Exact tachyon spectrum in AdS/CFT

Ryo Suzuki
(Marie-Curie fellow, Mathematical Institute, Oxford) June 2014

Based on JHEP03(20|4)055 [arXiv:I3|2.3900] in collaboration with
Zoltán Bajnok, Nadav Drukker, Árpád Hegedús, Raphael Nepomechie, László Palla, Christoph Sieg

Tachyon and instability

Lagrangian density of a complex-scalar QFT

$$
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}-V(\phi, \bar{\phi})
$$

The Ist derivative defines the vacuum, the $2 n d$ the mass
When the mass is pure imaginary, the corresponding particle is called tachyon, and the extremum is unstable

Tachyon and instability

Lagrangian density of a complex-scalar QFT

$$
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}-V(\phi, \bar{\phi})
$$

The Ist derivative defines the vacuum, the 2 nd the mass
When the mass is pure imaginary, the corresponding particle is called tachyon, and the extremum is unstable

$(\text { mass })^{2}>0$

(mass) ${ }^{2}<0$

Brane-antibrane system

D-brane \& D-antibrane (D- \bar{D}) system in the flat spacetime is an example of unstable state in string theory

D-brane \& D-antibrane and open strings in between in the curved spacetime $\left(\mathrm{AdS}_{5} \times \mathrm{S}^{5}\right)$ are less well-understood

AdS/CFT correspondence

$\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is the primary example of AdS/CFT

Superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

$$
\begin{gathered}
N \rightarrow \infty, g_{s} \rightarrow 0 \\
\lambda=N g_{s}
\end{gathered}
$$

Stack of
N D3-branes
$?$

$$
\stackrel{?}{=}
$$

$\mathfrak{N}=44 \operatorname{dim} \operatorname{SU}(N)$
super Yang-Mills

$$
N \rightarrow \infty, g_{\mathrm{YM}} \rightarrow \mathbf{0}
$$

$$
\lambda=N g_{\mathrm{YM}}^{2}
$$

AdS/CFT correspondence

$\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is the primary example of AdS/CFT

Our setup Add another "giant graviton" D3-brane which extends in the transversal directions to stack branes.

On the left figure, it wraps on $R \times S^{3}$ inside $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$.
$\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is the primary example of AdS/CFT

Our setup Add another "giant graviton" D3-brane which extends in the transversal directions to stack branes.

On the left figure, it wraps on $R x S^{3}$ inside $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$.
Add a charge-conjugate of the "giant graviton" D3-brane

AdS/CFT correspondence

The energy of an open string in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ ending on a pair of "giant-graviton" D- \bar{D} branes

should be dual to the dimension of a determinant-like operator in 4D $\boldsymbol{S U}(\boldsymbol{N}) \mathcal{N}=4$ super Yang-Mills theory

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{\iota_{1}} \cdots \bar{Y}_{k_{N-1} l_{N-1}} W_{k_{N}}^{j_{N}}
\end{aligned}
$$

AdS/CFT correspondence

The energy of an open string in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ ending on a pair of "giant-graviton" D- $\overline{\mathrm{D}}$ branes

should be dual to the dimension of a determinant-like operator in 4D $\boldsymbol{S U}(\boldsymbol{N}) \mathcal{N}=4$ super Yang-Mills theory

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}[\boldsymbol{V}, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots \bar{Y}_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}} \cdots \bar{Y}_{k_{N-1}-1}^{l_{N-1}} W_{k_{N}}^{j_{N}}
\end{aligned}
$$

Hope: demonstrate the duality using integrability

Integrability Predictions

The spectral problem at large \boldsymbol{N} is now "solvable" through (Asymptotic/Thermodynamic) Bethe Ansatz

$$
E_{\text {string }}(\lambda) \stackrel{\sim}{\sim} E_{\mathrm{ABA}}(\lambda) \text { or } E_{\mathrm{TBA}}(\lambda) \xrightarrow{\sim} \Delta_{\mathrm{SYM}}(\lambda)
$$

We want to solve TBA; i.e. obtain $\boldsymbol{E}_{\text {TBA }}(\lambda)$
Example: the exact dimension of Konishi operator

Green: SYM, weak 5-loop Blue: TBA, numerics Red: String, strong 1-loop

To do

$$
E_{\text {string }}(\lambda) \stackrel{\sim}{\sim} E_{\mathrm{ABA}}(\lambda) \text { or } E_{\mathrm{TBA}}(\lambda) \stackrel{\sim}{\longrightarrow} \Delta_{\mathrm{SYM}}(\lambda)
$$

