

Exact tachyon spectrum in AdS/CFT

Ryo Suzuki

(Marie-Curie fellow, Mathematical Institute, Oxford) June 2014

Based on JHEP03(2014)055 [arXiv:1312.3900] in collaboration with Zoltán Bajnok, Nadav Drukker, Árpád Hegedűs, Raphael Nepomechie, László Palla, Christoph Sieg

Tachyon and instability

Lagrangian density of a complex-scalar QFT

 $\mathcal{L} = \left|\partial_\mu \phi
ight|^2 - V(\phi, ar \phi)$

The 1st derivative defines the vacuum, the 2nd the mass When the mass is pure imaginary, the corresponding

particle is called tachyon, and the extremum is unstable

Tachyon and instability

Lagrangian density of a complex-scalar QFT

 $\mathcal{L} = \left|\partial_\mu \phi
ight|^2 - V(\phi, ar \phi)$

The 1st derivative defines the vacuum, the 2nd the mass When the mass is pure imaginary, the corresponding particle is called tachyon, and the extremum is unstable

 $(mass)^2 > 0$

 $(mass)^2 < 0$

Brane-antibrane system

D-brane & D-antibrane $(D-\overline{D})$ system in the flat spacetime is an example of unstable state in string theory

D-brane & D-antibrane and open strings in between in the curved spacetime (AdS $_5 \times S^5$) are less well-understood

$AdS_5 \times S^5$ is the primary example of AdS/CFT

Superstring theoryStack ofon $AdS_5 \times S^5$ N D3-branes

 $\mathcal{N}=4$ 4dim SU(N) super Yang-Mills

$$N
ightarrow\infty,~g_s
ightarrow 0$$

$$\lambda = Ng_s$$

 $N
ightarrow\infty,~g_{
m YM}
ightarrow 0$

$$\lambda = Ng_{
m YM}^2$$

$AdS_5 \times S^5$ is the primary example of AdS/CFT

<u>Our setup</u> Add another "giant graviton" D3-brane which extends in the transversal directions to stack branes. On the left figure, it wraps on RxS^3 inside $AdS_5 x S^5$.

$AdS_5 \times S^5$ is the primary example of AdS/CFT

<u>Our setup</u> Add another "giant graviton" D3-brane which extends in the transversal directions to stack branes. On the left figure, it wraps on RxS³ inside AdS₅ x S^{5.}

Add a charge-conjugate of the "giant graviton" D3-brane

The energy of an open string in $AdS_5 \times S^5$ ending on a pair of "giant-graviton" D-D branes

should be dual to the dimension of a determinant-like operator in 4D SU(N) $\mathcal{N}=4$ super Yang-Mills theory $\mathcal{O}_{Y,\overline{Y}}[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} \times$ $Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$

The energy of an open string in $AdS_5 \times S^5$ ending on a pair of "giant-graviton" D-D branes

should be dual to the dimension of a determinant-like operator in 4D SU(N) \mathcal{N} =4 super Yang-Mills theory

$$\mathcal{O}_{Y,\overline{Y}}[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} \times Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$$

Hope: demonstrate the duality using integrability

Integrability Predictions

The spectral problem at large N is now "solvable" through (Asymptotic/Thermodynamic) Bethe Ansatz

 $E_{ ext{string}}(\lambda) \stackrel{\sim}{\longleftarrow} E_{ ext{ABA}}(\lambda) ext{ or } E_{ ext{TBA}}(\lambda) \stackrel{\sim}{\longrightarrow} \Delta_{ ext{SYM}}(\lambda)$

We want to solve TBA; i.e. obtain $E_{\text{TBA}}(\lambda)$

To do

 $E_{ ext{string}}(\lambda) \stackrel{\sim}{\longleftarrow} E_{ ext{ABA}}(\lambda) ext{ or } E_{ ext{TBA}}(\lambda) \stackrel{\sim}{\longrightarrow} \Delta_{ ext{SYM}}(\lambda)$

We propose BTBA equations

(Boundary Thermodynamic Bethe Ansatz)

and solve them numerically

 $\mathcal{O}_{Y,\overline{Y}}[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$

However, the DDbar system should contain open tachyons. Indeed, integrability method *apparently* predicts singularity

cf. closed tachyons and non-conformality, [Dymarsky, Klebanov, Roiban] hep-th/0509132 [Fokken, Sieg, Wilhelm] 1308.4420 cf. examples of a singular TBA energy [Frolov, RS] 0906.0499 [de Leeuw, van Tongeren] 1201.1451

Plan of Talk

- - \checkmark Introduction
 - Integrability and AdS/CFT
 - Determinants and giant-gravitons
 - BTBA equations and energy bound
 - Summary and outlook

Integrability and AdS/CFT

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

BILL SUTHERLAND

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

Working definition

- I. Compute physical quantities
- 2. Find infinite-dimensional symmetry
- 3. Conjecture "Bethe-Ansatz" formula
- 4. Check your conjecture -- agreement!

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

Working definition

- I. Compute physical quantities
- 2. Find infinite-dimensional symmetry
- 3. Conjecture "Bethe-Ansatz" formula
- 4. Check your conjecture -- agreement!

Integrability in string theory

The integrability method is an alternative to the RNS formalism when the background spacetime contains D-branes.

