative (3.9), and the gauge parameters λα parametrize

the curved space SO(10)
U(5)

× C.22

We assign the ghost number +1 to the pure spinor λα and BRST operator Q, so that

J = ωαλ
α is the ghost number current. For super-Maxwell theory, we assign the ghost

number +1 to the photon vertex operator V = λαAα(X, θ) and require that V belongs to

the cohomology of Q,

QV = 0. (3.25)

In addition, we impose gauge symmetry. The gauge transformation should be written

as δV = QΩ for some Ω(X, θ) having zero ghost number. Since dαΩ = DαΩ for super-

particles, we find

δV = QΩ = λαDαΩ ⇒ δAα = DαΩ. (3.26)

The condition QV = 0 gives

0 = λαDα

(
λβAβ

)
= λαλβD(αAβ)

=
1

16

{
(λγmλ) (γm)αβ + (λγm1...m5λ) (γm1...m5)

αβ
}
DαAβ ,

(3.27)

where we used an identity for a symmetric bispinor λ(αλβ); see (A.39).

The first term of (3.27) vanishes due to the PS condition, so

(γm1...m5)
αβDαAβ = 0. (3.28)

Since (γm)αβ(γnpqrs)
αβ = 0, from (3.13) we can write

Am =
1

8
(γm)αβDαAβ . (3.29)

For non-Abelian gauge symmetry (SYM), we modify (3.25) to QV + [V, V ] = 0. The

gluon vertex operator now contains Chern-Paton factor, V I = λαAIα. See [12] for the

non-Abelian case.

The (massless) spectrum depends on the ghost number of V . If V has the ghost

number zero, then QV = 0 gives DαV = 0. Therefore V is constant. If V has the ghost

number two, we get

V = λαλβBαβ(X, θ), δBαβ = DαΩβ . (3.30)

22The BRST cohomology would be trivial if λα lived in the flat space, since Q reduces to a linear

combination of ∂
∂θα at zero momentum Pm = 0.
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It means that one can get rid of 1-form by gauge transformation. Let us choose the gauge

(γm)αβB
αβ = 0. Actually Bαβ is an anti-field of SYM in BV formalism, giving the same

spectrum as SYM. The superfield and anti-superfield are related by

Aα = am︸︷︷︸
gluon

(γmθ)α + (χγmθ︸ ︷︷ ︸
gluino

)(γmθ)α + . . . ,

Bαβ = ( χ∗γmnθ︸ ︷︷ ︸
anti−gluino

) (γmθ)α(γnθ)β + a∗m︸︷︷︸
anti−gluon

(γmθ)α(γnθ)β(θγnθ) + . . . .
(3.31)

The role of the equations of motion and gauge transformations is interchanged between

fields and anti-fields. The gluon and gluino obey

∂m∂[man] = 0, ∂m(γmχ) = 0, δam = ∂mΛ, (3.32)

while the anti-fields obey

δa∗m = ∂n∂[nΛ∗m], δχ∗α = ∂m(γmκ)α, ∂ma∗m = 0, (3.33)

where κ is another gauge transformation parameter. In BV formalism, the BRST coho-

mology has the duality of flipping the ghost number.

If V has the ghost number three, we write

V = λαλβλγ Cαβγ(X, θ), QV = 0, δCαβγ = DαΩβγ . (3.34)

Since (λγmθ) is BRST exact at zero-momentum, we rewrite

V = (λγmθ)(λγnθ)(λγpθ) Cmnp(X, θ). (3.35)

The 3-form Cmnp is related to an anti-symmetric bispinor by Cmnp(γmnp)αβ ≡ Cαβ , and

the gauge transformation of (3.34) precisely removes this degree of freedom. Thus V is a

constant,

V = (λγmθ)(λγnθ)(λγpθ) (θγmnpθ) ∼ O(λ3θ5). (3.36)

This term itself cannot be BRST exact, because the Lorentz-invariant combination of

O(λ2θ6) is annihilated by Q,23

Qα ·
{

(λγmθ)(λγnθ)(θγmpqθ)(θγnpqθ)
}

= 0. (3.37)

There is no vertex operator with #gh(V ) < 0. We need ωα to create such states, but

ωα is not gauge invariant. The vertex operator with #gh(V ) ≥ 4 contains λαλβλγλδ, and

such an operator does not contribute to the (perturbative) string amplitudes.24

The BRST cohomology of an open bosonic string (in RNS) can be studied similarly.

The BRST operator is

Q =

∫ (
c ∂X∂̄X + bc ∂c

)
. (3.38)

23Recall (γmnp)αβ = −(γmnp)βα and that λ’s are bosons and θ’s are fermions on the worldsheet.
24See Footnote 29 for further discussion.
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In the sector of the ghost number #gh = 0, 1, 2, 3, one finds the states

1, c ∂XmAm(X), c ∂c ∂XmA∗m(X), c ∂c ∂2c. (3.39)

Here A∗m is the anti-field of Am . The spectrum is invariant under #gh → 3−#gh . It is not

possible to find a non-trivial state with the ghost number three, becauseW = c ∂c ∂2cf(X)

is BRST exact:

{Q, c ∂2cf(X)} = c ∂c ∂2cf(X). (3.40)

Let us return to the superparticle case. Massive vertex operators can be found in the

sector with the same ghost number as the massless vertex operators. In super-Maxwell

or SYM, the first massive vertex operator has one derivative as

Vmassive = λα
{
∂XmBmα(X, θ) + ∂θβBαβ(X, θ)

}
. (3.41)

In open superstring, the first massive vertex operators have the conformal weight one

[13],25

Vmassive =

{
c ∂Xm∂XnBmn(X) (#gh = 1),

c ∂c ∂Xm∂XnB∗mn(X) (#gh = 2).
(3.42)

3.2.2 Heterotic superstring in PS

The PS formalism can be generalized from superparticles to superstrings. The action for

the heterotic (or open) superstring is

S =

∫
d2z
(1

2
∂Xm∂̄Xm + pα∂̄θ

α − ωα∂̄λα
)
. (3.43)

The pairs (pα, θ
α) are the free fermionic bc system on the worldsheet with conformal

dimensions (1, 0), describing 16 spacetime fermions. The pairs (ωα, λ
α) are the curved

βγ system on the worldsheet with conformal dimensions (1, 0), describing 11 spacetime

bosons.26 The (classical) energy-momentum tensor T is

T = −1

2
∂Xm∂Xm︸ ︷︷ ︸

10

− pα∂θα︸ ︷︷ ︸
−32

−ωα∂λα︸ ︷︷ ︸
22

= −1

2
ΠmΠm − dα∂θα − ωα∂λα , (3.44)

where the numbers indicate the central charges, explained in Appendix A.1.

The BRST charge is27

Q =

∫
dz λαdα , dα = pα −

1

2
∂Xm(γmθ)α +

1

8
(γmθ)α(∂θγmθ). (3.45)

25Recall that the conformal weight of c is −1, and that of ∂ is +1.
26We flipped the sign in front of ωα∂̄λ

α for later purposes.
27The sign of the second term of dα is flipped owing to the OPE Xm(z, z̄)Xn(0) ∼ −ηmn log |z|2. Also,

the symbol for normal-ordering will be omitted.
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The last term did not appear in the super-particle case, because the equations of motion

read θ̇ = 0. This dα satisfies28

{dα , dβ} = −(γm)αβ Πm , [dα ,Π
m] = −(γ∂θ)α , Πm = ∂Xm − 1

2
∂θγmθ. (3.46)

The integrated massless vertex operator (without the plane-wave factor eikX) is

V = λαAα(x, θ), (3.47)

= am (λγmθ)α + (χγmθ)(λγ
mθ) + ∂man(λγpθ)(θγmnpθ) + . . . .

with QV = 0. The components at higher orders in θ are determined by the lower-order

terms through the equations of motion. Below we compute the tree-level amplitude of

superstrings. We will not discuss loop amplitudes in this lecture.

