Refined Counting of

Anomalous Dimensions
 Ryo Suzuki (KIAS, seoul)
 based on 1703,05798

also 1608.03188 with S. Ramgoolam (QMUL), Y. Kimura (OIQP) Jan 2018

$$
\mathcal{Z}_{\mathcal{N}}=4 \operatorname{sYM}\left[S^{1} \times S^{3} ; \beta, \vec{\mu} ; N_{c}, \lambda\right]
$$

$\beta=$ Radius of $S^{1}=$ Inverse temperature (Radius of $S^{3}=1$)
$\mu=$ Chemical potentials
$N_{c}=$ rank of gauge group (mostly $U\left(N_{c}\right)$)
$\lambda=t$ Hooft coupling

$$
\mathcal{Z}_{\mathcal{N}}=4 \operatorname{SYM}\left[S^{1} \times S^{3} ; \beta, \vec{\mu} ; N_{c}, \lambda\right]
$$ Put color charges in S^{3} and \mathbb{R}^{3}

$\int D A_{i} \Rightarrow$ Gauss Law
Only color-singlets appear "Confinement"

- In real QCD on R^{3}, strong dynamics causes confinement - The $3 / 4$ problem

Phase transition
"Deconfinement" from Gauss-Law occurs at $T=T_{H}$ if $N_{c}=\infty$

Multi-traces Free oscillators

Hagedorn : driven by entropy $\rho(E) \sim \exp (C E)$

Hagedorn Eransition

\Leftrightarrow Confinement/Deconfinement Eransition \Leftrightarrow Hawking-Page Eransition

[Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk (2003, 2005)] [Yaffe, Yamada (2006)]

Mathematical motivation

Q: How to sum over Bethe Ansatz solutions?

$$
F \equiv \sum_{u_{*}: B A E}(\text { Multiplicity }) f\left(u_{*}\right)
$$

where $\left\{u^{*}\right\}$ are the $B A E$ solus at fixed (L, M)

$$
-1=\left.\left(\frac{u+\frac{i}{2}}{u-\frac{i}{2}}\right)^{L} \prod_{j=1}^{M} \frac{u-u_{j}-i}{u-u_{j}+i}\right|_{u=u_{k}} \quad(k=1,2, \ldots, M)
$$

Such questions show up in various SYM's

$$
F \equiv \sum_{u_{*}: B A E}(\text { Multiplicity }) f\left(u_{*}\right)
$$

$-\mathrm{D}=4 \mathrm{~N}=4$ SYM at $N_{c}=\infty$ (this talk)
$f=$ spin chain energy

$$
\rightarrow F \sim(\text { Part of }) \mathcal{Z}_{\mathcal{N}=4 \mathrm{SYM}}\left[S^{1} \times S^{3} ; \beta\right]
$$

- D=2 N=2 SYM [Nekrasov-Shatashvili (2014)]
$f=(\text { Norm of Bethe wave-function })^{9}$

$$
\rightarrow F \sim \mathcal{Z}_{\mathcal{N}=2 \operatorname{syM}}\left[\Sigma_{g} ;(-1)^{F}\right]
$$

Today I look for NON-integrable methods

Tools

Finite group theory

Multi-trace operators <- Permutations

Tools

Finite group theory
Multi-trace operators <- Permutations
!! : extends to finite NC
!?: so far perturbative in gym
: one-loop mixing "simple" but not diagonal
\rightarrow useful for statistical quantities, e.g.

$$
\mathcal{Z}_{\mathcal{N}=\left.4 \mathrm{syM}\right|_{\text {one-loop }} \sim \operatorname{Er}(\text { mixing matrix) }) ~} \sim
$$

Main results
Partition fin in the $S U(2)$ sector at small λ

$$
\begin{aligned}
\mathcal{Z}(\beta, x, y)=\mathcal{Z}_{0}(x, y)-2 \lambda \beta \mathcal{Z}_{2}(x, y)+O\left(\lambda^{2}\right) \\
=\sum_{m, n \geq 0} M_{m, n} x^{m} y^{n}
\end{aligned}
$$

$$
\begin{aligned}
& M_{m, n}=\sum_{\mathcal{O}}\left(1-\text { loop dim. of ops. } \mathcal{O} \sim W^{m} z^{n}\right) \\
& \frac{z_{2}^{M T}(x, y)}{N_{c}}=6 x^{2} y^{2}+\left(10 x^{3} y^{2}+10 x^{2} y^{3}\right) \quad \text { MT: sum over } \\
& +\left(26 x^{4} y^{2}+36 x^{3} y^{3}+26 x^{2} y^{4}\right) \\
& +\left(44 x^{5} y^{2}+84 x^{4} y^{3}+84 x^{3} y^{4}+44 x^{2} y^{5}\right)+\ldots
\end{aligned}
$$