Integrability in the $\sigma\text{-model}$ on $AdS_5 \, x \, S^5$

String theory reduces to a 2d σ -model at small g_s and large N

Ramond-Neveu-Schwarz formalism (worldsheet susy manifest)

✓ Green-Schwarz formalism (spacetime susy manifest)

$$S_{
m GS} = -rac{\sqrt{\lambda}}{4\pi}\int d^2\sigma\, G_{MN}\,\partial Z^M\partial Z^N + \ldots, \quad Z^M = (x^m, heta_lpha^I)$$

On AdS₅×S⁵, GS action has the susy completion as a supercoset σ -model

$$ext{AdS}_5 imes ext{S}^5 + ext{fermions} = rac{PSU(2,2|4)}{SO(4,1) imes SO(5)} ~ \curvearrowleft ~ \mathbb{Z}_4$$

$$S_{
m coset} = -rac{\sqrt{\lambda}}{4\pi}\int d^2\sigma\,{
m Str}\left[\gamma^{lphaeta}A^{(2)}_{lpha}A^{(2)}_{eta}\pm\epsilon^{lphaeta}A^{(1)}_{lpha}A^{(3)}_{eta}
ight]$$

 $\mathfrak{g}\in SU(2,2|4), \quad A=-\mathfrak{g}^{-1}d\mathfrak{g}=A^{(0)}+A^{(1)}+A^{(2)}+A^{(3)},$

[Metsaev Tseytlin] (1998)

Integrability in the $\sigma\text{-model}$ on $AdS_5\,x\,S^5$

The supercoset σ-model is classically integrable; We determine the (asymptotic) spectrum via the S-matrix bootstrap assuming quantum integrability

- First, break worldsheet conformal symmetry by a gauge choice (worldsheet circumference = string angular momentum on S⁵)
- Second, take the large-volume (asymptotic) limit;

we can define asymptotic states and their worldsheet S-matrix

[Bena Polchinski Roiban] (2003) [Hofman Maldacena] (2006) and others

$\mathcal{N}=4$ SU(N) Super Yang-Mills

 $S_{ ext{bare}}^{\mathcal{N}=4} = rac{1}{g_{ ext{YM}}^2} \int d^4x \operatorname{Tr}\left[rac{1}{4}F_{\mu
u}F^{\mu
u} + rac{1}{2}D_\mu\Phi_m D^\mu\Phi_m - rac{1}{4}[\Phi_m,\Phi_n]^2 + ext{fermions}
ight]$

As a SCFT, an interesting local observable of $\mathcal{N}=4$ SYM is the anomalous dimension of gauge-invariant (single-trace) non-BPS operators $\langle \mathcal{O}_a(x)\mathcal{O}_b(0)\rangle = \frac{Z_{ab}}{|x|^{2\Delta_0}} \rightarrow \langle \mathcal{O}_{a'}(x)\mathcal{O}_{b'}(0)\rangle = \frac{\delta_{a'b'}}{|x|^{2\Delta_{a'}}}, \quad \Delta_{a'} = \Delta_0 + \gamma_{a'}$ Scaling transformation: $(x, \Lambda_{\rm UV}) \rightarrow (\lambda x, \lambda^{-1}\Lambda_{\rm UV}), \quad Z(\Lambda_{\rm UV}) \rightarrow \lambda^{-\gamma} Z(\Lambda_{\rm UV})$

The one-loop dilatation operator in the scalar sector is

 $\mathcal{D}_{1 ext{-loop}} = rac{dZ}{d\log\Lambda_{ ext{UV}}} \, Z^{-1} = rac{-\lambda}{16\pi^2 N} \left(ext{tr} : \left[\Phi_m, \Phi_n
ight] \left[\check{\Phi}_m, \check{\Phi}_n
ight] : + rac{1}{2} \, ext{tr} : \left[\Phi_m, \check{\Phi}_n
ight]^2 :
ight)$

This produces the operator mixing through algebraic rules of Φ , Φ -check's $\operatorname{tr}(A \check{\Phi}_m B \Phi_n) = \delta_{mn} \operatorname{tr} A \operatorname{tr} B$, $\operatorname{tr}(A \check{\Phi}_m) \operatorname{tr}(\Phi_n B) = \delta_{mn} \operatorname{tr}(A B)$

[Minahan Zarembo (2002)] [Beisert Kristjansen Staudacher (2003)]

$\mathcal{N}=4$ SYM and spin chain

In the large N limit, the \mathcal{N} =4 SYM dilatation operator reduces to the Hamiltonian of an integrable spin chain tr Z^L (half-BPS operator) = Spin-chain ground state

$$\mathcal{D}_{1\text{-loop}} = \frac{-\lambda}{16\pi^2 N} \left(\text{tr} : [\Phi_m, \Phi_n] \left[\check{\Phi}_m, \check{\Phi}_n \right] : + \frac{1}{2} \text{tr} : \left[\Phi_m, \check{\Phi}_n \right]^2 : \right)$$

$$\mathcal{D}_{1\text{-loop}} \Big|_L = \frac{\lambda}{16\pi^2} \sum_{l=1}^L \left(2 - 2P_{l,l+1} + K_{l,l+1} \right) \Big|, \qquad \begin{cases} P_{l,l+1} &= \delta_{m_l}^{n_{l+1}} \delta_{m_{l+1}}^{n_l} \\ K_{l,l+1} &= \delta_{m_l,m_{l+1}} \delta^{n_l,n_{l+1}} \end{cases}$$
Can be diagonalized by Bethe Ansatz
$$\vec{Y} = \vec{\Phi}_5 + i\Phi_6$$

$$Y = \Phi_3 + i\Phi_4$$

$\mathcal{N}=4$ SYM and spin chain

- Symmetry almost determines the dispersion and S-matrix, and allows us to propose all-loop (asymptotic) Bethe Ansatz
- Global symmetry of $\mathcal{N}=4$ SYM = $\mathfrak{psu}(2,2|4)$
- The choice of vacuum as tr Z^L breaks it to $\mathfrak{psu}(2|2)^2 \times \mathbb{R}$ $\mathfrak{psu}(2,2|4) \rightarrow \mathfrak{psu}(2|2)^2 \ltimes \mathbb{R} \sim (E = \Delta, S_1, S_2, J_1, J_2, L)$
- The residual global symmetry enhances to $\mathfrak{psu}(2|2)^2 \times \mathbb{R}^3 = \mathfrak{su}(2|2)^2 \times \mathbb{R}$ in the asymptotic limit $\operatorname{tr}(Z^{L-m}\chi Z^m) \to (\dots ZZ \dots Z\chi Z \dots ZZ \dots)$ $\mathfrak{psu}(2|2)^2 \ltimes \mathbb{R} \to \mathfrak{psu}(2|2)^2 \ltimes \mathbb{R}^3 = \mathfrak{su}(2|2)^2 \ltimes \mathbb{R}$