3.2.3 Tree-level amplitudes

Consider the 3-point amplitude on a disk 〈V1V2V3〉. In the bosonic case, we normalize the

vev as 〈c ∂c ∂2c〉 = 1. In supersymmetric case, we normalize

〈Vθ〉 = 1, Vθ = (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) ∼ λ3θ5, (3.48)

because Vθ is BRST trivial as shown in (3.34). Therefore, the amplitude 〈V1V2V3〉 can be

computed by picking up the term O(λ3θ5) after the substitution of (3.47).29

We find

〈V1V2V3〉 = am1 a
n
2 ∂m(a3)n + χα1 (6 a2)αβ χ

β
3 + (cyclic), (3.49)

which is the standard 3-point interaction of ten-dimensional SYM.

The 4-point amplitude is given by

〈V1(z1)V2(z2)V3(z3)

∫
∂Σ

dz4U(z4)〉, V = λαAα , QU = ∂V, (3.50)

where we integrate over the boundary of the disk (Figure 2). The integrations over

the interval [z1, z2], [z2, z3], [z3, z1] correspond to different channels in gauge theory, which

guarantees the crossing symmetry of the 4pt amplitude.

The unintegrated massless vertex operator U is given by

U = ∂θαAα + ΠmAm + dαW
α +

1

2
NmnF

mn , Nmn =
1

2
ωγmnλ, (3.51)

28The notation {A,B} = C or [A,B] = C means Res
z=0

A(z)B(0) = C(0).
29Another explanation goes as follows. The 11 zero modes of λ cancel out part of 16 zero modes of θ,

leaving θ5 behind. To explain λ3, notice that the ghost current J = ωλ has the ghost number anomaly

of (−8). This can be cancelled by the 11-dimensional integral of PS zero mode, giving 11− 8 = 3 [14].
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z1

z2

z3

z4

Figure 2: 4-point functions on a disk.

up to BRST-exact terms. Here Am(X, θ) is an on-shell vector superfield, Nmn are the

SO(1, 9) generators, Fmn and Wα are the field strengths defined in (3.17) and (3.19). The

equations of motion (3.29) and the Bianchi identity (3.23) imply that

Am = (γm)αβDαAβ , ∇αW
β =

1

4
(γmn)βαFmn . (3.52)

The component at O(θ0) is30

U
∣∣∣
θ=0

= am∂X
m + ∂[man]

[1

2
ωγmnλ+

1

2
pγmnθ

]
. (3.53)

In bosonic string theory, we have V = cAm∂X
m and U = Am∂X

m, which agrees with

the bosonic part of (3.53).

One can check QU = ∂V by using the OPE which follow from (3.43). More explicitly,

we have

∂(λαAα) = λα∂mAα∂X
m︸ ︷︷ ︸

(1)

+λα∂βAα∂θ
β︸ ︷︷ ︸

(2)

+ ∂λαAα︸ ︷︷ ︸
(3)

, (3.54)

which should match

QU = − (λβDβAα)∂θα︸ ︷︷ ︸
(2)

+ ∂λαAα︸ ︷︷ ︸
(3)

+ (λβDβAm)Πm︸ ︷︷ ︸
(1)

+Am(λγm∂θ)︸ ︷︷ ︸
(2)

− (λβDβW
α)dα︸ ︷︷ ︸

(4)

− (6Πλ)αW
α︸ ︷︷ ︸

(1)

+
1

2
(λβDβF

mn)Nmn +
1

4
(γmnλ)αdαF

mn︸ ︷︷ ︸
(4)

.
(3.55)

term by term. From the equations of motion in Section 3.1.2 and PS constraint, we find

QU − ∂V = λβ {DβAm −Wα(γm)αβ}Πm − λα∂mAα∂Xm

− λβ {DβAα − Am(γm)αβ + ∂αAβ} ∂θα

− λβ
{
DβW

α − 1

4
(γmn)αβF

mn

}
dα +

1

2
ωα(γmn)αγλ

γλβDβFmn

= 0.

(3.56)

30The last term comes from dαW
α, where Wα

∣∣∣
θ=0

is gauge degrees of freedom.
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The identity (γmn)αγλ
γλβDβFmn = 0 can be seen by multiplying λαλγDγ to the abelian

version of (3.23).

The unintegrated vertex operator in RNS formalism is given by (1.32)

U
∣∣∣
θ=0

= ∂Xmam + ψmψn∂[man] . (3.57)

Here Mmn = ψmψn is the Lorentz current. This is also the generator of level k = 1

Kac-Moody algebra,

JA(y)JB(z) ∼ α′k δAB

(y − z)2
+
fABCJC

y − z , (3.58)

because

MmnMpq ∼ η(mqηnp)

(y − z)2
+
Mmq ηnp

y − z + (cyclic). (3.59)

BY comparing (3.57) and (3.53), one identifies

Mmn ↔ M̂mn ≡ 1

2
ωγmnλ+

1

2
pγmnθ. (3.60)

The first term on RHS has level -3, and the second term has level 4. Thus M̂mn has level

1, as expected.

It is straightforward to compute n-point tree-level super-amplitude in PS formalism.

In RNS, the computation becomes harder as the number of gluinos increases:

# (gluinos) 0 2 4 6 8

Complexity simple doable hard PhD thesis No results

In GS formalism, conformal gauge is troublesome due to the kinetic term of fermions.

In the LC gauge, we need to introduce branch points to compute general n-point am-

plitudes. The computation gets quickly involved since the roots of polynomials of order

(n− 2) appear.

3.3 Lecture 7

3.3.1 Closed superstring in PS

We discuss massless vertex operators for type II closed superstring, which describe ten-

dimensional type II supergravity.

We review PS superstring for type II in the flat background, generalizing the case of

open string in Section 3.2.2. The action is

S =

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α − ωα∂̄λα + p̄α̂∂θ̂
α̂ − ω̂α̂∂λ̂α̂

)
. (3.61)
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The holomorphic part of the BRST charge is given by (3.45). The unintegrated vertex

operator is

V = λαλ̂α̂Aαα̂(x, θ), QV = Q̄V = 0, (3.62)

where

Aαα̂ = (gmn + bmn + ϕηmn) (γmθ)α(γnθ̂)α̂

+ ξβ̂m (γmθ)α θ̂α̂θ̂β̂ + ξβm θαθβ (γmθ̂)α̂ + F ββ̂ θαθβ θ̂α̂θ̂β̂ + . . . . (3.63)

This generalizes the vertex operator of bosonic string,

V = cc̄ ∂Xm∂̄Xn (gmn + bmn + ϕηmn) . (3.64)

The integrated vertex operator satisfies QU = ∂V and Q̄U = ∂̄V , which gives

U = AαÂβ̂ ∂θ
α∂̄θ̂β̂ + AαĀm ∂θ

αΠm + AmÂα̂ Πm∂̄θ̂α̂ + AmĀn ΠmΠ̄n

+WαŴ α̂dαd̂α +
1

4
FmnF̄ pqNmnN̄pq + . . . (3.65)

To compute the tree-amplitude, we normalize the states by 〈λ3θ5λ̂3θ̂5〉 = 1.

