Spectrum for $\mathrm{Y}=0$ brane in planar AdS/CFT

Ryo Suzuki (ITF, Utrecht University)
with Zoltán Bajnok (Hungarian Academy of Science)
Raphael Nepomechie (Univ. Miami) and László Palla (Roland Eötvös Univ.)

Based on JHEP I208 (2012) 149
October 2012

Spectrum for $Y=0$ brane in planar AdS/CFT

Ryo Suzuki (ITF, Utrecht University)
 with Zoltán Bajnok (Hungarian Academy of Science)
 Raphael Nepomechie (Univ. Miami)
 and László Palla (Roland Eötvös Univ.)

Based on JHEP I208 (20I2) 149
October 2012

Boundary

Boundary

AdS/CFT for open and closed strings

AdS/CFT Correspondence

IIB string on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathcal{N}=4 S U(N)$ super Yang-Mills

should make the same prediction in the large N limit
with the identification $\frac{\sqrt{\lambda}}{2 \pi}=\frac{R^{2}}{2 \pi \alpha^{\prime}} \sim \sqrt{N g_{\mathrm{str}}} \leftrightarrow \lambda=N g_{\mathrm{YM}}^{2}$

AdS/CFT Correspondence

IIB string on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathcal{N}=4 S U(N)$ super Yang-Mills should make the same prediction in the large N limit with the identification $\frac{\sqrt{\lambda}}{2 \pi}=\frac{R^{2}}{2 \pi \alpha^{\prime}} \sim \sqrt{N g_{\mathrm{str}}} \leftrightarrow \lambda=N g_{\mathrm{YM}}^{2}$ Strong Weak Duality

Semiclassical string

$$
\lambda \gg 1
$$

SYM perturbation
$\lambda \ll 1$

- Difficulty if we want to study AdS/CFT
- Advantage if we want to apply AdS/CFT

AdS/CFT Correspondence

IIB string on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathcal{N}=4 S U(N)$ super Yang-Mills should make the same prediction in the large N limit with the identification $\frac{\sqrt{\lambda}}{2 \pi}=\frac{R^{2}}{2 \pi \alpha^{\prime}} \sim \sqrt{N g_{\mathrm{str}}} \leftrightarrow \lambda=N g_{\mathrm{YM}}^{2}$

Strong Weak Duality

Semiclassical string

$$
\lambda \gg 1
$$

Integrability + superconformal symmetry

- Possible to test AdS/CFT by the exact computation

Most studied physical observables in AdS/CFT are

Closed string states

Energy of a short spinning string

$$
E(\lambda)
$$

Single-trace operators

Dimension of Konishi multiplet

$$
\begin{gathered}
\operatorname{tr}\left(\Phi^{I} \Phi^{I}\right) \\
\operatorname{tr}\left(Z^{2} W^{2}-(Z W)^{2}\right) \\
\operatorname{tr}\left(D_{+}^{2} Z^{2}-\left(D_{+} Z\right)^{2}\right) \\
\Delta(\lambda)
\end{gathered}
$$

$$
W \equiv \Phi^{1}+i \Phi^{2}, \quad Y \equiv \Phi^{3}+i \Phi^{4}, \quad Z \equiv \Phi^{5}+i \Phi^{6}
$$

Most studied physical observables in AdS/CFT are

Closed string states

Single-trace operators
Energy of a short spinning string

$E(\lambda)$

Dimension of Konishi multiplet

$$
\begin{gathered}
\operatorname{tr}\left(\Phi^{I} \Phi^{I}\right) \\
\operatorname{tr}\left(Z^{2} W^{2}-(Z W)^{2}\right) \\
\operatorname{tr}\left(D_{+}^{2} Z^{2}-\left(D_{+} Z\right)^{2}\right) \\
\Delta(\lambda)
\end{gathered}
$$

Energy of a periodic spin chain state

Exact spectrum via TBA

The exact Konishi dimension

- SYM results up to 5-loop

[Fiamberti, Santambrogio, Sieg, Zanon (2007)] [Velizhanin (2008)]
[Eden, Heslop, Korchemsky, Smirnov, Sokatchev (2012)]

- String results up to l-loop
[Gromov, Serban, Shenderovich, Volin (2011)] [Roiban, Tseytlin (2011)] [Mazzucato, Vallilo (2011)]

Green: SYM, weak 5-loop Blue: TBA, numerics Red: String, strong 1-loop

- Numerical results up to $\lambda \leqslant 2000$
[Gromov, Kazakov, VIeira (2009)] [Frolov (2010)] and others
- Analytic results up to 7-loop at weak coupling
[Bajnok, Janik (2008,2012)] [Bajnok, Janik, Hegedus, Lukowski (2009)] [Arutyunov, Frolov, RS (2010)] [Balog Hegedus (2010)] [Leurent, Serban, Volin (2012)]

Open string sector in AdS/CFT are less studied

- Minimal surface vs. Wilson loop vev

An open string (or disk worldsheet) ending on a stack of N D3 branes

- Spectrum of open string state vs. Determinant-like operators

An open string ending on another rotating single $\mathrm{D}(3)$-brane

Open string sector in AdS/CFT are less studied

- Minimal surface vs. Wilson loop vev

An open string (or disk worldsheet) ending on a stack of N D3 branes

This Talk

- Spectrum of open string state vs. Determinant-like operators

An open string ending on another rotating single $\mathrm{D}(3)$-brane
$=$ (Spherical) Giant gravitons

- Determinant operators correspond to D-branes (without open string)

$$
\begin{gathered}
\operatorname{det} Z \equiv \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{N}}^{i_{N}} \\
\text { Half BPS } \Rightarrow \Delta_{\text {det }}=N
\end{gathered}
$$