Finite L spectrum

The large L (but finite) spectrum is governed by transfer matrix

$$T_a(qert ec p) \equiv (\mathrm{s}) \mathrm{tr}_{V_a} \Big[\mathbb{S}_{a1}(q,p_1) \cdots \mathbb{S}_{aN}(q,p_N) \Big]$$

Yang-Baxter relation for integrable S-matrices \Rightarrow $[T_a(q_a|\vec{p}), T_b(q_b|\vec{p})] = 0$

By taking q as one of the momentum of physical excitations, we obtain the Bethe Ansatz equations

Finite L spectrum

The large L (but finite) spectrum is governed by transfer matrix

$$T_a(qert ec p) \equiv (\mathrm{s}) \mathrm{tr}_{V_a} \Big[\mathbb{S}_{a1}(q,p_1) \cdots \mathbb{S}_{aN}(q,p_N) \Big]$$

Yang-Baxter relation for integrable S-matrices \Rightarrow $[T_a(q_a|\vec{p}), T_b(q_b|\vec{p})] = 0$

By taking q as the "mirror" momentum of virtual excitations, we obtain the Lüscher formula

 $(\mathcal{E}_Q, p_Q) = (-i\widetilde{p}_Q, -i\widetilde{\mathcal{E}}_Q), \quad \widetilde{\mathcal{E}}_Q = 2 \mathrm{arcsinh}\left(\sqrt{Q^2 + \widetilde{p}_Q^2}/(2g)
ight)$

Determinants and giant-gravitons

Spherical Maximal Giant Gravitons (SMGG's) Giant graviton = Half-BPS, D3-brane solution on $AdS_5 \times S^5$ carrying a large angular momentum L = O(N)Spherical \Leftrightarrow "wrap" on $S^3 \subset S^5$ bound on the angular momentum $L \leq N$ Maximal \Leftrightarrow L = N

> SMGG's are classified by the choice: $S^3 \subset S^5 = \{|X|^2 + |Y|^2 + |Z|^2 = R_{sphere}^2\}$ X = 0 or Y = 0 or Z = 0 ···

 $\overline{Y} = 0$ brane \Leftrightarrow Carrying negative angular momentum compared to Y = 0

[McGreevy, Susskind, Toumbas (2000)]

Giant graviton is determinant

SMGG's are dual to determinants

$$\det \Phi^N = \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \Phi^{j_1}_{i_1} \cdots \Phi^{j_N}_{i_N}$$

Open strings on the Y=0 brane are dual to det-like operator

$$\det (Y^{N-1}V) = \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{j_N}$$

A pair of open strings on Y=0 and Ybar=0 should be dual to: $\mathcal{O}_{Y,\overline{Y}}[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$

[Balasubramanian, Berkooz, Naqvi, Strassler (2001)] [Balasubramanian, Huang, Levi, Naqvi (2002)]

SMGG as boundary condition

SMGG is an integrable boundary condition for

an asymptotic open spin chain / open string

Y=0 brane:
$$\epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} (ZZ \dots ZZ)_{i_N}^{j_N}$$

Dilatation operator = Open spin chain Hamiltonian

(discussed later)

- Ground state $(ZZ...ZZ) \sim |0
 angle$
- One-particle state

$$\sum_{x} e^{ipx}(Z \dots Z \chi Z \dots Z) ~~ \sim ~~ A^{\dagger}_{\chi}(p) \ket{0}$$

• Two-particle state

$$\sum_{x < x'} e^{ip_1 x + ip_2 x'} (Z \dots Z \chi Z Z \chi' Z \dots Z) \quad \sim \quad A_{\chi}^{\dagger}(p_1) A_{\chi}^{\dagger}(p_2) \ket{0}$$

27

SMGG as boundary condition

SMGG is an integrable boundary condition for

an asymptotic open spin chain / open string

Y=0 brane:
$$\epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} (ZZ \dots ZZ)_{i_N}^{j_N}$$

The Y=0 preserves the symmetry psu(1|2)² which determines the reflection matrix, a solution of the boundary Yang-Baxter relation

 $\mathbb{S}(-p_2,-p_1)\mathbb{R}_Y(p_1)\mathbb{S}(p_1,-p_2)\mathbb{R}_Y(p_2) = \mathbb{R}_Y(p_2)\mathbb{S}(p_2,-p_1)\mathbb{R}_Y(p_1)\mathbb{S}(p_1,p_2)$

$$\mathbb{R}^-_Y(p) = R^-_0(p)^2 egin{pmatrix} e^{-ip/2} & & \ & -e^{ip/2} & \ & & 1 & \ & & & 1 & \ & & & & 1 \end{pmatrix}^{\otimes 2}$$

 $R_0^-(p)^2 = -e^{-ip} \, \sigma(p,-p)$ obeys boundary crossing relation

[Hofman, Maldacena (2007)] [Chen, Correa (2007)] [Dekel, Oz (2011)]

The Y_{θ} =0 boundary condition

New reflection amplitudes can be found by rotating R_Y

- $\mathcal{N}=4$ SYM: Field redefinition: $\det Y^N \to \det \left(Y\cos\theta + \overline{Y}\sin\theta\right)^N$
- Integrable system:

$$\begin{array}{l} \text{Rotation } T: \begin{pmatrix} 1\\2 \end{pmatrix} \to \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1\\2 \end{pmatrix}, \quad \text{same for } (\dot{1},\dot{2}) \\ \\ \mathbb{R}_{\theta}^{-}(p) \equiv TR_{Y}^{-}T^{-1} = R_{0}^{-}(p)^{2} \begin{pmatrix} \cos^{2}\theta e^{-ip/2} - \sin^{2}\theta e^{ip/2} & \sin\theta\cos\theta \left(e^{-ip/2} + e^{ip/2}\right) \\ \sin\theta\cos\theta \left(e^{-ip/2} + e^{ip/2}\right) & \sin^{2}\theta e^{-ip/2} - \cos^{2}\theta e^{ip/2} \\ & 1 \end{pmatrix}^{\otimes 2} \\ \end{array}$$

• $oldsymbol{R}_{ heta}$ still solves boundary Yang-Baxter relation!