In general, the closed string vertex operator is the “square” of the open string vertex

operators, because the BRST charges Q and Q̂ do not interact each other. If AL ,AR are

in the cohomology of QL , QR, respectively, then ALR ≡ ALAR is in the cohomology of

QLR ≡ QL +QR.

The equation (3.65) is roughly equivalent to

U ∼ (GMN +BMN) ∂ZM ∂̄ZN + (FRR)αβ̂dαd̂β̂ + (R + ∂H)mnpqNmnN̄pq , (3.66)

where ZM = (Xm, θα, θ̂α̂) ∈ R1,9|32, FRR is the RR flux, and Rmnpq is the Riemann tensor.

The GSO projection is manifest in (3.66) if we assign F = +1 to the worldsheet fermions

with upper index (θα), and F = −1 to those with lower index (dα). There are gauge

degrees of freedom coming from the super-Poincaré rotation and gauge symmetry of B,

which can be fixed by

0 = Gαβ = Gα̂β̂ = Bαβ = Bα̂β̂ . (3.67)

This gauge choice is also consistent from the spectrum of ten-dimensional supergravity in

the flat spacetime. We have −Gαβ̂ = Gβ̂α = Bαβ̂ = Bβ̂α . The combination
(
Gαβ̂ +Bαβ̂

)
never appears because the equations of motion tell ∂θ̂ = ∂̄θ = 0.

The field Aα of open string satisfies the equations of motion (3.28) and (3.29). In

closed string, we have31

0 = DαAβα̂ (γmnpqr)αβ = D̄α̂Âαβ̂ (γmnpqr)α̂β̂ , DαAβα̂ +DβAαâ = (γm)αβGmα̂ , (3.68)

31Here Aβα̂ = Aβ Âα̂ and Gmα̂ = AmÂα.
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in the gauge choice (3.67).

Recall that the constant dilaton does not appear in GS action, since it is not known

how to incorporate the α′ corrections without breaking κ symmetry. In PS, we can add

the dilaton to (3.66) by modifying (R + ∂H) to (R + ∂H + α′Φ r).32 At the non-linear

level, gmn and ϕ in (3.63) mix as Gmn = gmn e
ϕ0 + θ2∂ϕ.

The NS vertex operator in RNS was given by (1.23),

U =

∫
d2κ
(
gmn(X) + bmn(X)

)
DXmD̄Xn,

= (gmn + bmn) ∂Xm∂̄Xn + Ωpmn∂X
pψ̄mψn + (Rmnpq + ∂mHnpq)ψ

mψnψ̄pψ̄q,

(3.69)

which looks very similar to U in (3.66).

3.3.2 The b ghost

We introduce b ghost as the solution of

{Q, b} = T, (3.70)

where T is the chiral energy-momentum tensor given by (3.44),

T = −1

2
ΠmΠm − dα∂θα − ωα∂λα . (3.71)

We may add a total derivative ∼ ∂2 log(λ̄λ) as α′ corrections. To obtain b, consider

{Q, dα} = −(6Πλ)α

{Q, λ̄6Πd} = −λ̄{Q,6Π}d− λ̄6Π6Πλ = −(λ̄γmd) (λγm∂θ)− ΠmΠm(λ̄λ)

{Q,ω∂θ} = ω∂λ+ d∂θ,

(3.72)

where we used the OPE (A.17). Here λ̄α is a fixed constant pure spinor, not the complex

conjugate of λ. Thus, a solution of (3.70) is

b =
Πm(λ̄γmd)

2λαλ̄α
− ωα∂θα +

(ωγmλ̄)(λγm∂θ)

2λαλ̄α
. (3.73)

The last term also guarantees the invariance under the gauge transformation δωα =

Λn(γnλ)α appeared in (3.3), which can be checked by the formula (A.46).33

The fixed pure spinor breaks the Lorentz covariance, unless we introduce the extended

PS formalism with non-minimal variables. In the extended PS formalism, we get the

N = 2 worldsheet superconformal symmetry, as will be explained further in Section 4.

Assuming {b, b} = 0 and {b,Q} = {Q, b}, we also obtain the N = 1 superconformal

generator

G ≡ Q+ b ⇒ {G,G} = 2T. (3.74)

32See [15] for the discussion on the coupling to the worldsheet curvature.
33The last two terms can be written as −Pαβ ωα∂θβ by using Pαβ in (A.18).
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The worldsheet superconformal symmetry is realized in different ways in RNS and PS.

There is no c ghost in PS; just λ and Q are ghost-like. In addition, the superconformal

generators look different. From (1.8), one finds

GPS ' Q+ b, GRNS ' ψ∂X + c∂β + bγ. (3.75)
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4 Untwisting pure spinor

4.1 Lecture 8

We will explain untwisting formalism, which provides pure spinor superstring with man-

ifest N = 1 worldsheet superconformal symmetry. The motivations for the untwisting

are

• To relate PS and RNS

• To describe RR-flux background using N = 1 worldsheet SCFT

• To study loop amplitudes, by somehow avoiding 1/(λλ̄) problem.

• To study AdS/CFT using the bi-twistor ΛγmΛ ∼ Xm.

In the original PS action, all fields have integer conformal dimensions. To define a

worldsheet superconformal generator, we need some fields with half-integer conformal

dimensions. This can be done by twisting the energy-momentum tensor. The twisting

also changes the central charge, so we should extend the PS action by adding non-minimal

PS variables. In the extended PS formalism, the BRST charge and the b-ghost generate

the N = 2 worldsheet superconformal symmetry.

Below we follow the notation of [16].

4.1.1 Worldsheet superconformal symmetry

We look for the N = 2 worldsheet superconformal symmetry from the open superstring

action (3.43). The generators are a twisted version of the energy-momentum tensor T in

(3.71), G+ = Q,G− = b, and the ghost current J .34 They are given by

T = −1

2
ΠmΠm − dα∂θα −

1

2
ωα∂λ

α +
1

2
(∂ωα)λα + . . .

G+ = λαdα + . . .

G− =
λ̄6Πd
2λλ̄

− ωα∂θα +
(ωγmλ̄)(λγm∂θ)

2λλ̄
+ . . .

J = −ωαλα + . . . ,

(4.1)

The . . . represent α′ corrections (total derivatives and the terms with non-minimal vari-

ables), which we will neglect below. These generators satisfy the N = 2 OPE (A.10) by

choosing . . . properly. The ghost current J satisfies35

lim
y→z

J(y)G±(z) ∼ ±G
±

y − z . (4.3)

34J is conserved on the flat spacetime, but not on general backgrounds.
35To compute the OPE with 1/λλ̄, use

ωαf(λλ̄) = ωα
(
λλ̄
) ∂f

∂(λλ̄)
. (4.2)
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The complex structure of N = 2 algebra is specified by λ̄. The worldsheet fields

transform as

δ+X
m =

1

2
λγmθ, δ+θ

α = λα, δ+N
mn =

1

2
(dγmnλ) , δ+dα = −Πm (γmλ) , (4.4)

and

δ−X
m =

(λ̄γmd)

λλ̄
+

(λ̄6Π γmθ)

2λλ̄
, δ−θ

α =
(λ̄6Π)α

2λλ̄
, δ−N

mn = . . . (4.5)

The chiral or anti-chiral operators are defined byG+O = 0 orG−O = 0. We may introduce

N = (1, 1) superfields annihilated by G+ and G−. However, the formulas become messy.