- Determinant-like operators correspond to D-branes with open string excitations

$$
\begin{aligned}
& \mathcal{O}_{1} \equiv \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{N-1}}^{i_{N-1}} \chi_{j_{N}}^{i_{N}} \\
& \mathcal{O}_{2} \equiv \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y_{j_{1}}^{i_{1}} \ldots Y_{j_{N-1}}^{i_{N-1}} \chi_{j_{N}}^{i_{N}}
\end{aligned}
$$

Non-BPS $\Rightarrow \Delta\left[\mathcal{O}_{1,2}\right]-N$ is nontrivial

Giant graviton is determinant

- Matching of the residual symmetry

$$
\left[\operatorname{det} Z \leftrightarrow S^{3} \subset S^{5}\right]: S O(6) \rightarrow S O(4) \times S O(2)
$$

- However, multi-traces may also be good because
\checkmark For large operators, multi-traces can mix at large \mathbf{N} \checkmark determinant is a linear combination of multi-traces $\operatorname{det} Z=c\left[1^{N}\right](\operatorname{tr} Z)^{N}+\cdots+c[N] \operatorname{tr} Z^{N}, \quad c[x]=$ constant
- Determinant and sub-determinant do not correlate, nor do maximal and non-maximal giant gravitons
[Witten (1998)] [Balasubramanian, Berkooz, Naqvi, Strassler (2001)] [Corley, Jevicki, Ramgoolam (2001)]

Open string in AdS/CFT from integrability

[Berenstein, Vazquez (2005)] and many others

Energy of open string ending on the D3-brane
$E(\lambda)$
(Subtracted) dimension of determinant-like operator

$\Delta(\lambda)$

One-loop Hamiltonian is integrable

Open string in AdS/CFT from integrability

Energy of open string ending on the D3-brane
(Subtracted) dimension of determinant-like operator

Integrability Method

 Energy of an open spin chain state with integrable boundary conditions

Why boundary?

- New examples of AdS/CFT dictionary by applying integrability methods (TBA/Y-system ...)
- Challenge to study more general integrable models (periodic \rightarrow twist \rightarrow deformation \rightarrow boundary ...)
- Boundary models are intrinsically finite-size (c.f. Casimir effects between parallel plates)

Our goal and strategy

Want to compute the spectrum of an open string ending on the " $\mathrm{Y}=0$ " brane
[Hofman, Maldacena (2007)]

- Boundary Bethe-Yang equations
(Asymptotic Bethe Ansatz equations)
[Galleas (2009)]
- Finite-size corrections (Lüscher formula)
[Correa, Young (2009)] [Bajnok, Palla (2010)]
- Conjecture the exact method (TBA/Y-system)
[Bajnok, Nepomechie, Palla, RS (2012)]

Our goal and strategy

Want to compute the spectrum of an open string ending on the " $Y=0$ " brane

[Hofman, Maldacena (2007)]

- Boundary Bethe-Yang equations (Asymptotic Bethe Ansatz equations)
- Finite-size corrections (Lüscher formula)
- Conjecture the exact method (TBA/Y-system)
[Bajnok, Nepomechie, Palla, RS (2012)]

By conjecturing how to include integrable boundaries from the lessons in periodic (closed string) cases

Plan of Talk

- AdS/CFT for open and closed strings
- Double-row transfer matrix
- The $Y=0$ brane
- Finite-size corrections from Lüscher formula
- Boundary Y-system and boundary TBA
- Conclusion

Integrable models with boundary:

double-row transfer matrix

Integrability in the σ-model on $\mathbf{A d S}_{5} \times \mathbf{S}^{5}$

- This model is classically integrable because the target space is a supercoset
- We break conformal symmetry by a gauge choice
- By taking the large-radius limit, we can define asymptotic states and their S-matrix
- This worldsheet S-matrix is (hopefully) integrable

What is integrability?

Integrable S-matrices satisfy the Yang-Baxter relation

$$
\mathbb{S}_{123}=\mathbb{S}_{12} \mathbb{S}_{13} \mathbb{S}_{23}=\mathbb{S}_{23} \mathbb{S}_{13} \mathbb{S}_{12}
$$

$\mathbb{S}_{i j}: V_{i} \otimes V_{j} \rightarrow V_{j} \otimes V_{i}, \quad$ act trivially on $V_{k}(k \neq i, j)$

What is integrability?

Integrable S-matrices satisfy the Yang-Baxter relation

$$
\mathbb{S}_{123}=\mathbb{S}_{12} \mathbb{S}_{13} \mathbb{S}_{23}=\mathbb{S}_{23} \mathbb{S}_{13} \mathbb{S}_{12}
$$

Many-body S-matrix factorizes into the product of two-body S-matrices with any ordering of the product.

Integrability and Yang-Baxter relation

Yang-Baxter tells that transfer matrices commute

$$
\begin{gathered}
T_{a}(q)=(s) \operatorname{tr}_{V_{a}}\left[\mathbb{S}_{a 1}\left(q, p_{1}\right) \cdots \mathbb{S}_{a N}\left(q, p_{N}\right)\right] \\
\mathbb{T}_{a}=\mathbb{S}_{a 1} \cdots \mathbb{S}_{a N}: V_{a} \otimes V^{\otimes N} \rightarrow V^{\otimes N} \otimes V_{a}
\end{gathered}
$$

$$
T_{a}: V^{\otimes N} \rightarrow V^{\otimes N}, \quad \text { matrix of } \operatorname{dim} V^{N}
$$

Integrability and Yang-Baxter relation

Yang-Baxter tells that transfer matrices commute

Yang-Baxter algebra: $\mathbb{S}_{a b} \mathbb{T}_{a} \mathbb{T}_{b}=\mathbb{T}_{b} \mathbb{T}_{a} \mathbb{S}_{a b}$
Take trace in $V_{a} \otimes V_{b} \quad \Rightarrow \quad\left[T\left(q_{a}\right), T\left(q_{b}\right)\right]=0$

$$
T_{a}(q)=\sum_{n} Q_{n} q^{n} \text { generates conserved charges }\left\{Q_{n}\right\}
$$