 $\mathbb{S}(-p_2,-p_1) \mathbb{R}(p_1) \mathbb{S}(p_1,-p_2) \mathbb{R}(p_2) = \mathbb{R}(p_2) \mathbb{S}(p_2,-p_1) \mathbb{R}(p_1) \mathbb{S}(p_1,p_2)$

• $\theta = \pi/2$ corresponds to the Ybar=0 brane

Asymptotic Bethe Ansatz (and Lüscher formula, etc) can be generalized to boundary integrable models

Dilatation on det-like operators

One-loop dilatation operator acting on the Y=0 det-like operators = Hamiltonian of an integrable open spin-chain

$$\mathcal{O}_{Y,Y}[V] = \epsilon^{i_1 \dots i_N} \epsilon_{j_1 \dots j_N} Y_{i_1}^{j_1} \dots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{j_N}, \quad V \sim Z^L$$
$$\mathcal{D}_{1\text{-loop}} = \frac{\lambda}{8\pi^2} Q_1^Y Q_L^Y \left[\sum_{l=1}^{L-1} \left(I_{l,l+1} - P_{l,l+1} + \frac{1}{2} K_{l,l+1} \right) + (1 - Q_1^Y) + (1 - Q_L^Y) \right] Q_L^Y Q_1^Y$$

Projector: $Q_{\ell}^{Y}\left(\Phi_{m_{1}}\ldots\Phi_{m_{L}}\right)=\left(1-\delta_{Y,m_{\ell}}\right)\left(\Phi_{m_{1}}\ldots\Phi_{m_{L}}\right)$

[Berenstein Vazquez] (2005) [Hofman Maldacena] (2007)

$$\begin{split} \text{Dilatation on the Y=0 and Ybar=0 det-like operators should look like} \\ \mathcal{O}_{Y,\overline{Y}}[V,W] &\sim \epsilon^{i_1 \cdots i_N} \, \epsilon_{j_1 \cdots j_N} \, \epsilon^{k_1 \cdots k_N} \, \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} \, V_{i_N}^{l_N} \, \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} \, W_{k_N}^{j_N} \\ \mathcal{D}_{1\text{-loop}} &= \mathcal{D}_{1\text{-loop}}^{(L)} + \mathcal{D}_{1\text{-loop}}^{(R)} \\ \mathcal{D}_{1\text{-loop}}^{(L)} &= \frac{\lambda}{8\pi^2} \left[Q_1^{\bar{Y}} Q_L^Y \left[\sum_{l=1}^{L-1} \left(I_{l,l+1} - P_{l,l+1} + \frac{1}{2} K_{l,l+1} \right) + (1 - Q_1^Y) + (1 - Q_L^{\bar{Y}}) \right] Q_L^Y Q_1^{\bar{Y}} \right] \end{split}$$

Caveat!

Actually the representative state is not a dilatation eigenstate

 $\mathcal{O}_{Y,\overline{Y}}[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \overline{Y}_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$

An example of mixings

 $\mathcal{O}_{Y,\overline{Y}}'[V,W] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots (Y\overline{Y})_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots \delta_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$ $+ \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} Y_{i_1}^{j_1} \cdots \overline{Y}_{i_{N-1}}^{j_{N-1}} V_{i_N}^{l_N} \overline{Y}_{k_1}^{l_1} \cdots Y_{k_{N-1}}^{l_{N-1}} W_{k_N}^{j_N}$

We must use the true eigenstate before computing anomalous dimensions. However, the classification of dilatation eigenstate at finite N is difficult particularly when the length of operator exceeds N.

Heuristic arguments

- The Y=0 and YYbar operators should differ only by boundary interaction, ie. wrapping corrections starting at the order $\sim O(L)$ (actually 2L)
- The wrapping computation seem to be insensitive to the details of Y,Ybar

Degeneracy of 2pt functions

Consider the two-point function of a YbarY operator

 $\langle \mathcal{O}_{Y,\overline{Y}}[Z^L,Z^{L'}](x) \, \mathcal{O}_{\overline{Y},Y}[ar{Z}^{L'},ar{Z}^L](0)
angle \sim |x|^{-2\Delta}$

 $\mathcal{O}_{Y,\overline{Y}}[Z^{L}, Z^{L'}] \sim \epsilon^{i_{1}\cdots i_{N}} \epsilon_{j_{1}\cdots j_{N}} \epsilon^{k_{1}\cdots k_{N}} \epsilon_{l_{1}\cdots l_{N}} \times Y^{j_{1}}_{i_{1}}\cdots Y^{j_{N-1}}_{i_{N-1}} (Z^{L})^{l_{N}}_{i_{N}} \overline{Y}^{l_{1}}_{k_{1}}\cdots \overline{Y}^{l_{N-1}}_{k_{N-1}} (Z^{L'})^{j_{N}}_{k_{N}}$

Computation goes in almost the same way as on a YY operator $\mathcal{O}_{\text{BPS}}[Z^L, Z^{L'}] \sim \epsilon^{i_1 \cdots i_N} \epsilon_{j_1 \cdots j_N} \epsilon^{k_1 \cdots k_N} \epsilon_{l_1 \cdots l_N} \times Y_{i_1}^{j_1} \cdots Y_{i_{N-1}}^{j_{N-1}} (Z^L)_{i_N}^{l_N} Y_{k_1}^{l_1} \cdots Y_{k_{N-1}}^{l_{N-1}} (Z^{L'})_{k_N}^{j_N}$

After a lot of tree-level contractions between $Y-\overline{Y}$, we obtain the following diagrams

Wrapping diagram

this is same as the so-called zig-zag diagram

cf. [Brown, Schnetz] arXiv:1208.1890, [Schnetz] arXiv:1210.5376

Wrapping diagram

The result is

$$\delta \Delta_L = -rac{4(g/2)^{4L}}{4L-1} inom{4L}{2L} \zeta(4L-3) + \mathcal{O}(g^{4L+2}), \quad g \ll 1$$

Agree with the boundary Lüscher formula for L>1Our heuristic argument should be improved at L=1

cf. [Brown, Schnetz] arXiv:1208.1890, [Schnetz] arXiv:1210.5376

BTBA equations and energy bound

Exact dimension/energy

Begin with the equivalence of Euclidean worldsheet partition functions

[Zamolodchikov (1990)] [Arutyunov, Frolov (2007)]

$$Z_E(L,R) = \int [dX] \, e^{-S_E} = \int [d ilde X] \, e^{- ilde S_E} = ilde Z(R,L)$$