"plethystic exponential" of single-trace gen. fun.

$$
z_{2}^{M T}(x, y)=z_{0}^{M T}(x, y) \sum_{k=1}^{\infty} z_{2}^{S T}\left(x^{k}, y^{k}\right)
$$

Single-trace sum written by Euler Totient and GCD

$$
\begin{aligned}
\frac{z_{2}^{M T}(x, y)}{N_{c}} & =2 \prod_{h=1}^{\infty} \frac{1}{1-x^{h}-y^{h}} \sum_{k=1}^{\infty} x \quad \begin{array}{l}
\text { Position of pole } \\
\text { = Hagedorn temp. } T_{H} \\
\text { Residue }
\end{array} \\
& \left\{\sum_{d=1}^{\infty} \operatorname{Tot}(d) \frac{x^{k d} y^{k d}}{1-x^{k d}-y^{k d}} \begin{array}{l}
\text { = Corrections to } T_{H}
\end{array}\right. \\
& -\sum_{L=2}^{\infty} \sum_{m=1}^{L-1} x^{\left.k m y^{k(L-m)} \delta(\operatorname{gcd}(m, L), 1)\right\}}
\end{aligned}
$$

$[\operatorname{RS}(2017)]$

Plan

- Intreduction
- $N=4$ Partition functions
- Permutation basis
- One-loop dimensions
- Hagedorn kemperakure
- Conclusion

$\S N=4$ Parkibion funclions

Partition f of $N=4 S Y M$

$$
\begin{aligned}
\mathcal{Z} & =\int D A e^{-S_{N=4}[A]} \\
& =\int[d U] e^{-S_{e f f}}, \quad U \equiv P \exp \left(\oint_{S^{1}} A_{0}\right) \\
& =\operatorname{tr} \mathcal{H}\left(e^{-\beta D+\mu_{i} J_{i}}\right), \quad \text { (radial quant.) }
\end{aligned}
$$

(Path integral)
(Matrix model)
(Hamiltonian)
$\mathrm{D}=\mathrm{D}_{0}+\lambda \mathrm{D}_{2}+\lambda^{2} \mathrm{D}_{4}+\ldots$, dilatation
$J_{i}=$ other global charges of psu($2,2 \mid 4$)
$\mathcal{H}=$ Hilbert $s p$. of mulki-trace ops.
Tree-level $(\lambda=0) \rightarrow$ Counts operators

Define \# of length-L ops, $N\left(L, N_{c}\right)=N_{L}^{(p)}-N_{L}^{(n p)}$
Anti-symmetrization identily:

$$
W_{1}^{\left[i_{1}\right.} W_{2}^{i_{2}} \ldots W_{N+1}^{\left.i_{N+1}\right]}=0 \text { if } i_{1}, i_{2}, \ldots \in\{1,2, \ldots, N\}
$$

Tree-level partition fn with $\mu=0$ is

$$
\begin{aligned}
\mathcal{Z}\left[\beta, N_{c}\right]= & \operatorname{tr}\left(e^{-\beta D_{0}}\right) \\
= & \sum_{L \geq 0} N_{L}^{(p)} e^{-\beta L}-\sum_{L>N_{c}} N_{L}^{(n p)} e^{-\beta L} \\
& \text { constant finite } N_{c} \\
O\left(e^{-\beta N_{c}}\right) \Rightarrow & \text { non-perturbative in } 1 / N_{c}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{Z}\left[\beta, N_{c}\right] & =\operatorname{tr}\left(e^{-\beta D_{0}}\right) \\
& =\sum_{L \geq 0} N_{L}^{(p)} e^{-\beta L}-\sum_{L>N_{c}} N_{L}^{(n p)} e^{-\beta L}
\end{aligned}
$$

I neglect finite- N_{c} terms, but there can be subtlety:
Hagedorn transition happens at a finite temperature only if $N_{c}=\infty$

Hagedorn temperature: $\mathcal{Z}\left[\beta=\beta_{H}\right]=\infty$
\rightarrow growth of $N_{L}(L \rightarrow \infty)$ is important

$$
N_{L}^{(p)} \sim e^{\beta_{H} L}, N_{L}^{(n p)} \sim 1, \quad\left(L \rightarrow \infty, N_{c} \rightarrow \infty\right) ? ?
$$