Summary of integrability

- Yang-Baxter relation (or algebra)
- Factorized S-matrix
- Transfer matrix generates infinite charges

Transfer matrix is an important quantity in (periodic) integrable models

Summary of boundary integrability

- Boundary Yang-Baxter relation (or algebra)
- Integrable reflection amplitude
- Double-row transfer matrix generates infinite charges

Double-row transfer matrix is important in boundary integrable models

Boundary Yang-Baxter relation

To maintain the integrability at boundary, boundary reflection and bulk scattering must commute

[Sklyanin (1988)]

$$
\mathbb{S}\left(-p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}\left(p_{2}\right)=\mathbb{R}\left(p_{2}\right) \mathbb{S}\left(p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right)
$$

By using $\mathbb{S}(a, b)=\mathbb{S}(-b,-a)$ this becomes

$$
\mathbb{S}\left(p_{1}, p_{2}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}\left(p_{2}\right)=\mathbb{R}\left(p_{2}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right)
$$

Boundary Yang-Baxter relation leads to

 Boundary Yang-Baxter algebra

$$
\mathbb{S}\left(p_{1}, p_{2}\right) \mathbb{T}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{T}\left(p_{2}\right)=\mathbb{T}\left(p_{2}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{T}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right)
$$

However, we cannot just take the trace !

$$
\mathbb{T}\left(p_{1}\right) \mathbb{T}\left(p_{2}\right) \neq \mathbb{T}\left(p_{2}\right) \mathbb{T}\left(p_{1}\right)
$$

Sklyanin combined the right- and left-reflections
[Sklyanin (1988)]

If the S-matrix is transpose invariant $\mathbb{S}_{12}^{t_{1}}=\mathbb{S}_{12}^{t_{2}}$

$$
D(q) \equiv \operatorname{tr}\left[\mathbb{T}_{-}(q) \mathbb{T}_{+}(q)\right] \text { with different } q \text { commute : }
$$

Thus D generates infinite conserved charges

Double-row transfer matrix

$$
D_{a}=\operatorname{tr}_{a}\left[\mathbb{T}_{-} \mathbb{T}_{+}\right]=\operatorname{tr}_{a}\left[\mathbb{S}_{a N} \cdots \mathbb{S}_{a 1} \mathbb{R}^{-} \mathbb{S}_{1 a} \cdots \mathbb{S}_{N a} \mathbb{R}^{+}\right]
$$

- Da is not the "square" of transfer matrix

$$
\mathbb{S}_{a j}: V_{a} \otimes V_{j} \rightarrow V_{j} \otimes V_{a}, \quad \mathbb{S}_{j a}: V_{j} \otimes V_{a} \rightarrow V_{a} \otimes V_{j}
$$

$\mathbb{S}_{a j} \mathbb{S}_{j a}$ is a matrix product

Double-row transfer matrix

$$
D_{a}=\operatorname{tr}_{a}\left[\mathbb{T}_{-} \mathbb{T}_{+}\right]=\operatorname{tr}_{a}\left[\mathbb{S}_{a N} \cdots \mathbb{S}_{a 1} \mathbb{R}^{-} \mathbb{S}_{1 a} \cdots \mathbb{S}_{N a} \mathbb{R}^{+}\right]
$$

- Da is not the "square" of transfer matrix

$$
\mathbb{S}_{a j}: V_{a} \otimes V_{j} \rightarrow V_{j} \otimes V_{a}, \quad \mathbb{S}_{j a}: V_{j} \otimes V_{a} \rightarrow V_{a} \otimes V_{j}
$$

$\mathbb{S}_{a j} \mathbb{S}_{j a}$ is a matrix product

Summary of boundary integrability

- Boundary Yang-Baxter relation (or algebra)
- Integrable reflection amplitude
- Double-row transfer matrix generates infinite charges

Double-row transfer matrix is important in boundary integrable models

The $\mathrm{Y}=0$ brane

Spherical maximal giant gravitons (SMGG)

[McGreevy, Susskind, Toumbas (2000)]
D3-brane in $\mathrm{AdS}_{5} \times \mathbf{S}^{5}$
with a large angular momentum $J=\mathcal{O}(N)$
Spherical \Leftrightarrow "wrap" on $S^{3} \subset S^{5}$
with the angular momentum bound $J \leq N$
Maximal $\Leftrightarrow J=N \Leftrightarrow$ half-BPS state

Spherical maximal giant gravitons are dual to determinants
[Balasubramanian, Berkooz, Naqvi, Strassler (2001)]

$$
\operatorname{det} \Phi \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Open strings on SMGG are dual to determinant-like operators
[Balasubramanian, Huang, Levi, Naqvi (2002)]

$$
\mathcal{O}_{\Phi}(\chi) \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \chi_{i_{m}}^{j_{m}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Spherical maximal giant gravitons (SMGG)

[McGreevy, Susskind, Toumbas (2000)]
D3-brane in $\mathrm{AdS}_{5} \times \mathbf{S}^{5}$ with a large angular momentum $J=\mathcal{O}(N)$

Spherical \Leftrightarrow "wrap" on $S^{3} \subset S^{5}$
with the angular momentum bound $J \leq N$
Maximal $\Leftrightarrow J=N \quad \Leftrightarrow \quad$ half-BPS state

Spherical maximal giant gravitons are dual to determinants
[Balasubramanian, Berkooz, Naqvi, Strassler (2001)]

$$
\operatorname{det} \Phi \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Open strings on SMGG are dual to determinant-like operators
[Balasubramanian, Huang, Levi, Naqvi (2002)]

$$
\mathcal{O}_{\Phi}(\chi) \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \chi_{i_{m}}^{j_{m}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Classification of giant graviton branes