In Hamiltonian formalism,

Take the large $oldsymbol{R}$ limit,

$$\operatorname{tr} e^{-RH(L)} = \operatorname{tr} e^{-L\tilde{H}(R)}$$

$$e^{-RE_0(L)} = \lim_{R \to \infty} e^{-\tilde{\mathcal{F}}(\mathcal{R})}$$

The "mirror" free energy can be computed by the "mirror" asymptotic Bethe Ansatz equations in the thermodynamic limit

Thermodynamic Bethe Ansatz equations (TBA)

TBA in $AdS_5 \times S^5 = Y$ -system + discontinuity

TBA (schematically):
$$\log Y_A = V_A + \sum_B \log(1 \pm Y_B) \star K_{BA}$$

 $\log(1+Y) \star K(v) = \int dt \, \log(1+Y(t)) \frac{1}{2\pi i} \frac{\partial}{\partial t} \log S(t,v)$
Exact energy: $E - L = -\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d\tilde{p}_Q}{2\pi} \log(1+Y_Q), \quad Y_Q = Y_{Q,0}$

The hook is related to functional equations called Y-system, which can be derived from the TBA equations.

 $\frac{Y_{a,s}^+ Y_{a,s}^-}{Y_{a-1,s} Y_{a+1,s}} = \frac{(1+Y_{a,s-1})(1+Y_{a,s+1})}{(1+Y_{a-1,s})(1+Y_{a+1,s})}$

$$Y^{\pm}(v) = Y(v \pm i/g)$$

Mirror trick with boundary

A simple generalization is to change boundary conditions

$$Z_E^{(lphaeta)}(L,R) = \int [dX]_{lphaeta} \, e^{-S_E} = \int [d ilde X]_{lphaeta} \, e^{- ilde S_E} = ilde Z^{(lphaeta)}(R,L)$$

 $\mathrm{tr} \, e^{-RH_{lphaeta}(L)} = \langle B_{lpha} | \, e^{-L ilde{H}(R)} \, | B_{eta}
angle = \sum_{\psi} rac{\langle B_{lpha} | \psi
angle \langle \psi | B_{eta}
angle}{\langle \psi | \psi
angle} \, e^{-L ilde{\mathcal{E}}_{\psi}(R)}$

Take the large R limit, $e^{-RE_{\alpha\beta,0}(L)} = \lim_{R \to \infty} e^{-\tilde{\mathcal{F}}(\mathcal{R}) + B_{\alpha\beta}(R)}$

Difficult to derive the boundary factor $m{B}_{lphaeta}$ in integrable models with non-diagonal S-matrix

BTBA for YbarY

- Notice that the boundary just introduces a momentum-dependent chemical potential which just changes the source term V_a
- We define the source term V_a by asymptotic Y-functions, and conjecture the BTBA of the Y=0 & Ybar=0 as follows:

 $\log Y_a = \log(1 \pm Y_b) \star K_{ba} + V_a$ $V_a \equiv \log Y_a^\circ - \log(1 \pm Y_b^\circ) \star K_{ba}$ $Y_{aux}^\circ = \text{asymptotite Y-functions}, \quad Y_O^\circ = 0$

The asymptotic source term for the ground-state BTBA should be exact

The asymptotic ground-state Y's have double zeroes or poles at the origin.
Those zeroes are correlated to Y=(-1)^F at v=±i/g
It follows that the singularities at the origin cannot move as long as all Y-functions are real and parity-even.

BTBA for YbarY

- Notice that the boundary just introduces a momentum-dependent chemical potential which just changes the source term V_a
- We define the source term V_a by asymptotic Y-functions, and conjecture the BTBA of the Y=0 & Ybar=0 as follows:

$$\log Y_a = \log(1 \pm Y_b) \star K_{ba} + V_a$$

 $V_a \equiv \log Y_a^\circ - \log(1 \pm Y_b^\circ) \star K_{ba}$
 $Y_{aux}^\circ = \text{asymptotic Y-functions}, \quad Y_Q^\circ = 0$

Our ground-state BTBA takes the form

$$\log rac{Y_a}{Y_a^\circ} = \log \left(rac{1 \pm Y_b}{1 \pm Y_b^\circ}
ight) \star K_{ba}$$
 for auxiliary Y $\log rac{Y_Q}{Y_Q^\bullet} = \log \left(rac{1 \pm Y_b}{1 \pm Y_b^\circ}
ight) \star K_{bQ}$

Summary of YbarY energy

YbarY BTBA: $\log \frac{Y_a}{Y_a^\circ} = \log \left(\frac{1 \pm Y_b}{1 \pm Y_b^\circ}\right) \star K_{ba}$

(∞ nonlinear integral equations can be solved by numerical iteration)

BTBA energy:
$$E_{\text{BTBA}}(L,g) = -\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\widetilde{p}_Q}{2\pi} \log(1+Y_Q)$$

Our BTBA describes Δ of the determinant-like operator:

$$\mathcal{O}_{Y,\overline{Y}}[Z^{L}, Z^{L'}] \sim \epsilon^{i_{1}\cdots i_{N}} \epsilon_{j_{1}\cdots j_{N}} \epsilon^{k_{1}\cdots k_{N}} \epsilon_{l_{1}\cdots l_{N}} \times Y^{j_{1}}_{i_{1}}\cdots Y^{j_{N-1}}_{i_{N-1}} (Z^{L})^{l_{N}}_{i_{N}} \overline{Y}^{l_{1}}_{k_{1}}\cdots \overline{Y}^{l_{N-1}}_{k_{N-1}} (Z^{L'})^{j_{N}}_{k_{N}}$$

 $\Delta = 2N - 2 + L + L' + E_{\text{BTBA}}(L,g) + E_{\text{BTBA}}(L',g)$

all wrapping corrections, negative values

Summary of YbarY energy

YbarY BTBA: $\log \frac{Y_a}{Y_a^\circ} = \log \left(\frac{1 \pm Y_b}{1 \pm Y_b^\circ}\right) \star K_{ba}$