Let use the language of N = 1 worldsheet superconformal symmetry. We set36

G = G+ +G−, {G,G} = T, δXm = δ+X
m + δ−X

m, · · · . (4.6)

In the original theory, G+ had the conformal weight +1 and G− had +2. Now T is given

in (4.1), with an extra total derivative to guarantee that G± have the conformal weight 3
2
.

These non-minimal variables, (ω̄α, λ̄α) and their worldsheet superpartner (sα, rα), should

be added to cancel the extra central charges.37

The superconformal primaries have a single pole for the OPE with G. Since Xm and

θα are conformal primaries, we promote them to superfields:

Xm = Xm + κψm, δXm = ψm ≡ 1

2
λγmθ − (λ̄γmd)

2λλ̄
+

(λ̄6Πγmθ)
4λλ̄

, (4.7)

pΘα
= θα + κΛα, δθα = Λα ≡ λα +

(λ̄6Π)α

2λλ̄
. (4.8)

We regard Xm, θα as dynamical degrees of freedom. Then Λα is a new unconstrained

spinor which depends on Xm through 6Π. We remove the Xm dependence by imposing38

0 = pΠm
γmλ̄ ≡

(
DXm − 1

2
D pΘγm pΘ

)
γmλ̄ =

(
ψm − 1

2
Λγmθ

)
γmλ̄+O(κ). (4.9)

Introduce a new primary superfield

pΦα ≡ Ωα + κhα , (4.10)

Ωα = ωα −
1

2(λλ)
(ωγmλ)(γmλ)α , (4.11)

hα = dα −
1

2(λλ)
(dγmλ)(γmλ)α −

1

2(λλ)2
λα(λγmd)Πm . (4.12)

This superfield satisfies

λ̄γn pΦ = 0, (4.13)

36In terms of OPE, the second equation is limy→0G(y)G(0) ∼ T (0)/y.
37The non-minimal variables are not related to the fixed constant PS λ̄α used in (ωa, λ

α) OPE in

(A.18). We will use λ̄α as a fixed constant PS.
38Recall D = ∂

∂κ + κ ∂
∂z and γmαβ = γmβα.
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so that pΦ has 11 components. This equation can be shown by the formula (A.46). It will

be useful to remember

ψm − 1

2
Λγmθ = −(λ̄γmd)

2λλ̄
,

hα − dα = −(dγmλ)

2(λλ)

{
(γmλ)α +

(λ̄6Πγm)α
2λλ̄

}
=

(
ψm − 1

2
Λγmθ

)
(Λγm)α ,

(4.14)

where (A.46) is used in the last line.

4.1.2 Heterotic PS superstring

We write the heterotic PS superstring action using the N = 1 superfield:39

S =

∫
d2zdκ

[ 1

2
Πm
k Π̄m +B + pΦα∂̄ pΘα

+ (λ̄γmL) (Πkm) +Mm(λ̄γm p̃Φ)
]
,

=

∫
d2zdκ

[ 1

2
DXm∂̄Xm + pΦα∂̄ pΘα

+ Lα(6 pΠλ̄)α +Mm(λ̄γm pΦ) +O( pΘ)
]
,

(4.15)

where Lα ,Mm are Lagrangian multipliers, and

Πm
k = DXm − 1

2
D pΘγm pΘ, Πm = ∂Xm − 1

2
∂ pΘγm pΘ, Π̄m = ∂̄Xm − 1

2
∂̄θγmθ,

B =
1

4

[
(D pΘγm pΘ) ∂̄Xm −DXm

(
∂̄ pΘγmΘ

)]
.

(4.16)

Let us solve the constraints and reproduce the original action. 6 pΠλ̄ = 0 gives40

0 =

(
ψm − 1

2
Λγmθ

)
(γmλ̄)α , (4.17)

0 =

(
∂Xm − 1

2
∂θγmθ − 1

2
ΛγmΛ

)
(γmλ̄)α . (4.18)

The first line is consistent with (4.14).

Let us expand the action (4.15) by component fields,

S =

∫
d2z

(
1

2
∂Xm∂Xm +

1

2
ψm∂̄ψm + Ωα∂̄Λα + hα∂̄θ

α + . . .

)
, (4.19)

where . . . represents the terms higher order in Θ. From (4.14) and the PS constraints,

we obtain41

hα∂̄θ
α = dα∂̄θ

α − (λ̄γmd)

2λλ̄
(Λγm∂̄θ)

1

2
ψm∂̄ψm =

(λ̄γmd)

2λλ̄
∂̄(Λγmθ) + (total derivative).

(4.20)

39See (1.3) for RNS and (2.27) for GS heterotic superstring actions.
40One finds from (4.18) that the O(κ) component of pΠm

is equal to Πm − 1
2ΛγmΛ.

41To see the second equation, take the derivative of (Λγmθ)(Λγ
mθ) = 0 and use θγmθ = 0.
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The sum of the two gives pα∂̄θ
α ∼ dα∂̄θ

α. Similarly, to obtain ω∂̄λ, recall

Ωα ∂̄Λα = Ωα ∂̄

(
(λ̄6Π)α

λλ̄
+ λα

)
. (4.21)

The first term vanishes because λ̄γm pΦ ∼ λ̄γmΩ = 0. We then identify Ωα ∼ ωα . By

working out the details, one can show that the new action (4.15) is equivalent to the old

one (3.43).

In the untwisted formalism, we consider only the N = 1 superconformal symmetry

generated by the sum G = QBRST + b. Roughly speaking, we replace the BRST-closed

condition QBRSTV = 0 by the superconformal primary condition GV = 0. The two

conditions are more or less equivalent in Siegel gauge b0V = 0. The N = 2 structure is

not completely lost, because G+ and G− have different ghost numbers.

In ordinary PS, the b ghost does not propagate in Siegel gauge, and the BRST-closed

condition is sufficient for computing tree-level amplitudes. However, the vertex operator

like V0 = λαAα is not a conformal primary. The new vertex operator V in (4.24) is a

conformal primary, but more complicated than V0 .

4.2 Lecture 9

4.2.1 Vertex operators

We look for N = 1 superconformal primary

G(y)V (z) ∼ DV (z)

y − z , T (y)V (z) ∼ ∂V (z)

y − z =
D2V (z)

y − z . (4.22)

The vertex operator V = λαA
α in (3.47) is not superconformal primaries since its OPE

with G− has a double pole. A supersymmetric version

V = D pΘα
Aα(X, pΘ) = ΛαAα +O(κ) (4.23)

is not Lorentz covariant because of the dependence on λ̄ in Λ.42 We tentatively give up

the Lorentz covariance, and try an ansatz for superconformal primaries:

V =
∑
n

Vn ≡ D pΘα
Aα + pΠm

Am + pΦαW
α , (4.24)

where n is the ghost number;

J(y)Vn(z) ∼ nVn(z)

y − z , J · Vn = nVn . (4.25)

42This is because Nmn(z) λ̄(0) ∼ 0. The Lorentz covariance is restored only if the constraints 6 pΠλ̄ =

λ̄γm pΦ = 0 are imposed.
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We assign the ghost number +1 to λ and −1 to ω from (4.1). Let us write down each

term of (4.24),43

D pΘα
Aα ' ΛαAα =

(
λα +

(λ̄6Π)α

λλ̄

)
Aα (4.26)

pΠm
Am '

(
ψm − 1

2
Λγmθ

)
Am = −(λ̄γmd)