SMGG are classified according to the choice:

$$
\begin{gathered}
\mathrm{S}^{3} \subset \mathrm{~S}^{5}=\left\{|X|^{2}+|Y|^{2}+|Z|^{2}=R^{2}\right\} \\
X=0 \text { or } Y=0 \text { or } Z=0 \cdots
\end{gathered}
$$

SMGG as a boundary condition for a spin chain
$\operatorname{tr}(Z Z \cdots Z Z)$
$\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y^{N-1}(Z Z \cdots Z Z)_{j_{N}}^{i_{N}}$
$\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z^{N-1}(Z Z \cdots Z Z)_{j_{N}}^{i_{N}}$

Periodic
$Y=0$
$Z=0$

Insert Z^{J} to det Φ. The choice Z^{J} breaks the global symmetry

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2 \mid 2)^{2} \ltimes u(1)
$$

which may be broken further by boundary conditions

Classification of giant graviton branes

SMGG are classified according to the choice:

$$
\begin{gathered}
\mathrm{S}^{3} \subset \mathrm{~S}^{5}=\left\{|X|^{2}+|Y|^{2}+|Z|^{2}=R^{2}\right\} \\
X=0 \text { or } Y=0 \text { or } Z=0 \cdots
\end{gathered}
$$

SMGG as a boundary condition for a spin chain
$\operatorname{tr}(Z Z \cdots Z Z)$
$\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y^{N-1}(Z Z \ldots Z Z)_{j_{N}}^{i_{N}}$
$\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z^{N-1}(Z Z \cdots Z Z)_{j_{N}}^{i_{N}}$

Periodic
$Y=0$
$Z=0$

Insert Z^{J} to $\operatorname{det} \Phi$. The choice Z^{J} breaks the global symmetry

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2 \mid 2)^{2} \ltimes u(1)
$$

which may be broken further by boundary conditions

Classification of giant graviton branes

SMGG are classified according to the choice:

$$
\begin{gathered}
\mathrm{S}^{3} \subset \mathrm{~S}^{5}=\left\{|X|^{2}+|Y|^{2}+|Z|^{2}=R^{2}\right\} \\
X=0 \text { or } Y=0 \text { or } Z=0 \cdots
\end{gathered}
$$

SMGG as a boundary condition for a spin chain

$$
\begin{array}{l|l}
\operatorname{tr}(Z Z \cdots Z Z) & \text { Periodic } \\
\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y^{N-1}(Z Z \cdots Z Z)_{j_{N}}^{i_{N}} & Y=0 \\
\epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z^{N-1}(Z Z \cdots Z Z)_{j_{N}}^{i_{N}} & Z=0
\end{array}
$$

Insert Z^{J} to det Φ. The choice Z^{J} breaks the global symmetry

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2 \mid 2)^{2} \ltimes \mathfrak{u}(1)
$$

which may be broken further by boundary conditions

The $Y=0$ and $Z=0$ branes

[Hofman, Maldacena (2007)]
Open string state on the $Y=0$ brane should correspond to

$$
\mathcal{O}_{Y}(\chi) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y_{j_{1}}^{i_{1}} \ldots Y_{j_{N-1}}^{i_{N-1}}\left(Z^{k} \chi Z^{J-k}\right)_{j_{N}}^{i_{N}}
$$

Open string state on the $\mathbb{Z}=0$ brane should correspond to
$\mathcal{O}_{Z}\left(\chi, \chi^{\prime}, \chi^{\prime \prime}\right) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{N-1}}^{i_{N-1}}\left(\chi^{k} \chi^{\prime} Z^{J-k} \chi^{\prime \prime}\right)_{j_{N}}^{i_{N}}$
Unlike spinning strings, giant gravitons extends along the axis of rotation; like a electric dipole moving in the magnetic flux
[McGreevy, Susskind, Toumbas (2000)]

The $Y=0$ and $Z=0$ branes

[Hofman, Maldacena (2007)]
Open string state on the $Y=0$ brane should correspond to

$$
\mathcal{O}_{Y}(\chi) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y_{j_{1}}^{i_{1}} \ldots Y_{j_{N-1}}^{i_{N-1}}\left(Z^{k} \chi Z^{J-k}\right)_{j_{N}}^{i_{N}}
$$

Open string state on the $Z=0$ brane should correspond to
$\mathcal{O}_{Z}\left(\chi, \chi^{\prime}, \chi^{\prime \prime}\right) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{N-1}}^{i_{N-1}}\left(\chi Z^{k} \chi^{\prime} Z^{J-k} \chi^{\prime \prime}\right)_{j_{N}}^{i_{N}}$
Unlike spinning strings, giant gravitons extends along the axis of rotation; like a electric dipole moving in the magnetic flux
[McGreevy, Susskind, Toumbas (2000)]

The $Y=0$ branes

$\mathcal{O}_{Y}(\chi) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y_{j_{1}}^{i_{1}} \ldots Y_{j_{N-1}}^{i_{N-1}}\left(Z^{k} \chi Z^{J-k}\right)_{j_{N}}^{i_{N}}$ Preserves the symmetry $\mathfrak{p s u}(1 \mid 2)^{2}$

No boundary degrees of freedom

$$
\begin{aligned}
& {\left[\mathbb{R}_{Y}, J\right]=0, \forall J \in \mathfrak{p s u}(1 \mid 2)} \\
& \mathbb{R}_{Y}^{-}(p)=R_{0}^{-}(p)^{2}\left(\begin{array}{llll}
e^{-i p / 2} & & & \\
& -e^{i p / 2} & & \\
& & 1 & \\
& & & 1
\end{array}\right)^{\otimes 2}
\end{aligned}
$$