(∞ nonlinear integral equations can be solved by numerical iteration)

BTBA energy:
$$E_{\text{BTBA}}(L,g) = -\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\widetilde{p}_Q}{2\pi} \log(1+Y_Q)$$

Our BTBA describes Δ of the determinant-like operator:

$$\mathcal{O}_{Y,\overline{Y}}[Z^{L}, Z^{L'}] \sim \epsilon^{i_{1}\cdots i_{N}} \epsilon_{j_{1}\cdots j_{N}} \epsilon^{k_{1}\cdots k_{N}} \epsilon_{l_{1}\cdots l_{N}} \times Y^{j_{1}}_{i_{1}}\cdots Y^{j_{N-1}}_{i_{N-1}} (Z^{L})^{l_{N}}_{i_{N}} \overline{Y}^{l_{1}}_{k_{1}}\cdots \overline{Y}^{l_{N-1}}_{k_{N-1}} (Z^{L'})^{j_{N}}_{k_{N}}$$

$$\Delta = 2N - 2 + L + L' + E_{
m BTBA}(L,g) + E_{
m BTBA}(L',g)$$

Energy of D-branes Energy of a pair of open strings

 $E_{\mathrm{open}}[Z^L] = -1 + L + E_{\mathrm{BTBA}}(L,g)$

Summary of YbarY energy

YbarY BTBA: $\log \frac{Y_a}{Y_a^\circ} = \log \left(\frac{1 \pm Y_b}{1 \pm Y_b^\circ}\right) \star K_{ba}$

(∞ nonlinear integral equations can be solved by numerical iteration)

BTBA energy:
$$E_{\text{BTBA}}(L,g) = -\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d\widetilde{p}_Q}{2\pi} \log(1+Y_Q)$$

Our BTBA describes Δ of the determinant-like operator:

$$\mathcal{O}_{Y,\overline{Y}}[Z^{L}, Z^{L'}] \sim \epsilon^{i_{1}\cdots i_{N}} \epsilon_{j_{1}\cdots j_{N}} \epsilon^{k_{1}\cdots k_{N}} \epsilon_{l_{1}\cdots l_{N}} \times Y^{j_{1}}_{i_{1}}\cdots Y^{j_{N-1}}_{i_{N-1}} (Z^{L})^{l_{N}}_{i_{N}} \overline{Y}^{l_{1}}_{k_{1}}\cdots \overline{Y}^{l_{N-1}}_{k_{N-1}} (Z^{L'})^{j_{N}}_{k_{N}}$$

 $\Delta = 2N - 2 + L + L' + E_{\text{BTBA}}(L,g) + E_{\text{BTBA}}(L',g)$

Interestingly, there exists a lower bound for the (B)TBA energy

YQ(v) at large v

BTBA equation for YQ in the large v limit

$$\log \frac{Y_Q(v)}{Y_Q^{\bullet}(v)} = -2 \int_{-\infty}^{\infty} dt \, \log(1 + Y_{Q'}(t)) \, K_{\Sigma}^{Q'Q}(t, v) + \dots$$

$$\sim -4E_{BTBA} \, \log(v), \quad v \gg 1$$

$$\Leftrightarrow \quad \log Y_Q(v) \sim -(4L + 4E_{BTBA}) \log(v)$$

$$\begin{bmatrix} \kappa_{Q'Q}^{\Sigma}(t, v) = \frac{1}{2\pi i \partial t} \log \Sigma^{Q'Q}(t, v) \\ \frac{1}{i} \log \Sigma^{Q'Q}(t, v) = \Phi(y_1^+, y_2^+) - \Phi(y_1^-, y_2^+) + \Phi(y_1^-, y_2^-) \\ + \frac{1}{2} (\Psi(y_2^+, y_1^+) + \Psi(y_2^-, y_1^+) - \Psi(y_1^+, y_2^-) - \Psi(y_1^-, y_2^-)) \\ + \frac{1}{i} \log \frac{iq^4}{iq^4} \frac{\Gamma[Q - \frac{1}{2}g(y_1^+ + \frac{1}{y_1^+} - y_2^+ - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^+ y_2^+} (\frac{y_1^+ y_2^-}{y_1^- y_2^+ - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^+ y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^+ y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^+ y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^+ y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^+ y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^+})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^- - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^-} - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^-} - \frac{1}{y_2^-})] \frac{1}{iq^4} - \frac{1}{y_1^- y_2^-} (\frac{y_1^- y_2^-}{y_1^- y_2^-} - \frac{1}{y_2^-})] \frac$$

$$\Psi(x_1, x_2) = i \oint rac{dw}{2\pi} rac{1}{w - x_2} \log rac{\Gamma[1 + rac{ig}{2} \left(x_1 + rac{1}{x_1} - w - rac{1}{w}
ight)]}{\Gamma[1 - rac{ig}{2} \left(x_1 + rac{1}{x_1} - w - rac{1}{w}
ight)]}$$
 $x(v) = rac{1}{2} \left(v - i\sqrt{4 - v^2}
ight), \quad y_1^{\pm} = x \left(t \pm rac{iQ'}{g}
ight), \quad y_2^{\pm} = x \left(v \pm rac{iQ}{g}
ight)$

YQ(v) at large v

BTBA equation for YQ in the large v limit

$$egin{aligned} \log rac{Y_Q(v)}{Y_Q^ullet(v)} &= -2 \int_{-\infty}^\infty dt \, \log(1+Y_{Q'}(t)) \, K_\Sigma^{Q'Q}(t,v) + \dots \ &\sim -4 E_{BTBA} \, \log(v), \quad v \gg 1 \end{aligned}$$

 $\Leftrightarrow \log Y_Q(v) \sim -(4L+4E_{
m BTBA})\log(v)$

However, the integrals in BTBA energy diverges if $Y_Q(v)$ ~ 1/v

 $\int_{0}^{\infty} \frac{dv}{2\pi} \frac{d\tilde{p}_{Q}}{dv} \log(1 + Y_{Q}(v)) \sim (\text{const}) \int_{0}^{\infty} dv \, v^{-4L - 4E_{\text{BTBA}}}$ The BTBA energy cannot be negative and large $4L + 4E_{\text{BTBA}} > 1 \quad \Leftrightarrow \quad E_{\text{BTBA}} > 1/4 - L$