Truncation to $S U(2)$ sector
Matrix-model formula for the partition fun:

$$
\mathcal{Z}=\int[d U] \exp \left(\sum_{n=1}^{\infty} \frac{x_{a d j}\left(U^{n}\right)}{n} \zeta_{\operatorname{syM}\left(e^{-\beta n}\right)}\right)
$$

$\zeta(\omega)$ for the $\operatorname{PSU}(2,2 \mid 4)$ sector of $N=4 S Y M$

$$
\zeta_{S Y M}\left(e^{-\beta}\right)=\frac{2 e^{-\beta}\left(3-e^{-\beta / 2}\right)}{\left(1-e^{-\beta / 2}\right)^{3}}
$$

[Sundborg (1999)]
Truncate to the $S U(2)$ sector, introduce fugacity

$$
\zeta_{\operatorname{su}(2)}=x+y
$$

Hagedorn transition still exists, at different T_{H}

Operator Bases

(Representation Permutation
basis)
basis e.g. restricted Schur

Simple question
Count $N_{m, n}^{M T} \equiv \#$ of multi-trace ops $\sim w^{m} z^{n}$
$m=n=2:$

$$
\begin{aligned}
& \operatorname{tr}(Z Z W W), \operatorname{tr}(Z W Z W) \\
& \operatorname{tr}(Z Z W) \operatorname{tr}(W), \operatorname{tr}(Z) \operatorname{tr}(Z W W) \\
& \operatorname{tr}(Z Z) \operatorname{tr}(W W), \operatorname{tr}(Z W)^{2} \\
& \operatorname{tr}(Z Z) \operatorname{tr}(W)^{2}, \operatorname{tr}(Z)^{2} \operatorname{tr}(W W), \operatorname{tr}(Z W) \operatorname{tr}(Z) \operatorname{tr}(w) \\
& \operatorname{tr}(Z)^{2} \operatorname{tr}(w)^{2} \\
& \quad \#=2+2+2+3+1=10
\end{aligned}
$$

How to get it?

Gauge-invariant Operators
$\mathcal{N}=4$ alphabet: $\mathcal{W}^{A} \in\left\{\nabla^{s} \Phi^{I}, \nabla^{s} \psi, \nabla^{s} F, \ldots\right\}$
Permutation basis $\left(\alpha \in S_{L}\right)$

$$
\begin{aligned}
0_{\alpha}^{A_{L} \ldots A_{L}} & =\operatorname{tr}_{L}\left(\alpha w^{A_{1}} \otimes w^{A_{2}} \otimes \ldots w^{A_{L}}\right) \\
& =\sum_{a_{1}, \ldots, a_{L}=1}^{N_{c}}\left(w^{A_{1}}\right)_{a_{\alpha(1)}}^{a_{1}}\left(w^{A_{2}}\right)_{a_{\alpha(2)}}^{a_{2}} \ldots\left(w^{A_{L}}\right)_{a_{\alpha(L)}}^{a_{L}}
\end{aligned}
$$

Relabelling $\left(a_{i}, A_{i}\right) \rightarrow\left(a_{\gamma(i)}, A_{\gamma(i)}\right)$

$$
\Rightarrow 0_{\alpha}^{A_{1} \ldots A_{L}}=0_{\gamma \alpha \gamma^{-1}}^{A_{\gamma(1)} \ldots A_{\gamma(L)}}, \quad \forall \gamma \in S_{L}
$$

Claim: Equivalence class = Unique multi-trace

Claim: Equivalence class = Unique multi-trace SU(2) sector: $\mathcal{O}_{\alpha}^{m, n}=\operatorname{tr}_{m+n}\left(\alpha W^{m} Z^{n}\right),\left(\alpha \in S_{m+n}\right)$
Relabelling $=$ permutations inside Wm or Zn

$$
\mathcal{O}_{\alpha}^{m, n}=\mathcal{O}_{\gamma^{-1} \alpha \gamma}^{m, n}\left(\forall \gamma \in S_{m} \times S_{n}\right)
$$

Equivalence class $=S_{m+n} /\left(S_{m} \times S_{n}\right)$

$$
\begin{gathered}
N_{m, n}^{M T}=\frac{1}{m!n!} \sum_{\alpha \in S_{m+n}} \sum_{\gamma \in S_{m} \times S_{n}} \delta_{m+n}\left(\alpha^{-1} \gamma^{-1} \alpha \gamma\right) \\
\delta_{L}(\sigma)=1 \text { iff } \sigma=1 \in S_{L}
\end{gathered}
$$