The $Z=0$ branes

$$
\mathcal{O}_{Z}\left(\chi, \chi^{\prime}, \chi^{\prime \prime}\right) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Z_{j_{1}}^{i_{1}} \ldots Z_{j_{N-1}}^{i_{N-1}}\left(\chi Z^{k} \chi^{\prime} Z^{J-k} \chi^{\prime \prime}\right)_{j_{N}}^{i_{N}}
$$

Preserves the symmetry $\mathfrak{p s u}(2 \mid 2)^{2}$
Boundary degrees of freedom $\chi, \chi^{\prime \prime}$
(The determinant factorizes if $\chi, \chi^{\prime \prime}=Z$)

$$
\begin{array}{ll}
\mathbb{R}_{Z}^{-}: V(p) \otimes V_{B} \rightarrow V(-p) \otimes V_{B} & (p>0) \\
\mathbb{R}_{Z}^{+}: V(p) \otimes V_{B} \rightarrow V(-p) \otimes V_{B} & (p<0)
\end{array}
$$

The reflection amplitude \mathbb{R}_{Z} is non-diagonal
Its matrix structure can be determined by the symmetry

Boundary dressing phase

Reflection amplitude for the $\mathbf{Y}=0$ brane

$$
\mathbb{R}_{Y}^{-}(p)=R_{0}^{-}(p)^{2}\left(\begin{array}{llll}
e^{-i p / 2} & & & \\
& -e^{i p / 2} & & \\
& & 1 & \\
& & & 1
\end{array}\right)^{\otimes 2}
$$

The scalar factor is fixed by requiring that the total scattering phase of the singlet state is trivial after crossing [Beisert (2005)] [Hofman, Maldacena (2007)]

\Rightarrow Boundary crossing equation

$$
R_{0}^{-}(p)^{2} R_{0}^{-}(-p)^{2}=\frac{x^{+}+\frac{1}{x^{+}}}{x^{-}+\frac{1}{x^{-}}} \sigma(p,-p)^{2}
$$

A solution consistent with various limits

$$
R_{0}^{-}(p)^{2}=-e^{-i p} \sigma(p,-p)
$$

[Chen, Correa (2007)]

Finite-Size corrections from Lüscher formula

Bethe Yang equations

- Transfer matrix is related to Bethe Yang equations, whose solution captures the asymptotic energy

$$
\begin{aligned}
& =\left.e^{-i J q} T(q \mid \vec{p})\right|_{q=p_{k}} \Leftrightarrow-1=e^{-i J p_{K}} \prod_{j=1}^{N} S\left(p_{k}, p_{j}\right) \\
& E_{\text {asymptotic }}=\sum_{i=1}^{N} \sqrt{Q_{i}^{2}+4 g^{2} \sin ^{2} \frac{p_{i}}{2}}, \quad g=\frac{\sqrt{\lambda}}{2 \pi}
\end{aligned}
$$

Boundary Bethe Yang equations

- Double-row transfer matrix is related to Boundary Bethe Yang equations, whose solution captures the asymptotic energy

$-1=\left.e^{-2 i q J} D(q \mid \vec{p})\right|_{q=p_{k}} \Leftrightarrow$ $-1=e^{-i 2 J p_{K}} \prod_{j=1}^{N} S\left(p_{k}, p_{j}\right) R^{-}\left(p_{k}\right) \prod_{j=1}^{N} S\left(p_{j},-p_{k}\right) R^{+}\left(-p_{k}\right)$

$$
E_{\text {asymptotic }}=\sum_{i=1}^{2 N} \sqrt{Q_{i}^{2}+4 g^{2} \sin ^{2} \frac{p_{i}}{2}}
$$

- Bethe-Yang equations determine the asymptotic spectrum of closed string
- Boundary Bethe-Yang equations determine the asymptotic spectrum of open string
- Finite J corrections come from virtual particles in the mirror kinematics

$\left(\mathcal{E}_{Q}, p_{Q}\right)=\left(-i \widetilde{p}_{Q},-i \widetilde{\mathcal{E}}_{Q}\right), \quad \widetilde{\mathcal{E}}_{Q}=2 \operatorname{arcsinh}$

$$
\left(\frac{\sqrt{Q^{2}+\widetilde{p}_{Q}^{2}}}{2 g}\right)
$$

Finite-size corrections to closed spectrum

- Lüscher formula was the main tool to study the finite-size corrections to the closed string spectrum
[Lüscher (I986)] [Janik Łukowski (2007)]

- Lüscher formula is written in terms of transfer matrices

$$
\begin{aligned}
\delta E= & -\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\circ}, \quad Y_{Q}^{\circ}=e^{-\tilde{\varepsilon}_{Q} J} T_{Q}^{2} \\
& \text { Sum over virtual particles }
\end{aligned}
$$

Finite-size corrections to closed spectrum

- Lüscher formula was the main tool to study the finite-size corrections to the closed string spectrum

[Lüscher (1986)] [Janik Łukowski (2007)]
- Written in terms of transfer matrices

$$
\delta E=-\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\circ}, \quad Y_{Q}^{\circ}=e^{-\tilde{\varepsilon}_{Q} J} \underline{T_{Q}^{2}}
$$

Sum over virtual particles

Finite-size corrections to open spectrum

- Boundary Lüscher formula has been conjectured and tested
[Correa, Young (2009)] [Bajnok, Palla (2010)]

- Written in terms of double-row transfer matrices

$$
\delta E=-\underbrace{-\sum_{0}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\circ}, \quad Y_{Q}^{\circ}=e^{-2 \widetilde{\varepsilon}_{Q} J} D_{Q}^{2}}_{\text {Sum over virtual particles }}
$$

Finite-size corrections to open spectrum

- Boundary Lüscher formula has been conjectured and tested
[Correa, Young (2009)] [Bajnok, Palla (2010)]