YQ(v) at large Q

BTBA equation for YQ in the large Q limit

 $\Leftrightarrow \quad \log Y_Q(v) \sim (3 - 4L - 4E_{
m BTBA}) \log(Q)$

However, the sum in BTBA energy diverges if $Y_Q(v) \sim 1/Q$

$$egin{aligned} E_{ ext{BTBA}} &= -\sum\limits_{Q=1}^{\infty} \int_{0}^{\infty} rac{d\widetilde{p}_Q}{2\pi} \, \log(1+Y_Q) \ &\sim \sum\limits_{Q=1}^{\infty} \left(ext{const}
ight) Q^{3-4L-4E_{ ext{BTBA}}} \end{aligned}$$

The BTBA energy cannot be negative and large

 $4L + 4E_{BTBA} > 4 \quad \Leftrightarrow \quad E_{BTBA} > 1 - L$

Closer look at the bound

The stronger bound is

 $E_{\text{open}}[Z^L] = L - 1 + E_{\text{BTBA}}(L,g) > 0$

It is impossible to saturate this lower bound.

Suppose $E_{
m BTBA}=1$ – L

then BTBA dictates $Y_Q(v) \sim 1/Q$

This implies $E_{
m BTBA}$ diverges, which is a contradiction

A sign of divergences can also be seen at numerical analysis (ie. indeed TBA energy seems to "hit" the bound)

CPU resources

Sushiki server (Yukawa Institute)

Mars Beowulf cluster (Utrecht University)

Mathematica

Numerical Results

xxxxxxxxxxxxxxxxxxxxx

Solid: BTBA solution, Dashed: Lüscher formula, Dotted: Lower bound

$$E_{\rm BTBA}^{\rm (num)}(L,g) = -\sum_{Q=1}^{Q_{\rm max}} \int_{-\infty}^{\infty} \frac{d\tilde{p}_Q}{2\pi} \log(1+Y_Q) - \sum_{Q=Q_{\rm max}+1}^{100} \int_{-\infty}^{\infty} \frac{d\tilde{p}_Q}{2\pi} \log(1+Y_Q^{\bullet})$$

Numerical Results

- Cannot go further just by a brute-force computation
- Not clear how to go beyond the critical coupling analytically

Phase diagram

under the assumption that the L=1 energy diverges at $\,g=0$

Physical interpretation?

- The breakdown may indicate open string tachyon at strong coupling via AdS/CFT
 - In string theory, the classical energy of short string is zero, but the quantum zero-point energy can be complex
 - No gauge-theory description of O(N) operators for $g{>}g_{
 m cr}$

 $\Delta \sim 2N + 2E_{ ext{open}} \stackrel{g
ightarrow \infty}{\longrightarrow} ext{complex}$

+ Unitarity of \mathcal{N} =4 SYM requires Δ to be real at any g

- The energy of the string-brane system after tachyon condensation should be real
- Then, $g_{
 m cr}$ may be related to the radius of convergence in gauge theory