Solving $\alpha^{-1} \gamma^{-1} \alpha \gamma=1$

- Each permutation has a cycle type
- The cycle type is invariant under conjugation
e.g. $S_{6} \ni \sigma=(1)(23)(456)$

Cycle type of: $\sigma=\left[1^{1}, 2^{1}, 3^{1}\right] \vdash 6$

Identity: $\alpha^{-1} \sigma \alpha=(\alpha(1))(\alpha(2) \alpha(3))(\alpha(4) \alpha(5) \alpha(6))$
Redundancy: $(123)=(231)=(312),(45)(67)=(67)(45)$
Counting redundancy $=\#$ of solutions

Generating fin
Formula for $\mathrm{N}_{\mathrm{m}, \mathrm{n}} \rightarrow$
Tree-level part. fin of $N=4$ SYM in SU(2) sector

$$
\mathcal{Z}_{0}^{M T}\left(\beta, \mu_{i}\right)=\operatorname{tr}_{M T}\left(e^{-\beta D_{0}+\mu_{i} J_{i}}\right)
$$

Redefine $\left(\beta, \mu_{i}\right)$ to (x, y) s.t. the operator $\mathcal{O} \sim W^{m} z^{n}$ is counted with the weight $x^{m} y^{n}$

$$
\begin{aligned}
& \mathcal{Z}_{0}^{M T}(x, y)=\sum_{m, n=0}^{\infty} N_{m, n}^{M T} x^{m} y^{n}=\cdots=\prod_{k=1} \frac{1}{1-x^{k}-y^{k}} \\
& =1+(x+y)+\cdots+\left(5 x^{4}+7 x^{3} y+10 x^{2} y^{2}+7 x y^{3}+5 y^{4}\right)+\cdots
\end{aligned}
$$

Generating fin of \# of multi-traces in $\mathrm{SU}(2)$ sector

$$
z_{0}^{M^{\top}}(x, y)=\prod_{k=1} \frac{1}{1-\left(x^{k}+y^{k}\right)}
$$

1) Hagedorn temperature © SU(2) sector, tree-level

$$
x+y=1 \text { if } x \geq 0 \text { and } y \geq 0
$$

2) Plethysitc exponential of single-trace gen. In

$$
\mathcal{Z}_{0}^{M T}(x, y)=\exp \left(\sum_{m=1} \frac{\mathcal{Z}_{0}^{S T}\left(x^{m}, y^{m}\right)}{m}\right)
$$

3) Valid in large N_{c}

$$
z_{0}^{M T}(x, y)=1+(x+y)+2\left(x^{2}+x y+y^{2}\right)+\frac{\left(3 x^{3}+4 x^{2} y+4 x y^{2}+3 y^{3}\right)}{\text { wrong if } N_{c}=2}+\ldots
$$

Partition fy at finite N_{c}
No transition at finite T at finite N_{c} in (the scalar sector of) $N=4$ SYM
(\because matrix model with finite d.o.f.)
(\because checked by Molien-Weyl formula)
$\mathcal{Z}_{N_{c}}^{\text {exact }}(x, y)=$ Hilbert -Poincare series of $\in L\left(N_{c}\right)$ invariants
[Peng, Hanany, He (2007)], [Djokovic (2006)]

$$
\begin{gathered}
P_{N}(x, y)=\frac{(2 \pi i)^{1-n}}{(1-x)^{N}(1-y)^{N}} \int_{U} \frac{d t_{1}}{t_{1}} \cdots \int_{U} \frac{d t_{N-1}}{t_{N-1}} \prod_{1 \leq k \leq r \leq N-1} \frac{f_{k, r}^{(+)}(1)}{f_{k, r}^{(+)}(x) f_{k, r}^{(-)}(x) f_{k, r}^{(+)}(y) f_{k, r}^{(-)}(y)} \\
f_{k, r}^{(\pm)}(u)=1-u\left(t_{k} t_{k+1} \ldots t_{r}\right)^{ \pm \pm} \\
U=\text { Counterclockwise contour with unit radius }
\end{gathered}
$$

Partition fr at finite N_{c}
No transition at finite T at finite N_{c} in (the scalar sector of) $N=4$ SYM

In string theory, the density of states usually grows exponentially e.g. in flat space, $T_{H}=\frac{1}{4 \pi \sqrt{\alpha^{\prime}}}$

How do they match in view of AdS/CFT?