- Written in terms of double-row transfer matrices

$$
\delta E=-\underbrace{\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\circ}, \quad Y_{Q}^{\circ}=e^{-2 \widetilde{\varepsilon}_{Q} J} \frac{D_{Q}^{2}}{}}_{\text {Sum over virtual particles }}
$$

Prediction of boundary Lüscher formula

- The $Y=0$ ground state is BPS. Since its energy is protected, finite-size corrections vanish.

$$
\delta E\left[\mathcal{O}_{Y}(1)\right]=0
$$

- The finite-size corrections to the energy of $\mathrm{Y}=0$ single-particle states are nontrivial.

$$
\delta E\left[\mathcal{O}_{Y}(Y)\right] \approx g^{12} \cdot 192\left(4 \zeta_{5}-7 \zeta_{9}\right), \quad \text { for }(J, n)=(2,1)
$$

This is six-loop results in N=4 SYM. Field theoretical computation has been performed for $Z=0$ at four loop, but not $Y=0$. [Correa, Young (2009)]

$$
\mathcal{O}_{Y}(\chi) \sim \sum_{k} \epsilon_{i_{1} \ldots i_{N}} \epsilon^{j_{1} \ldots j_{N}} Y_{j_{1}}^{i_{1}} \ldots Y_{j_{N-1}}^{i_{N-1}}\left(Z^{k} \chi Z^{J-k}\right)_{j_{N}}^{i_{N}}
$$

Prediction of boundary Lüscher formula

- For general $Y=0$ multi-particle states, we need to diagonalize D_{Q} by means of algebraic Bethe Ansatz
[Arutyunov, de Leeuw, RS, Torrielli (2009)] [Galleas (2009)]

- However, the computation of the fully general case is too complicated to perform
- We conjecture the generating function for the eigenvalues of D_{Q} as in the periodic case

Generating function for the eigenvalues of D_{Q}

The $\operatorname{su}(2)$ sector, case of $Q=1 \quad$ [Galleas (2009)]

$$
D_{1}=\rho_{1} \Lambda_{1}+\rho_{2} \Lambda_{2}-\rho_{3} \Lambda_{3}-\rho_{4} \Lambda_{4}
$$

Bulk factor

$$
\Lambda_{1}=1, \quad \Lambda_{2}=\frac{\mathcal{R}^{(-)+}}{\mathcal{R}^{(+)+}+\mathcal{B}^{(-)-}} \frac{\mathcal{B}^{(+)-}}{}, \quad \Lambda_{3}=\Lambda_{4}=\frac{\mathcal{R}^{(-)+}}{\mathcal{R}^{(+)+}}
$$

Boundary factor

$$
\rho_{1}=\rho_{3}=\frac{\left(1+\left(x^{-}\right)^{2}\right)\left(x^{-}+x^{+}\right)}{2 x^{+}\left(1+x^{+} x^{-}\right)}, \quad \rho_{2}=\rho_{4}=\frac{x^{-}\left(x^{-}+x^{+}\right)\left(1+\left(x^{+}\right)^{2}\right)}{2\left(x^{+}\right)^{2}\left(1+x^{-} x^{+}\right)},
$$

Notation:

$$
\begin{gathered}
\mathcal{R}^{(\pm)}=\prod_{i=1}^{N}\left(x(p)-x^{\mp}\left(p_{i}\right)\right)\left(x(p)-x^{\mp}\left(-p_{i}\right)\right), \quad \mathcal{B}^{(\pm)}=\prod_{i=1}^{N}\left(\frac{1}{x(p)}-x^{\mp}\left(p_{i}\right)\right)\left(\frac{1}{x(p)}-x^{\mp}\left(-p_{i}\right)\right) \\
x(u)+\frac{1}{x(u)}=\frac{u}{g}, \quad p_{Q}(u)=-i \log \frac{x^{[+Q]}}{x^{[-Q]}, \quad f^{[n]}(u)=f\left(u+\frac{i n}{2}\right)} \\
g=\frac{\sqrt{\lambda}}{2 \pi} \text { is coupling constant, } x=x(u) \text { or } x=x(p)
\end{gathered}
$$

Generating function for the eigenvalues of D_{Q}

The $\operatorname{su}(2)$ sector, case of $Q=1$ [Galleas (2009)]

$$
\begin{gathered}
D_{1}=\rho_{1} \Lambda_{1}+\rho_{2} \Lambda_{\mathbf{2}}-\rho_{3} \Lambda_{\mathbf{3}}-\rho_{4} \Lambda_{4} \\
\Lambda_{\mathbf{1}}=1, \Lambda_{\mathbf{2}}=\frac{\mathcal{R}^{(-)+} \mathcal{B}^{(-)-}}{\mathcal{R}(+)+}, \quad \Lambda_{\mathbf{B}}=\Lambda_{4}=\frac{\left.\mathcal{R}^{(-)+}\right)-}{\mathcal{R}(+)+} \\
\rho_{1}=\rho_{3}=\frac{\left(1+\left(x^{-}\right)^{2}\right)\left(x^{-}+x^{+}\right)}{2 x^{+}\left(1+x^{+}+x^{-}\right)}, \quad \rho_{2}=\rho_{4}=\frac{x^{-(}\left(x^{-}+x^{+}\right)\left(1+\left(x^{+}\right)^{2}\right)}{2\left(x^{+}\right)^{2}\left(1+x^{-x} x^{+}\right)},
\end{gathered}
$$