2λλ̄
Am (4.27)

pΦαW
α ' ΩαW

α = − 1

4λλ̄

(
(λ̄γmn)αN

mn + λ̄α J
)
Wα , (4.28)

where we used (A.45), (3.51). The term λαAα belongs to V1 , and the others belong to

V−1. Thus V = V1 + V−1 in (4.24). Since V is a superconformal primary,

G+V1 = 0, G+V−1 +G−V−1 = 0, G−V−1 = 0. (4.29)

Consider the κ-integrated vertex operator U =
∫
dκV . Recall that44

U = DV, DU = ∂V, D = G+ +G−,

G+U0 = ∂V1, G−U0 +G+U−2 = ∂V−1.
(4.30)

We require “BRST invariance” by imposing

(DV )n>0 = 0 ⇔ V =
1∑

n=−∞

Vn , (4.31)

and require Lorentz covariance by imposing∫
dz

(∫
dκV

)
0

=

∫
dz (DV )0 is independent of λ̄. (4.32)

This condition is non-trivial, and not gauge-fixing for the superconformal symmetry. Note

that
∫

(DV )0 agrees with the usual pure spinor vertex operator. If the background space-

time has a Killing spinor, we can make the vertex operator independent of λ̄ by choosing

λ̄ in the Killing direction.

By writing

U =
∑
m

Um = U0︸︷︷︸
Lorentz covariant

+ U−2︸︷︷︸
not covariant

, (4.33)

we want to show that only U0 contributes to the tree-level amplitude, which is equivalent

to

U0 = ∂θαAα + ΠmAm + dαW
α +

1

2
NmnF

mn , (4.34)

43The last line can be derived by applying the identity (A.45) to (4.11).
44From (1.2), U = GV up to a total derivative in z.
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as in (3.51). We apply the chain rule to U =
∫
dκ
(
D pΘα

Aα + pΠm
Am + pΦαW

α
)

as∫
dκf(X, pΘ) =

(
DXm∂m +D pΘα

∂α
)
f
∣∣∣
κ=0

=

(
ψm − 1

2
Λγmθ

)
∂mf + ΛαDαf ,

(4.35)

where Dα is the spacetime super-covariant derivative of (3.9). We obtain

U = ∂θαAα + Λα
[(
ψm − 1

2
Λγmθ

)
∂mAα + ΛβDβAα

]
(4.36)

+

(
∂Xm − 1

2
∂θγmθ − 1

2
ΛγmΛ

)
Am

−
(
ψm − 1

2
Λγmθ

)[(
ψn − 1

2
Λγnθ

)
∂nAm + ΛαDαAm

]
+ hαW

α + Ωα

[(
ψm − 1

2
Λγmθ

)
∂mW

α + ΛβDβW
α
]
.

Then we extract the n = 0 terms, by recalling that (ψm − 1
2
Λγmθ) has n = −1 from

(4.14). We find

U0 = ∂θαAα + ΠmAm +
{
dα +

(
ψm − 1

2
Λγmθ

)
(λγm)α

}
Wα + Ωα λ

βDβW
α

+ λα(ψm − 1

2
Λγmθ) (∂mAα −DαAm) +

1

2

[
ΛαΛβ

(
2D(αAβ) − γmαβAm

)]
n=0

. (4.37)

By using the identities in Section 3.1.2, one finds that this agrees with (4.34). We use the

identity (3.23) to obtain 1
2
NmnFmn , and the extra term (Ωα − ωα) vanishes from (A.38).

The first term in the second line cancels (hα − dα)Wα in the first line.

4.2.2 Scattering amplitude

After untwisting, the vertex operator Vi has conformal weight 1
2
. The string amplitude at

tree-level is given by

Atree = X 〈(GV1)(z1)(GV2)(z2)(GV3)(z3)

∫
GV4

∫
GV5 . . . 〉,

X = (z1 − z2)(z2 − z3)(z3 − z1).

(4.38)

This does not depend on z1,2,3, since GVi has conformal weight 1. Each factor in Atree can

have the component with zero ghost number.45 The component of Atree with zero ghost

number is special, because jBRST is conserved.

The tree-level amplitude should satisfy superconformal Ward identities when Vi are

superconformal primaries. We do not know any prescription to compute loop amplitudes.

45In usual PS, we assigned the ghost number (0, 1, 2, 3) to (1, V, V ∗, λ3θ5).
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The vertex operator GV is written as

GV = Am∂X
m +

Fmn
4

(dγmnθ + ωγmnλ) + . . . . (4.39)

One can show that the terms in the parenthesis have the same OPE as ψψ which appears

in the gluon tree amplitude in RNS formalism,

ARNS
tree = 〈V RNS(z1)V RNS(z2)V RNS(z3)

∫
V RNS . . . 〉, V RNS = A∂X + Fψψ. (4.40)

4.2.3 Unsolved problems

We will discuss the following problems will be discussed in the forthcoming sections.

The first problem is the relation between PS and RNS. The degrees of freedom in NS

sector look similar, but those in R sector look different.

The second problem is to apply the untwisting to AdS5 × S5.

The third problem is possible relation to twistors. By expanding the constraint (4.42)

we obtain

0 =

(
∂Xm − 1

2
∂θγmθ − 1

2
ΛγmΛ

)
(γmλ̄)α , (4.41)

which implies that Λ is a bosonic spinor coordinate related to Xm as in twistor theory.

4.3 Lecture 10

4.3.1 Relation to RNS

Recall that we imposed the constraint

0 =

(
DXm − 1

2
D pΘγm pΘ

)
γmλ̄, (4.42)

which relate two worldsheet superfields Xm and pΘ. This constraint was solved by

Xm = Xm + κ

(
1

2
λγmθ − (λ̄γmd)

2λλ̄
+

(λ̄6Πγmθ)
4λλ̄

)
, (4.43)

pΘα
= θα + κ

(
λα +

(λ̄6Π)α

2λλ̄

)
, (4.44)

Πm = ∂Xm − 1

2
∂θγmθ. (4.45)

We define a new variable

pΘ′α = pΘα
+ Km (γmλ̄)α, (4.46)

such that the above condition is rewritten as(
D pΘ′γm pΘ′) γmλ̄ = 0. (4.47)
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Now pΘ′ is independent of Xm, and more closely related to the worldsheet fermions in RNS

formalism.

The fermionic superfield Km in (4.46) satisfies the equation46[
DXm +DKm(λ̄ pΘ′) + Km(λ̄D pΘ′)

]
γmλ̄ = 0

⇒ Km = − 1

λ̄D pΘ′DXm +
1

2

λ̄ pΘ′
λ̄DΘ′

(
DXm

λ̄D pΘ′
)
,

(4.48)

assuming Dλ̄ = 0 and λ̄DΘ 6= 0, which is the supersymmetrization of λ̄λ 6= 0.

The heterotic action (4.15) can be written as

S =

∫
d2zdκ

[ 1

2
DXm∂̄Xm+ p̃Φα∂̄ pΘ′α+(λ̄γmL̃)

(
D pΘ′γm pΘ′)+M̃m(λ̄γm p̃Φ)+O( pΘ′)

]
, (4.49)

where p̃Φ = Ω̃α + κh̃α differs from pΦ by a shift which absorbs the difference ( pΘ′ − pΘ).

We can ignore the O( pΘ′) terms because they do not contribute to the tree amplitude.