§ One-Loop dimensions

One-loop partition in
Expansion of $N=4$ partition fin at small λ :

$$
\begin{aligned}
\mathcal{Z} & =\operatorname{tr}\left(e^{-\beta\left(D_{0}+\lambda D_{2}+\ldots\right)+\mu_{i} J_{i}}\right) \\
& =\mathcal{Z}_{0}-2 \lambda \beta \mathcal{Z}_{2}+\ldots \\
\mathcal{Z}_{2}^{M T} & \equiv \operatorname{tr} M T\left(D_{2} e^{-\beta D_{0}+\mu_{i} J_{i}}\right)=\sum_{m, n=0}\left\langle M_{2}\right\rangle_{m, n} x^{m} y^{n}
\end{aligned}
$$

the sum of one-loop dimensions over all multi-traces at fixed charges (m, n)

$$
\left\langle M_{2}\right\rangle_{m, n}=\sum_{\alpha, \beta}\left(M_{2}\right)_{\alpha}^{\beta} \delta_{\beta}^{\alpha}
$$

One-loop mixing

Notation:

Dilatation operator in the SU(2) sector $\mathcal{D}=\sum_{n=0} \lambda^{n} \mathcal{D}_{2 n}=\operatorname{tr}(\omega \bar{W}+z \check{z})-\frac{2 \lambda}{N_{c}}: \operatorname{tr}[\omega, z][\check{W}, \check{z}]:+\ldots$ One-loop mixing matrix: $\mathcal{D}_{2} \mathcal{O}_{\alpha} \equiv \frac{2}{N_{c}}\left(M_{2}\right)_{\alpha}{ }^{\beta} \mathcal{O}_{\beta}$
[Beisert Kristjansen Staudacher (2003)]
Mixing matrix in the permutation basis

$$
\left.\left(M_{2}\right)_{\alpha}^{\beta}=\frac{1}{m!n!} \sum_{i \neq j}^{L} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}\left(\mu \beta^{-1} \mu^{-1}\{\alpha-(i j) \alpha(i j)\} \llbracket i \alpha(j)\right]\right)
$$

$$
\begin{aligned}
\llbracket i j \rrbracket & =(i j) \quad(i \neq j) \\
& =N_{c} \quad(i=j) \quad<-N_{c} \text { dependence }
\end{aligned}
$$

Trace of mixing matrix

$$
\left\langle M_{2}\right\rangle_{m, n}=\frac{1}{m!n!} \sum_{i \neq j} \sum_{\alpha \in S_{L}} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}\left(\mu \alpha^{-1} \mu^{-1}\{\alpha-(i j) \alpha(i j)\}[i \alpha(j)]\right)
$$

Parity of permutations
\rightarrow any odd powers of transpositions cannot become identity (unless N_{c} is finite)
\rightarrow Only the $O\left(N_{c}\right)$ terms survive
The sum of one-loop dimensions is

$$
\begin{aligned}
&\left\langle M_{2}\right\rangle_{m, n}=\frac{N_{c}}{m!n!} \sum_{i \neq j}^{L} \sum_{\alpha \in S_{L}} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}(i \alpha(j)) \times \\
&\left\{\delta_{L}\left(\mu \alpha^{-1} \mu^{-1} \alpha\right)-\delta_{L}\left(\mu \alpha^{-1} \mu^{-1}(i j) \alpha(i j)\right)\right\}
\end{aligned}
$$

Compute the generating $f n$

$$
z_{2}^{M T}(x, y) \equiv \sum_{m, n=0}^{\infty}\left\langle M_{2}\right\rangle_{m, n} x^{m} y^{n}
$$

The sum of one-loop dimensions is

$$
\begin{aligned}
& \left\langle M_{2}\right\rangle_{m, n}=\frac{N_{c}}{m!n!} \sum_{i \neq j}^{L} \sum_{\alpha \in S_{L}} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}(i \alpha(j)) \times \\
& \frac{\left\{\delta_{L}\left(\mu \alpha^{-1} \mu^{-1} \alpha\right)\right.}{\text { 1st term }} \frac{\left.-\delta_{L}\left(\mu \alpha^{-1} \mu^{-1}(i j) \alpha(i j)\right)\right\}}{\text { and term, } \mu_{0}=(i j) \mu}
\end{aligned}
$$