Notation:

$$
\begin{gathered}
\mathcal{R}^{(\pm)}=\prod_{i=1}^{N}\left(x(p)-x^{\mp}\left(p_{i}\right)\right)\left(x(p)-x^{\mp}\left(-p_{i}\right)\right), \quad \mathcal{B}^{(\pm)}=\prod_{i=1}^{N}\left(\frac{1}{x(p)}-x^{\mp}\left(p_{i}\right)\right)\left(\frac{1}{x(p)}-x^{\mp}\left(-p_{i}\right)\right) \\
x(u)+\frac{1}{x(u)}=\frac{u}{g}, \quad p_{Q}(u)=-i \log \frac{x^{[+Q]}}{x^{[-Q]}}, \quad f^{[n]}(u)=f\left(u+\frac{i n}{2}\right) \\
g=\frac{\sqrt{\lambda}}{2 \pi} \text { is coupling constant, } x=x(u) \text { or } x=x(p)
\end{gathered}
$$

Generating function for the eigenvalues of D_{Q}

The $\operatorname{su}(2)$ sector, case of $Q=1$ [Galleas (2009)]

$$
\begin{gathered}
D_{1}=\rho_{1} \Lambda_{1}+\rho_{2} \Lambda_{\mathbf{2}}-\rho_{3} \Lambda_{\mathbf{3}}-\rho_{4} \Lambda_{4} \\
\Lambda_{\mathbf{1}}=1, \Lambda_{\mathbf{2}}=\frac{\mathcal{R}^{(-)+} \mathcal{B}^{(-)-}}{\mathcal{R}(+)+}, \quad \Lambda_{\mathbf{B}}=\Lambda_{4}=\frac{\left.\mathcal{R}^{(-)+}\right)-}{\mathcal{R}(+)+} \\
\rho_{1}=\rho_{3}=\frac{\left(1+\left(x^{-}\right)^{2}\right)\left(x^{-}+x^{+}\right)}{2 x^{+}\left(1+x^{+}+x^{-}\right)}, \quad \rho_{2}=\rho_{4}=\frac{x^{-(}\left(x^{-}+x^{+}\right)\left(1+\left(x^{+}\right)^{2}\right)}{2\left(x^{+}\right)^{2}\left(1+x^{-x} x^{+}\right)},
\end{gathered}
$$

Notation:

$$
\begin{gathered}
\mathcal{R}^{(\pm)}=\prod_{i=1}^{N}\left(x(p)-x^{\mp}\left(p_{i}\right)\right)\left(x(p)-x^{\mp}\left(-p_{i}\right)\right), \quad \mathcal{B}^{(\pm)}=\prod_{i=1}^{N}\left(\frac{1}{x(p)}-x^{\mp}\left(p_{i}\right)\right)\left(\frac{1}{x(p)}-x^{\mp}\left(-p_{i}\right)\right) \\
x(u)+\frac{1}{x(u)}=\frac{u}{g}, \quad p_{Q}(u)=-i \log \frac{x^{[+Q]}}{x^{[-Q]}, \quad f^{[n]}(u)=f\left(u+\frac{i n}{2}\right)} \\
g=\frac{\sqrt{\lambda}}{2 \pi} \text { is coupling constant, } x=x(u) \text { or } x=x(p)
\end{gathered}
$$

Generating function for the eigenvalues of D_{Q}

By using the eigenvalue of $Q=1$

$$
D_{1}=\rho_{1} \Lambda_{1}+\rho_{2} \Lambda_{2}-\rho_{3} \Lambda_{3}-\rho_{4} \Lambda_{4}
$$

the generating function for general Q is given by

$$
\begin{aligned}
\tilde{\mathcal{W}}^{-1}= & \left(1-\mathcal{D} \rho_{1} \Lambda_{1} \mathcal{D}\right)\left(1-\mathcal{D} \rho_{3} \Lambda_{3} \mathcal{D}\right)^{-1}\left(1-\mathcal{D} \rho_{4} \Lambda_{4} \mathcal{D}\right)^{-1}\left(1-\mathcal{D} \rho_{2} \Lambda_{2} \mathcal{D}\right) \\
= & \sum_{Q}(-1)^{Q} \mathcal{D}^{Q} D_{Q} \mathcal{D}^{Q}
\end{aligned}
$$

Generating function for the eigenvalues of D_{Q}

By using the eigenvalue of $Q=1$

$$
D_{1}=\rho_{1} \Lambda_{1}+\rho_{2} \Lambda_{2}-\rho_{3} \Lambda_{3}-\rho_{4} \Lambda_{4}
$$

the generating function for general Q is given by

$$
\begin{aligned}
\tilde{\mathcal{W}}^{-1}= & \left(1-\mathcal{D} \rho_{1} \Lambda_{1} \mathcal{D}\right)\left(1-\mathcal{D} \rho_{3} \Lambda_{3} \mathcal{D}\right)^{-1}\left(1-\mathcal{D} \rho_{4} \Lambda_{4} \mathcal{D}\right)^{-1}\left(1-\mathcal{D} \rho_{2} \Lambda_{2} \mathcal{D}\right) \\
= & \sum_{Q}(-1)^{Q} \mathcal{D}^{Q} D_{Q} \mathcal{D}^{Q} \\
& \quad \text { where } \mathcal{D}=e^{-\frac{i}{2} \partial_{u}} \quad \Leftrightarrow \mathcal{D} f(u)=f^{-}(u) \mathcal{D}
\end{aligned}
$$

$D_{Q}=D_{Q, 1}$ corresponds to Q symmetric rep. of $\mathfrak{p s u}(2 \mid 2)$
$D_{1, Q}$ for Q antisymmetric reps. of $p s u(2 \mid 2)$ are generated by $\tilde{\mathcal{W}}$
We checked $D_{1,1}, D_{2,1}, D_{1,2}$ by direct computation

- Using the generating function we predicted the finite-size corrections to the energy of various $\mathrm{Y}=0$ (single-particle) states, e.g.

$$
\begin{aligned}
\delta E\left[\mathcal{O}_{Y}(X)\right] \approx & -2^{5} \cdot g^{20}\left[-2^{3} \cdot 7 \cdot(99-70 \sqrt{2}) \zeta_{9}-2(6765-4785 \sqrt{2}) \zeta_{11}\right. \\
& \left.-2002(5 \sqrt{2}-7) \zeta_{15}+(7293-4862 \sqrt{2}) \zeta_{17}\right], \quad \text { for }(J, n)=(2,1)
\end{aligned}
$$