Let us explain this point in NS sector. Recall that λ had the U(1) charge +1 and ω had

−1 under J ∼ −λαΩα in (4.1). The vertex operators had non-positive U(1) charge as

in (4.33). Since the worldsheet supersymmetry relates Ω ∼ ω with h, gauge-invariant

quantities with zero U(1) charge with respect to J = −λαΩ̃α satisfy

Number of (θ)− Number of (h) ≥ 0. (4.50)

At the same time, we need

Number of (θ)− Number of (h) = 0 (4.51)

to have the non-vanishing tree amplitude (4.38). Thus, the O( pΘ′) terms in worldsheet do

not contribute to the tree amplitude.

We want to argue that the tree amplitude of gluons based on (4.49) is equivalent to that

of RNS formalism (4.40). For this purpose it is sufficient to prove that the components

of pΘ, pΦ do not contribute to the tree amplitude. Vertex operators in NS sector are given

in (4.34) or (4.39). If we rewrite the vertex operator using pΘ′, we obtain

GV = Am∂X
m +

1

2
FmnM

′mn + . . . , M ′mn =
1

2

(
Ω̃γmnλ+ h̃γmnθ′

)
. (4.52)

where

pΘ′α = θ′α + κλα +O(θ2), θ′γmnλ = 0. (4.53)

The new variable M ′mn have the OPE

M ′
mn(z)M ′

pq(0) ∼
M ′

m(pηn)q

z
, (4.54)

46To show the second line, use (λ̄ pΘ′)(λ̄ pΘ′) = 0.
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instead of (3.59). The tree amplitude consists of gauge-invariant quantities with zero

U(1) charges, like M ′mn. However, M ′ does not contribute to the tree amplitude. If Atree

contains the term 〈(M ′)n〉, one apply the OPE (4.54) repeatedly to reduce it to 〈M ′〉,
which is zero. We conjecture that only the superconformal primaries with the superfield

Xm contribute to the tree amplitude in NS sector.

What happens in R sector is less clear. The variable θ in PS should corresponds to

spin fields with βγ ghosts in RNS.47

4.3.2 Curved NS backgrounds

The heterotic action (4.49) on NS curved backgrounds is given by

S =

∫
d2zdκ

[ 1

2
DXm∂̄Xn (gmn(X) + bmn(X)) + p̃Φα∇̄ pΘ′α

+ (λ̄γmL̃)
(
D pΘ′γm pΘ′)+ M̃m(λ̄γm p̃Φ)

]
, (4.55)

where

∇̄ pΘ′α = ∂̄ pΘ′α + ∂̄Xm ωmβ
α(X) pΘ′β. (4.56)

We do not know how to put the action on Ramond backgrounds, because we do not know

Ramond vertex operators.

Let us introduce the spacetime superfields ZM = (Xm, pΘα
). The heterotic action is

rewritten as

S =

∫
d2zdκ

[ 1

2
ηabE

a
ME

b
N DZ

M ∂̄ZN +
1

2
BMN DZ

M ∂̄ZN + ΦαE
α
M ∂̄ZM

+ (λ̄γaL̃)
(
Ea
M DZM

)
+ M̃a(λ̄γ

a p̃Φ)
]
. (4.57)

In GS DZM was ∂ZM . All ghosts come from the term with Φ. This action should be

equivalent to the original PS action on curved backgrounds, which is

SPS =

∫
d2zdκ

[ 1

2
ηabE

a
ME

b
N ∂Z

M ∂̄ZN+
1

2
BMN ∂Z

M ∂̄ZN+dαE
α
M ∂̄ZM+ωα∇̄λα

]
, (4.58)

where

∇̄λα = ∂̄λα + ωMβ
α λβ ∂̄ZM . (4.59)

Around the flat background, it should behave as

Scurved = Sflat +

∫
d2z V. (4.60)

47The ghosts in PS were accounted by X = (z1 − z2)(z2 − z3)(z3 − z1).
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4.3.3 Type IIB

The type IIB action can be obtained by replacing ∂̄ with D̄ and adding right movers,

S =

∫
d2zdκ

[ 1

2
ηabE

a
ME

b
N DZ

MD̄ZN +
1

2
BMN DZ

MD̄ZN

− ΦαE
α
M D̄ZM + Φ̂α̂E

α̂
M DZM − ΦαΦ̂α̂F

αα̂ + (Lagrange multipliers)
]
. (4.61)

The term with Fαα̂ is needed to reproduce vertex operators. The Lagrange multiplier

contains λ̄, which is defined patchwise unless the background has a Killing spinor. This

action is simpler than the original PS action,

SPS =

∫
d2zdκ

[ 1

2
ηabE

a
ME

b
N ∂Z

M ∂̄ZN +
1

2
BMN ∂Z

M ∂̄ZN

+ dαE
α
M ∂̄ZM + d̄α̂E

α̂
M ∂ZM + ωα∇̄λα + ω̄α̂∇λ̄α̂ + dαd̄âF

αα̂

+Rabcd(λγ
abω)(λ̄γcdω̄) + dα(γ̄abω̄)Sαab + d̄α(γabω)S̄α̂ab

]
. (4.62)

We conjecture

S = SPS (4.63)

by integrating κ, imposing the constraints, and restricting to the sector of zero ghost

number.

42



5 Conclusion

We summarized three formalisms of perturbative superstring theory, RNS, GS and PS.

After the review of each method and relation in between, we introduced untwisting PS

formalism, which realizes the manifest N = 1 worldsheet superconformal symmetry. This

symmetry will be useful to study AdS5 × S5 superstring.

We omit the last few lectures from this note, where twistor-string in R4, R10, and

AdS5 × S5 are discussed. Interested readers can consult [17, 16].

Mathematica codes

This lecture note is accompanied by two Mathematica codes. The first code computes the

free-field OPE’s relevant in RNS formailsm. The second implements Gamma matrices in

SO(1, 9) which can be used to prove various identities.
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A Notation

In the flat spacetime, we use the following indices:

• m,n, . . . label vectors; Xm

• α, β, . . . label spinors; θα

• α̂, β̂, . . . label spinors of the opposite chirality; θ̄α̂, θ̂α̂ or θ̃α̂

• A,B, . . . label superspace; ZA

In the curved spacetime,

• m,n, . . . label (locally Lorentz) coordinates; Xm

• a, b, . . . label tangent space; ea = ema
∂

∂Xm

We also use a, b = 1, 2, . . . , 5 for the U(5) fundamental representation.

The indices are symmetrized as

F{a1a2...an} =
1

n!

∑
σ∈Sn

Faσ(1)aσ(2)...aσ(n) , F[a1a2...an] =
1

n!

∑
σ

sign(σ)Faσ(1)aσ(2)...aσ(n) . (A.1)

A.1 OPE’s

We summarize the OPE’s of worldsheet conformal primaries.
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Let us consider the action

S =
1

2π

∫
dzdz̄

(
1

2
∂Xm∂̄Xm −

1

2
ψm∂̄ψm + β∂̄γ + b∂̄c

)
, (A.2)

and take the variation such as 0 = 〈 δ
δXn

(
Xm e

−S)〉. This gives the OPE

Xm(z, z̄)Xn(0) ∼ −ηmn log |z|2, γ(z)β(0) ∼ −β(z)γ(0) ∼ 1

z
, (A.3)

ψm(z)ψn(0) ∼ −ηmn
z

, c(z)b(0) ∼ b(z)c(0) ∼ 1

z
. (A.4)

The stress-energy tensors are,

TX = :−1

2
∂Xm∂Xm : , Tψ = :

1

2
ψm∂ψm : , (A.5)

Tbc = :−c(∂b) + λ∂(cb) : , Tβγ = :γ(∂β)− 2λ− 1

2
∂(γβ) : , (A.6)

which satisfy the OPE’s,

T (z)T (0) ∼ c

2z4
+

2T (0)

z2
+
∂T (0)

z
,

cX = D, cψ =
D

2
, cbc = −12

(
λ− 1

2

)2

+ 1, cβγ = 12λ(λ− 1)2 − 1.