This can be done in 2 ways

$$
\alpha \in S_{L} \Rightarrow \text { Partition form, } \alpha \in \mathbb{Z}_{L} \Rightarrow \text { Totient form }
$$

Strategy: 1st term
Solve: $\sum_{i=j}^{L} \sum_{\alpha \in S_{L}} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}(i \alpha(j)) \delta_{L}\left(\mu \alpha^{-1} \mu^{-1} \alpha\right)$

1) Choose cycle type of $\mu \in S_{m} \times S_{n}$
2) Choose which cycles of μ the (i, j) belong to
3) Solve the δ-function constraints simultaneously

$$
\begin{aligned}
\mu^{-1} & =\prod_{k=1}^{L} \prod_{h=1}^{p_{k}+q_{k}}\left(m_{h, 1}^{(k)} m_{h, 2}^{(k)} \ldots m_{h, k}^{(k)}\right) \\
\alpha^{-1} \mu^{-1} \alpha & =\prod_{k=1}^{L} \prod_{h=1}^{p_{k}+q_{k}}\left(\alpha\left(m_{h, 1}^{(k)}\right) \alpha\left(m_{h, 2}^{(k)}\right) \ldots \alpha\left(m_{h, k}^{(k)}\right)\right)
\end{aligned}
$$

Strategy: and term
Solve: $\sum_{i \neq j}^{L} \sum_{\alpha \in S_{L}} \sum_{\mu \in S_{m} \times S_{n}} \delta_{L}(i \alpha(j)) \delta_{L}\left(\mu_{0} \alpha^{-1} \mu_{0}^{-1} \alpha\right), \underline{\mu_{0}=(i j) \mu}$

1) Choose cycle type of $\mu \in S_{m} \times S_{n}$
2) Choose which cycles of μ the (i, j) belong to
3) Generate various μ_{0} by $\mu_{0}=(i j) \mu$
4) Solve the δ-function constraints simultaneously

$$
\begin{aligned}
\mu_{0}^{-1} & =\prod_{k=1}^{L} \prod_{h=1}^{r_{k}^{\prime}}\left(\tilde{m}_{h, 1}^{(k)} \tilde{m}_{h, 2}^{(k)} \ldots \tilde{m}_{h, k}^{(k)}\right) \\
\alpha^{-1} \mu_{0}^{-1} \alpha & =\prod_{k=1}^{L} \prod_{h=1}^{r_{k}^{\prime}}\left(\alpha\left(\tilde{m}_{h, 1}^{(k)}\right) \alpha\left(\tilde{m}_{h, 2}^{(k)}\right) \ldots \alpha\left(\tilde{m}_{h, k}^{(k)}\right)\right)
\end{aligned}
$$

Results in Partition form
Written as a sum over partitions

$$
\begin{aligned}
& \frac{z_{2}^{M T}(x, y)}{N_{c}}=\sum_{L=0}^{\infty} \sum_{r \vdash L} \prod_{k=1}^{\infty}\left(x^{k}+y^{k}\right)^{r_{k}} x \\
& \left\{L-\sum_{a=1}^{L} \theta_{>}\left(r_{a}\right)-\sum_{a=1}^{L / 2} a\left(r_{a}+1\right) \theta_{>}\left(r_{2 a}\right)\right. \\
& \left.-2 \sum_{a<b}^{L} \theta_{>}(L+1-a-b) \theta_{>}\left(r_{a}\right) \theta_{>}\left(r_{b}\right)-\sum_{a=1}^{L / 2} \theta_{>}\left(r_{a}-1\right)\right\} \\
& \theta_{>}(x)=1(\text { if } x>0), \quad \theta_{>}(x)=0(\text { if } x \leq 0)
\end{aligned}
$$

Results in Tokient form
"plethystic exponential" of single-trace gen. fn.

$$
\begin{aligned}
& z_{2}^{M T}(x, y)=z_{0}^{M T}(x, y) \sum_{k=1}^{\infty} z_{2}^{S T}\left(x^{k}, y^{k}\right) \\
& \frac{z_{2}^{M T}(x, y)}{N_{c}}=2 \prod_{h=1}^{\infty} \frac{1}{1-x^{h}-y^{h}} \sum_{k=1}^{\infty} x \\
&\left\{\sum_{d=1}^{\infty} \operatorname{Tot}(d) \frac{x^{k d} y^{k d}}{1-x^{k d}-y^{k d}}\right. \\
&\left.-\sum_{L=2}^{\infty} \sum_{m=1}^{L-1} x^{k m} y^{k(L-m)} \delta(\operatorname{gcd}(m, L), 1)\right\}
\end{aligned}
$$