- The result can be generalized to the full sector of $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Boundary Y-system and boundary TBA

Generating function and T-system

$$
\tilde{\mathcal{W}}^{-1}=\sum_{a}(-1)^{a} \mathcal{D}^{a} D_{a, 1} \mathcal{D}^{a}, \quad \tilde{\mathcal{W}}=\sum_{s} \mathcal{D}^{s} D_{1, s} \mathcal{D}^{s}
$$

- The generated transfer matrices solve the $s u(2 \mid 2)^{2}$ T-system

$$
D_{a, s}^{+} D_{a, s}^{-}=D_{a-1, s} D_{a+1, s}+D_{a, s-1} D_{a, s+1}
$$

- We conjecture that they provide the asymptotic solutions of boundary TBA equations which gives the exact spectrum of $Y=0$ states

T-system and Y-system

The double-row transfer matrices satisfy asymptotic T-system

$$
T_{a, s}^{+} T_{a, s}^{-}=T_{a+1, s} T_{a-1, s}+T_{a, s+1} T_{a, s-1}
$$

Introduce Y-functions $\quad Y_{a, s}=\frac{T_{a, s+1} T_{a, s-1}}{T_{a+1, s} T_{a-1, s}}$

$$
\text { Y-system } \frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a-1, s} Y_{a+1, s}}=\frac{\left(1+Y_{a, s+1}\right)\left(1+Y_{a, s-1}\right)}{\left(1+Y_{a-1, s}\right)\left(1+Y_{a+1, s}\right)}
$$

The same structure as in the closed string case ! cf. [Behrend, Pearce, O’Brien (1995)] [Otto Chui, Mercat, Pearce (2001)]

Exact energy (for open strings)

$$
E_{Q}=\sum_{i=1}^{N}\left(\mathcal{E}_{Q_{i}}\left(p_{i}\right)+\mathcal{E}_{Q_{i}}\left(-p_{i}\right)\right)-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q, 0}\right)
$$

T-system and Y-system

The double-row transfer matrices satisfy asymptotic T-system

$$
T_{a, s}^{+} T_{a, s}^{-}=T_{a+1, s} T_{a-1, s}+T_{a, s+1} T_{a, s-1}
$$

Introduce Y-functions $\quad Y_{a, s}=\frac{T_{a, s+1} T_{a, s-1}}{T_{a+1, s} T_{a-1, s}}$

$$
Y \text {-system } \frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a-1, s} Y_{a+1, s}}=\frac{\left(1+Y_{a, s+1}\right)\left(1+Y_{a, s-1}\right)}{\left(1+Y_{a-1, s}\right)\left(1+Y_{a+1, s}\right)}
$$

Mirror trick with boundary

- Mirror trick for periodic TBA

Extremization condition for the "mirror" free energy is called TBA equations

Typically $\log Y_{a}=V_{a}+\log \left(1+Y_{b}\right) \star K_{b a}$

Mirror trick with boundary

- Mirror trick for boundary TBA

Extremize the mirror free energy with the driving term

$$
V_{\ell, r}=\log \left(\left\langle B_{\ell} \mid n\right\rangle\left\langle n \mid B_{r}\right\rangle\right)
$$

[Leclair, Mussardo, Saleur, Skorik (1995)]
N.B. Such term often disappears when we derive Y-system from TBA

Mirror trick with boundary

- Problems to derive the boundary TBA

However, the boundary states $\left|B_{\ell, r}\right\rangle$ are written in the Zamolodchikov-Faddeev basis instead of the Bethe Ansatz basis

These two bases are related non-trivially for the integrable models with non-diagonal S-matrix

Hence it is difficult to compute $\left\langle n \mid B_{\ell, r}\right\rangle$ and to derive BTBA in the AdS/CFT setup

From boundary Y-system to BTBA

- We may still conjecture BTBA for $Y=0$ brane
- BTBA should be same as the TBA for closed strings except for the source terms
- The source term can often be fixed by the asymptotic data
- In other words, we integrate (boundary) Ysystem with (asymptotic) discontinuity relations to get/define BTBA

Exact energy for $\boldsymbol{Y}=0$ and $\boldsymbol{Y}=0 \& \bar{Y}=0$

- Since $\mathrm{Y}=0$ brane is BPS, the exact ground state energy vanishes
- More interesting to study non-BPS ground states

$$
\text { e.g. } Y=0 \text { on the left, } \bar{Y}=0 \text { on the right }
$$

- This corresponds to changing the supertrace to the trace
- Open tachyon in the spectrum

Konishi energy $E \approx 2 \lambda^{1 / 4}=2 \frac{R}{\sqrt{\alpha^{\prime}}}$
Open tachyon energy $E \approx-\lambda^{1 / 4}$?
Need to solve BTBA numerically

Conclusion

Conclusion

- Studied AdS/CFT for open strings ending on SMGG by using integrability methods
- Conjectured generating function for the double-row transfer matrix
- Y-system for $Y=0$ brane is same as Y-system for closed strings

Future directions

- Formulation of BTBA and numerical solution
- Small angle limit and analytic solution
- Rigorous derivation of integrability method
- $Z=0$ and other types of boundary conditions

Conclusion

- Studied AdS/CFT for open strings ending on SMGG by using integrability methods
- Conjectured generating function for the double-row transfer matrix
- Y-system for $Y=0$ brane is same as Y-system for closed strings

Future directions

- Formulation of BTBA and numerical solution
- Small angle limit and analytic solution
- Rigorous derivation of integrability method
- Z=0 and other types of boundary conditions

Thank you for attention