(A.7)

Here b, c and β, γ have the conformal dimensions

dim (b, c) = (λ, 1− λ) , dim (β, γ) =

(
λ− 1

2
,
3

2
− λ
)
. (A.8)

We set D = 10, λ = 2 for the critical superstring in RNS.

When the worldsheet theory has N = 1 supersymmetry, we define the stress-energy

tensor superfield T(z) = G(z) + κT (z). The superconformal current G(z) satisfies

T (z)G(0) ∼ 3G(0)

2z2
+
∂G(0)

z
, G(z)G(0) ∼ c

6z3
+
T (0)

2z
. (A.9)

In the case of N = 2 supersymmetry, the stress-energy tensor multiplet (T,G+, G−, J)

satisfies

T (z)G±(0) ∼ 3G±(0)

2z2
+
∂G±(0)

z
, T (z)J(0) ∼ J(0)

z2
+
∂J(0)

z
,

G+(z)G−(0) ∼ 2c

3z3
+

2J(0)

z2
+

2T (0) + ∂J(0)

z
, J(z)G±(0) ∼ ±G

±(0)

z
,

J(z)J(0) ∼ c

3z2
.

(A.10)

Let us study the OPE of a free chiral boson in detail,

ϕ(z)ϕ(w) = − log(z − w)+ :ϕ(z)ϕ(w) : . (A.11)
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An exponential of ϕ satisfies the OPE

ϕ(z) :enϕ(w) : = −n log(z − w) :enϕ(w) : + :ϕ(z) enϕ(w) : , (A.12)

:emϕ(z) ::enϕ(w) : = (z − w)−mn :emϕ(z) enϕ(w) : . (A.13)

In particular, e±ϕ satisfy

:eϕ(z) ::e±ϕ(w) := − :e±ϕ(w) ::eϕ(z) := (z − w)∓1 :eϕ(z)±ϕ(w) : . (A.14)

The exponential operators behave like free fermions ψm . However, they behave like bosons

inside the normal-ordering, :eϕ(z)e±ϕ(w) : = :e±ϕ(w)eϕ(z) : = :eϕ(z)±ϕ(w) : .

In PS, we forget ψm in (A.2) and replace

b∂̄c → pα∂̄θ
α, dim (pα, θ

α) = (1, 0), c = −2× 16, (A.15)

β∂̄γ → −ωα∂̄λα, dim (ωα, λ
α) = (1, 0), c = +2× 11, (A.16)

which satisfy the OPE

pα(z) θβ(0) ∼ θβ(z) pα(0) ∼
δαβ
z
,

λα(z)ωβ(0) ∼
Pαβ (z)

z
, ωβ(z)λα(0) ∼ −

Pαβ (0)

z
.

(A.17)

Since λα is a PS, the metric Pαβ should be a rank 11 matrix. We can construct P by using

a fixed unconstrained spinor λ̄α as

Pαβ (z) = δαβ −
1

2

(γmλ̄)α(γmλ)b
2λ̄λ

(z), (A.18)

which satisfies

Pαβ (z)Pβγ (z) = Pαγ (z), Pαβ (z)λβ(z) = λα(z), Pαβ (z) (λγn)α(z) = 0,

λγmλ(z)ωα(0) ∼ ωα(z)λγmλ(0) ∼ 0.
(A.19)

If λ̄α is a fixed PS, then

(λ̄λ)(z)ωβ(0) ∼ −ωβ(z) (λ̄λ)(0) ∼ λ̄β(z)

z
, Pαβ λ̄α = λ̄β , Pαβ (λ̄γn)β = 0. (A.20)

We need to be careful about the OPE between T = −ωα∂λα and ωα ,

T (z)ωα(0) ∼ Pαβ (0)

(
ωα(0)

z2
+
∂ωα(0)

z

)
. (A.21)

Since Pαβ ∂ωα 6= ∂(Pαβ ωα), strictly speaking ωα is not primary. This is not a serious

problem, because ωα appears only in the gauge-invariant combinations such as λαωα or

Pαβ ωα and extra terms vanish.
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For doing calculation, it is simpler to take the U(5) basis ωα = (ω+ , ωab , ωa) and fix

the gauge by λ̄α = λ̄+ . From (A.53) it implies ωa = 0, thus

ωα∂̄λ
α → ω+∂̄λ

+ +
1

2
ωab∂̄λ

ab . (A.22)

where (u, t) are chiral scalars. They satisfy the OPE

λ+(z)ω+(y) ∼ 1

z − y , λab(z)ωcd(y) ∼ δac δ
b
d − δadδbc
z − y . (A.23)

After the untwisting in Section 4, the equation (A.16) becomes

β∂̄γ → −ωα∂̄λα, dim (ωα, λ
α) =

(
1
2
, 1

2

)
, c = −1× 11. (A.24)

The difference of the central charges between (A.16) and (A.24) is −33. To cancel it, we

add the following non-minimal PS,

b∂̄c → sα∂̄rα, dim (sα, rα) =
(

1
2
, 1

2

)
, c = +1× 11, (A.25)

β∂̄γ → ω̄α∂̄λ̄α , dim (ω̄α, λ̄α) = (1, 0), c = +2× 11, (A.26)

with the PS conditions48

λ̄α(γm)αβλ̄β = 0, λ̄α(γm)αβrβ = 0. (A.27)

A.2 Curved spacetime with torsion

There are two ways to represent tensors in the curved spacetime,

ηab = ema e
n
b gmn , Bab = ema e

n
b Bmn . (A.28)

Covariant derivatives can be written in two ways,

∇mv
n = ∂mv

n + Γnmpv
p , ∇a = ema ∇m = ema ∂m + ωabcM

bc , (A.29)

with ωabc = ema e
n
b∇m(ec)n .

The torsion is defined by

(∇m∇n −∇n∇m) f = Tnm
p∇pf . (A.30)

The covariant derivative satisfies

[∇m,∇n] = Rmnp
q∇q + Tmn

p∇p . (A.31)

48The quantity rα(γm)αβrβ is trivially zero since rα are fermionic.
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Note that Tmn
p = 0 does not imply Tab

c = 0, because∇a acts on vielbeins. The differential

form is given by

(dΩ)[m1...mp+1] = (∇Ω)[m1...mp+1] +
p

2
(−1)p T[m1m2

n Ωm3...mp+1]n . (A.32)

In string theory it is useful to introduce the generalized metric Gmn = Gmn + Bmn

to maintain O(D,D) covariance. If we require ∇mGnp = 0, the Christoffel symbol is

determined uniquely as

Γpmn =
1

2
gpq (∂mGqn + ∂nGmq − ∂qGmn) . (A.33)

By comparing it with Γp[mn] = −1
2
Tmn

p, we find

Hmnp = ∂[mBnp] = Tmnp . (A.34)

A.3 Spinors and Gamma matrices

The Majorana-Weyl spinors exist in ten-dimensional Lorentzian spacetime. By setting

Γ0Γ1 . . .Γ9 = diag (116,−116), one can decompose a general 32-component spinor into a

pair of 16-component chiral and anti-chiral spinors as(
λα

χα

)
(A.35)