If $x=y$, it agrees with Polya's theorem [Spradlin Volovich (2004)]

The agreement of Partition form $=$ Totient form is non-trivial (not proven directly)

$$
\begin{aligned}
& \frac{z_{2}^{M T}(x, y)}{N_{c}}=6 x^{2} y^{2}+\left(10 x^{3} y^{2}+10 x^{2} y^{3}\right) \\
& +\left(26 x^{4} y^{2}+36 x^{3} y^{3}+26 x^{2} y^{4}\right) \\
& +\left(44 x^{5} y^{2}+84 x^{4} y^{3}+84 x^{3} y^{4}+44 x^{2} y^{5}\right) \\
& +\left(84 x^{6} y^{2}+176 x^{5} y^{3}+254 x^{4} y^{4}+176 x^{3} y^{5}+84 x^{2} y^{6}\right)+\ldots
\end{aligned}
$$

Compare with Bethe Ansalz
Single-trace Operators in SU(2) sector at 1-loop
$\Leftrightarrow X X X_{1 / 2}$ spin chain with level-matching

$$
\left(\frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}\right)^{L}=-\prod_{j=1}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad \prod_{k=1}^{M} \frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}=1
$$

Compare with Bethe Ansalz
Single-trace Operators in $S U(2)$ sector at 1 -Loop
$\Leftrightarrow X X X_{1 / 2}$ spin chain with level-matching

$$
\left(\frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}\right)^{L}=-\prod_{j=1}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad \prod_{k=1}^{M} \frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}=1
$$

Complete list of the solutions of $X_{X X} X_{1 / 2}$ model
\rightarrow (Extended) Q-system

$$
\begin{gathered}
Q_{a+1, s} Q_{a-1, s}=Q_{a+1, s+1}^{+} Q_{a, s}^{-}-Q_{a+1, s+1}^{-} Q_{a, s}^{+} \\
Q_{a, s}(u)=\text { polynomial of } u \text { of degree } M_{a, s}
\end{gathered}
$$

[HoO, Nepomechie, Sommese (2013)] [Marboe, Volin (2016)]

Extended Q-system

- Representation of global symmetry (SU(2))
\rightarrow Young diagram of L boxes on (a, s)-plane - Polynomial degree Mas \neq Hook length

Extended Q-system

- Representation of global symmetry (SU(2))
\rightarrow Young diagram of L boxes on (a, s)-plane
- Polynomial degree $M_{a, s} \neq$ Hook length

Momentum-carrying root at $(a, s)=(1,0)$
Energy: $E \propto \frac{Q_{1,0}^{\prime}(i / 2)}{Q_{1,0}(i / 2)}-\frac{Q_{1,0}^{\prime}(-i / 2)}{Q_{1,0}(-i / 2)}$

Comparison
Cautions about Q-system:

- Level-matching
- Exceptional solutions \rightarrow regularize by twist

Exceptional solutions have Bethe roots at $u=i / 2$ or $u=-i / 2$

Comparison
Cautions about Q-system:

- Level-matching
- Exceptional solutions \rightarrow regularize by twist

Cautions about comparison:

- Single-trace \rightarrow Multi-trace
- SU(2) highest weight states \rightarrow all states

Bethe Ansatz with regular Bethe roots describe the highest weight states only

Comparison
Cautions about Q-system:

- Level-matching
- Exceptional solutions \rightarrow regularize by twist

Cautions about comparison:

- Single-trace \rightarrow Multi-trace
- SU(2) highest weight states \rightarrow all states

n	1	2	3	4	5	n	m	1	2	3	4	5
1	0	0	0	0	0		n	1	0	0	0	0

Agreement!