 $\Delta \sim 2N + 2E_{
m BTBA} = \infty - \infty$

Physical interpretation?

~~~~~~~

![](_page_52_Figure_1.jpeg)

![](_page_52_Figure_2.jpeg)

### Summary and outlook

#### Summary

• Studied the spectrum of determinant-like operators

dual to open strings ending on giant gravitons

- Wrapping corrections from  $\mathcal{N}$ =4 SYM agree with the Lüscher formula
- Proposed and solved BTBA equations for Y=0 & Ybar=0
- Found the lower-bound for the (B)TBA energy

#### Future works

- Beyond the critical coupling? Compare with string theory?
- How to compute the dimension of the L=I state?
- AdS/CFT for unstable systems?

# Thank you for attention

#### Infinite-dimensional symmetry

The centrally-extended  $\mathfrak{su}(2|2)$  determines the asymptotic dispersion and S-matrix of fundamental representations almost uniquely

$$egin{aligned} \Delta - J &= \sum_{j=1}^N \sqrt{1 + 4f(g)^2 \, \sin^2 rac{p_j}{2}}, \quad f(g) = g \equiv rac{\sqrt{\lambda}}{2\pi} \, ext{ in } \, \mathcal{N} = 4 \, ext{SYM} \ A^\dagger_a(p_1) A^\dagger_b(p_2) &= \mathbb{S}^{cd}_{ab}(p_1, p_2) A^\dagger_c(p_2) A^\dagger_d(p_1), \quad \mathbb{S} = S_0[\hat{S}_{\mathfrak{su}(2|2)} \otimes \hat{S}_{\mathfrak{su}(2|2)}] \end{aligned}$$

The (fundamental) S-matrix of AdS/CFT satisfies Yang-Baxter relation

$$\mathbb{S}_{12} \mathbb{S}_{13} \mathbb{S}_{23} = \mathbb{S}_{23} \mathbb{S}_{13} \mathbb{S}_{12} \equiv \mathbb{S}_{123}$$

NB. boundstate S-matrices are obtained by fusion while imposing the YBR

57

#### Infinite-dimensional symmetry

An N-particle state and its dimension/energy is

 $|p_1,\ldots p_N
angle=A_1^\dagger(p_1)\ldots A_N^\dagger(p_N)|0
angle, \quad \Delta-J=\sum_{j=1}^N\sqrt{1+4g^2\,\sin^2rac{p_j}{2}}$ 

The creation-annihilation operators have a free-field-like representation (Zamolodchikov-Faddeev algebra)

 $A_1^{\dagger}A_2^{\dagger} = A_2^{\dagger}A_1^{\dagger}\mathbb{S}_{12}, \quad A_1A_2 = \mathbb{S}_{12}A_2A_1, \quad A_1A_2^{\dagger} = A_2^{\dagger}A_1\mathbb{S}_{12} + \delta_{12}$ 

The centrally-extended su(2|2) extends further to the Hopf-algebra with a non-trivial co-product

 $\Delta \mathfrak{J}^A = \mathfrak{J}^A \otimes 1 + e^{ip[A]} \otimes \mathfrak{J}^A, \quad \mathfrak{J}^A : \mathfrak{su}(2|2) ext{ generators}$ 

 $[\Delta \mathfrak{J}^A, \mathbb{S}] = 0$ 

eventually to the Yangian of su(2|2)

[Beisert (2005)] and others

# Bethe-Yang equation (BYE)

For a large and finite J, momenta of the particles are determined by the Bethe-Yang (or Bethe Ansatz) equation

![](_page_58_Figure_2.jpeg)

$$egin{aligned} -1 &= e^{-iJp_k} \prod_{j=1}^N S(p_j,p_k) \ S(p,p) &= -1 \end{aligned}$$

BYE in terms of transfer matrix

$$T_a(q|ec{p}) \equiv (\mathrm{s})\mathrm{tr}_{V_a}\Big[\mathbb{S}_{a1}(q,p_1)\cdots\mathbb{S}_{aN}(q,p_N)\Big]$$

![](_page_58_Figure_6.jpeg)

Yang-Baxter relation for integrable S-matrices  $\Rightarrow [T_a(q_a | \vec{p}), T_b(q_b | \vec{p})] = 0$ 

**BYE** 
$$\Leftrightarrow$$
  $-1 = e^{-iJq} T(q|\vec{p})\Big|_{q=p_k}$ 

# Wrapping corrections

- The dimension  $\Delta$  of SYM operator with a finite R-charge J receives exponentially small "wrapping" corrections
- The leading wrapping correction is related to

the transfer matrix via the Lüscher formula

$$\Delta_{ ext{Lüscher}} \sim \sum_{Q} \int_{-\infty}^{\infty} d\widetilde{p}_Q \, e^{-\widetilde{\mathcal{E}}_Q(\widetilde{p}_Q) J}$$

 $(\mathcal{E}_Q, p_Q) = (-i\widetilde{p}_Q, -i\widetilde{\mathcal{E}}_Q), \quad \widetilde{\mathcal{E}}_Q = 2 \mathrm{arcsinh} \left( \sqrt{Q^2 + \widetilde{p}_Q^2} / (2g) 
ight)$ 

$$\Delta_{ ext{Lüscher}} = -\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} rac{d\widetilde{p}_Q}{2\pi} Y_Q^{ullet}(\widetilde{p}_Q), \quad Y_Q^{ullet}(\widetilde{p}_Q) = e^{-\widetilde{\mathcal{E}}_Q J} I_Q(\widetilde{p}_Q | ec{p})$$

[Lüscher (1986)] [Janik Łukowski (2007)] and others

#### Boundary Bethe-Yang equation

Integrable open spin chains obey boundary BYE

![](_page_60_Figure_3.jpeg)

 $egin{aligned} 1 = e^{-i2Jp_K} \prod_{j
eq k}^N S(p_k,p_j) R^-(p_k) imes \ & \prod_{j
eq k}^N S(p_j,-p_k) R^+(-p_k) \end{aligned}$ 

BBYE from double-row transfer matrix

$$D_{a} = \operatorname{tr}_{a} \left[ \mathbb{S}_{aN} \cdots \mathbb{S}_{a1} \mathbb{R}^{-} \mathbb{S}_{1a} \cdots \mathbb{S}_{Na} \tilde{\mathbb{R}}^{+} \right]$$
$$\mathbb{R}^{\pm} : \text{ reflection matrix}$$

![](_page_60_Figure_7.jpeg)

Boundary Yang-Baxter for  $\mathbb{R}^{\pm}$   $\Rightarrow$   $[D_a, D_b] = 0$ BBYE  $\Leftrightarrow$   $-1 = e^{-2iqJ} D_a(q|\vec{p})$ 

## Boundary wrapping corrections

• Boundary Lüscher formula has been conjectured and tested

$$\Delta_{ ext{Lüscher}}\sim \sum_Q \int_0^\infty d\widetilde{p}_Q \, e^{-\widetilde{\mathcal{E}}_Q(\widetilde{p}_Q) 2 J}$$

• In terms of the double-row transfer matrix

$$\Delta_{ ext{Lüscher}} = -\sum_{Q=1}^{\infty} \int_{0}^{\infty} rac{d\widetilde{p}_Q}{2\pi} Y_Q^{ullet}, \quad Y_Q^{ullet} = e^{-\widetilde{\mathcal{E}}_Q 2J} D_Q$$

Agree with  $\mathcal{N}=4$  SYM perturbation at weak coupling for simple states

[Correa, Young (2009)] [Bajnok, Palla (2010)]

### Error bars

We put Qmax=6 to draw the solid line

$$E_{
m BTBA}^{
m (num)}(J,g) = -\sum_{Q=1}^{Q_{
m max}} \int_0^\infty rac{d\widetilde{p}_Q}{2\pi} \, \log(1+Y_Q) - \sum_{Q=Q_{
m max}+1}^{100} \int_0^\infty rac{d\widetilde{p}_Q}{2\pi} \, \log(1+Y_Q^ullet)$$

The error from the truncation of YQ is huge around the critical value

$$E_{ ext{BTBA}} = \sum_Q \mathrm{E}(Q), \quad \mathrm{E}(Q) = -\int rac{d\widetilde{p}_Q}{2\pi} \, \log(1+Y_Q) \sim Q^{-4J-4E_{ ext{BTBA}}}$$

We extrapolate the BTBA energy from Qmax=6 to Qmax=100 using the large Q asymptotics of  ${
m E}({
m Q})$ 

$$ilde{E}_{ ext{BTBA}} = \sum_{Q=1}^{6} \mathrm{E}^{( ext{original})}(Q) + \sum_{Q=7}^{100} \mathrm{E}^{( ext{fit})}(Q) ~\left( < E_{ ext{BTBA}}^{( ext{num})} 
ight)$$

Estimate of truncation error:  $\delta E_{\rm BTBA} \equiv E_{\rm BTBA}^{(\rm num)} - \tilde{E}_{\rm BTBA}$