We use the Majorana-Weyl representation of 32×32 SO(1, 9) Gamma matrices satisfying

Γm =

(
0 (γm)αβ

(γm)αβ 0

)
, (γm)αβ = (γm)βα , (A.36)

(γm)αβ(γn)βγ + (γn)αβ(γm)βγ = 2ηmnδγα , (A.37)

where ηmn has the signature (−,+, . . . ,+) with η00 = −1. From (A.37) it follows that

(γm)αβ(γm)βγ = 10 δγα , (γmγnγm)αδ = −8 (γn)αδ ,

(γpγmγnγp)
β
α = 4 ηmn δβα + 6 (γmn)βα ,

γmγnp = γmnp + ηmnγp − ηmpγn , γmnγp = γmnp + ηnpγm − ηmpγn .
(A.38)

We also find

tr
(
γm1m2...m`γnknk−1...n1

)
=

{
16 δm1

[n1
. . . δm`n`] (` = k)

0 (` 6= k),
(A.39)

where γm1m2...m` = γ[m1γm2 . . . γm`].
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The Majorana-Weyl representation matrix (A.36) can be constructed explicitly as49

Γ1 = σ1 ⊗ σ2 ⊗ σ2 ⊗ σ1 ⊗ σ3 , Γ2 = σ1 ⊗ σ2 ⊗ σ1 ⊗ σ3 ⊗ σ2 ,

Γ3 = σ1 ⊗ σ2 ⊗ σ3 ⊗ σ2 ⊗ σ1 , Γ4 = σ1 ⊗ σ1 ⊗ σ0 ⊗ σ1 ⊗ σ3 ,

Γ5 = σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 ⊗ σ1 , Γ6 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 , (A.40)

Γ7 = σ1 ⊗ σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3 , Γ8 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ,

Γ9 = σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0 , Γ10 = σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ,

Γ0 = −iΓ10 .

The tensor product is defined as

A⊗B =

a11B a12B . . .

a21B a22B
...

. . .

 . (A.41)

All matrix elements of Γ0,Γ1, . . . ,Γ9 are real and hermitian, and satisfies

(γ0)αβ = −(γ0)αβ, (γi)αβ = (γi)αβ (i = 1, 2, . . . , 9)

(γm)αβ = (γm)αβ (m = 0, 1, . . . , 9).
(A.42)

The light-cone components satisfy

γ0 + γ9

2
=

(
18 08

08 08

)
,

γ0 − γ9

2
=

(
08 08

08 18

)
. (A.43)

The matrices γmn for m,n = 0, 1, . . . , 9 are real, anti-symmetric and have the eigenvalues

±i. The matrices γmnp for m,n, p = 0, 1, . . . , 9 are again real and anti-symmetric.

From (A.40) one can derive various identities [18, 20],

0 = ηmn γ
m
α(βγ

n
γδ) (A.44)

(γmn)α
γ (γmn)β

δ = 4(γm)αβ(γm)γδ − 2δγαδ
δ
β − 8δδαδ

γ
β . (A.45)

Note that RHS of (A.45) is not manifestly symmetric with respect to α↔ β and γ ↔ δ.

By multiplying λβλγ to (A.44) and using the pure spinor condition for λ, we obtain

(γmλ)α (λγm)δ = −1

2
(γm)αδ (λγmλ) = 0 (A.46)

The U(5) basis is suitable for solving the pure spinor condition. Let us write a 32-

component Dirac spinor by λs1,s2,s3,s4,s5 with sk = ±1. We introduce creation-annihilation

operators by

γk,± λ
s1,s2,s3,s4,s5 =

(
k−1∏
j=1

sj

)
1∓ sk

2

[
λs1,s2,s3,s4,s5

]
sk→−sk

, (A.47)

49Another construction based on the representation of Spin(8) in [18] can be found in [19].
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so that γk,± kills λs1,s2,s3,s4,s5 if sk = ±1 . The first factor in RHS is needed to make γ’s

anti-commute. One can construct the SO(10) Gamma matrices by

Γ2k−1 = γk,+ + γk,− , Γ2k = −i (γk,+ − γk,−) . (A.48)

A shortcut to obtain a complex Weyl representation of SO(10) Gamma matrices is to

use (A.40). Then, the state

λ+++++ = {016,−i, 1, i, 1, i, 1,−i, 1, 0, 0, 0, 0, 0, 0, 0, 0} (A.49)

is annihilated by all γk,+ . The 32 components of λs1,s2,s3,s4,s5 split into two groups, whether

the number of −’s is even or odd. Each group has a definite chirality. Suppose (λα, χα)

is a pair of 16-component spinors, chiral and anti-chiral.

Consider the PS condition λγmλ = 0 in the U(5) basis. We write the chiral fermion

as

λ = uΛ+ + uab
(
[γa− , γ

b
−]Λ+

)
+ uabcd

(
[γa− , γ

b
−][γc− , γ

d
−]Λ+

)
, (A.50)

where Λ+ = λ+++++/|λ+++++| and a, b, c, d = 1, . . . , 5.50 The PS condition is equivalent

to the bilinear conditions

λγe−λ = 0 ⇔ uuabcd = uab ucd − uac ubd + uad ubc , (A.51)

λγe+λ = 0 ⇔ 0 = εdefgh u
de uefgh . (A.52)

The first line solves the second line trivially. We are left with 16 − 5 = 11 degrees of

freedom.

For a pair of chiral spinors, the conditions λγe∓λ̃ = 0 are equivalent to

u ũabcd + uabcd ũ = uab ũcd − uac ũbd + uad ũbc + ucd ũab − ubd ũac + ubc ũad

0 = εdefgh (ude ũefgh + uefgh ũde) .
(A.53)

The general solution of these equations is complicated. When λ̃ = λ̃+++++, or equivalently

(ũ, ũab, ũabcd) = (1, 0, 0), we have uabcd = 0.

B Literature

Below are the references relevant to the lectures. This list is by no means comprehensive,

because this article is a lecture note rather than a review.

Supergravity. A comprehensive review [21]. Superspace and super Bianchi identity in

11-dimensional supergravity [22, 23].

Super Yang-Mills Supersymmetric Yang-Mills theory in 10 dimensions, and twistor-

like transform [24].

50The basis {Λ+, [γa− , γ
b
−]Λ+, [γa− , γ

b
−][γc− , γ

d
−]Λ+} corresponds to λ’s introduced in (3.5).
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RNS. Review of RNS and GS [25]. Picture changing was introduced in [6, 7]. The

picture-changing at loop level has been recently discussed in [26].

GS. Textbooks on GS [18, 27]. Relation between κ symmetry, generalized supergravity

equations of motion and Weyl invariance. [28, 29, 30] Review of GS on AdS5 × S5 and

integrability. The construction of σ-model action using Z4 grading [31].

PS. Detailed study of the BRST cohomology in the flat spacetime [10, 32]. More ways

to relate RNS with PS [33, 34]. Application of PS to the anomaly in curved βγ system

[35].

N = 2 worldsheet supersymmetry in the non-minimal PS [36]. The nilpotency of the

b-ghost in the non-minimal PS [37]. Untwisting formalism [16].

Review [9, 38]. Review on the relation between RNS-GS-PS and non-critical strings

[15]. PhD and Master theses. Some basic computations are explained in detail. [19, 12,

39, 40, 41]

Comprehensive study of 10d spinor identities [20].
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