§ Hagedorn temperalure

Grand partition function
Grand partition f_{n} at weak coupling:

$$
\begin{aligned}
\operatorname{tr}_{M T}\left(e^{-\beta D}(\lambda)+\omega_{i} z_{i}\right) & =z_{0}^{M T}(x, y)-\frac{2 \lambda}{N_{c}} \beta z_{2}^{M T}(x, y)+\ldots \\
\text { Set: } x & =e^{-\beta} \tilde{x}, y=e^{-\beta} \tilde{y} \\
z_{0}^{M T}(\beta, \tilde{x}, \tilde{y}) & =\prod_{k=1} \frac{1}{1-e^{-k \beta}\left(\tilde{x}^{k}+\tilde{y}^{k}\right)}
\end{aligned}
$$

Grand partition function Grand partition fin at weak coupling:

$$
\begin{aligned}
\operatorname{Er}_{M T}\left(e^{-\beta D(\lambda)+\omega_{i} J_{i}}\right) & =z_{0}^{M T}(x, y)-\frac{2 \lambda}{N_{c}} \beta z_{2}^{M T}(x, y)+\ldots \\
\operatorname{Set}: x & =e^{-\beta} \tilde{x}, y=e^{-\beta} \tilde{y} \\
z_{0}^{M T}(\beta, \tilde{x}, \tilde{y}) & =\prod_{k=1} \frac{1}{1-e^{-k \beta}\left(\tilde{x}^{k}+\tilde{y}^{k}\right)}
\end{aligned}
$$

Poles at: $T_{k}^{*}=\frac{k}{\log \left(\tilde{x}^{k}+\tilde{y}^{k}\right)}, \quad(k=1,2, \ldots)$ One-loop part has the double-pole at the same position

Singularity of Parkikion fun
Poles at: $T_{k}^{*}=\frac{k}{\log \left(\tilde{x}^{k}+\tilde{y}^{k}\right)}, \quad(k=1,2, \ldots)$
Hagedorn temperature depends on chem. pot.
Look for the smallest value of $T_{k}^{*}>0$ for general chemical potentials (\tilde{x}, \tilde{y})

Singularity of Partition fun
Poles at: $T_{k}^{*}=\frac{k}{\log \left(\tilde{x}^{k}+\tilde{y}^{k}\right)}, \quad(k=1,2, \ldots)$
Hagedorn temperature depends on chem. pot.
Look for the smallest value of $T_{k}^{*}>0$
for general chemical potentials (\tilde{x}, \tilde{y})
$k=1$ is the smallest for $\mathcal{R}_{+}=\{\tilde{x} \geq 0$ and $\tilde{y} \geq 0, \tilde{x}+\tilde{y} \geq 1\}$
$k=2$ is the smallest for $\mathcal{R}_{-}=\left\{\tilde{x} \leq 0\right.$ or $\left.\tilde{y} \leq 0, \tilde{x}^{2}+\tilde{y}^{2} \geq 1\right\}$
$k=p$ is the smallest for

$$
\operatorname{Arg}(\tilde{x})=\frac{2 \pi}{p_{1}}, \operatorname{Arg}(\tilde{y})=\frac{2 \pi}{p_{2}}, p=\operatorname{Lcm}\left(p_{1}, p_{2}\right),\left(p \ll N_{c}^{2}\right)
$$

Singularity of Parkicion fr
Poles at: $T_{k}^{*}=\frac{k}{\log \left(\tilde{x}^{k}+\tilde{y}^{k}\right)}, \quad(k=1,2, \ldots)$
Hagedorn temperature depends on chem. pot.
Adding one-loop corrections:

$$
\begin{aligned}
T_{H}(\lambda) & =\frac{1}{\log (\tilde{x}+\tilde{y})}\left[1+\frac{4 \lambda \tilde{x} \tilde{y}}{(\tilde{x}+\tilde{y})^{2}}\right], \quad(\tilde{x}, \tilde{y}) \in \mathcal{R}_{+} \\
& =\frac{2}{\log \left(\tilde{x}^{2}+\tilde{y}^{2}\right)}\left[1+\frac{4 \lambda \tilde{x}^{2} \tilde{y}^{2}}{\left(\tilde{x}^{2}+\tilde{y}^{2}\right)^{2}}\right], \quad(\tilde{x}, \tilde{y}) \in \mathcal{R}_{-}
\end{aligned}
$$

Plots of $\Omega=-7 \log z$
Plot of Ω at fixed T (Left) or along $\tilde{x}=\tilde{y}$ (Right)

Plots of $\Omega=-T \log z$

- - - - - - - - - - - - - - - Plot of Ω at fixed T (Left) or along $\tilde{x}=\tilde{y}$ (Right)

1st pole
and pole

Conclusion:

- Permutation basis of operators
- Tree-level counting formula
- Sum of one-loop dimensions
- Hagedorn temperature

Outlook:

- Higher loop order
- Larger sector

Hagedorn TBA of [Harmark, Wilhelm (2017)]

- OPE Limit of 4-pe functions

Thank you for your alcencion