We propose BTBA equations

(Boundary Thermodynamic Bethe Ansatz) and solve them numerically

$$
\mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}
$$

However, the DDbar system should contain open tachyons. Indeed, integrability method apparently predicts singularity
cf. closed tachyons and non-conformality, [Dymarsky, Klebanov, Roiban] hep-th/0509| 32 [Fokken, Sieg,Wilhelm] I 308.4420 cf. examples of a singular TBA energy [Frolov, RS] 0906.0499 [de Leeuw, van Tongeren] I20I.I45 I
\checkmark Introduction

- Integrability and AdS/CFT
- Determinants and giant-gravitons
- BTBA equations and energy bound
- Summary and outlook

Integrability and AdS/CFT

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

BEAUTIFUL

70 Years of Exactly Solved
Quantum Many-Body Problems

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

Working definition

I. Compute physical quantities
2. Find infinite-dimensional symmetry
3. Conjecture "Bethe-Ansatz" formula
4. Check your conjecture -- agreement!

What is integrability?

Textbook definition

Infinitely many conserved charges, S-matrix factorization, Yang-Baxter relation, ...

Working definition

I. Compute physical quantities
2. Find infinite-dimensional symmetry
3. Conjecture "Bethe-Ansatz" formula
4. Check your conjecture -- agreement!

Integrability in string theory

The integrability method is an alternative to the RNS formalism when the background spacetime contains D-branes.

Integrability in the σ-model on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

String theory reduces to a $2 \mathrm{~d} \sigma$-model at small \boldsymbol{g}_{s} and large \boldsymbol{N}

- Ramond-Neveu-Schwarz formalism (worldsheet susy manifest)
\checkmark Green-Schwarz formalism (spacetime susy manifest)

$$
S_{\mathrm{GS}}=-\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma G_{M N} \partial Z^{M} \partial Z^{N}+\ldots, \quad Z^{M}=\left(x^{m}, \theta_{\alpha}^{I}\right)
$$

On $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$, GS action has the susy completion as a supercoset σ-model

$$
\begin{gathered}
\mathrm{AdS}_{5} \times \mathrm{S}^{5}+\text { fermions }=\frac{P S U(2,2 \mid 4)}{S O(4,1) \times S O(5)} \curvearrowleft \mathbb{Z}_{4} \\
S_{\text {coset }}=-\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \operatorname{Str}\left[\gamma^{\alpha \beta} A_{\alpha}^{(2)} A_{\beta}^{(2)} \pm \epsilon^{\alpha \beta} A_{\alpha}^{(1)} A_{\beta}^{(3)}\right] \\
\mathfrak{g} \in S U(2,2 \mid 4), \quad A=-\mathfrak{g}^{-1} d \mathfrak{g}=A^{(0)}+A^{(1)}+A^{(2)}+A^{(3)},
\end{gathered}
$$

Integrability in the σ-model on $\operatorname{AdS}_{5} \times S^{5}$

The supercoset σ-model is classically integrable;
We determine the (asymptotic) spectrum via the S-matrix bootstrap assuming quantum integrability

- First, break worldsheet conformal symmetry by a gauge choice $\left(\right.$ worldsheet circumference $=$ string angular momentum on S^{5})
- Second, take the large-volume (asymptotic) limit; we can define asymptotic states and their worldsheet S-matrix

[Bena Polchinski Roiban] (2003) [Hofman Maldacena] (2006) and others

$\mathfrak{N}=4 \mathrm{SU}(N)$ Super Yang-Mills

$$
S_{\text {bare }}^{\mathcal{N}=4}=\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} D_{\mu} \Phi_{m} D^{\mu} \Phi_{m}-\frac{1}{4}\left[\Phi_{m}, \Phi_{n}\right]^{2}+\text { fermions }\right]
$$

As a SCFT, an interesting local observable of $\mathcal{N}=4$ SYM is the anomalous dimension of gauge-invariant (single-trace) non-BPS operators

$$
\left\langle\mathcal{O}_{a}(x) \mathcal{O}_{b}(0)\right\rangle=\frac{Z_{a b}}{|x|^{2 \Delta_{0}}} \rightarrow\left\langle\mathcal{O}_{a^{\prime}}(x) \mathcal{O}_{b^{\prime}}(0)\right\rangle=\frac{\delta_{a^{\prime} b^{\prime}}}{|x|^{2 \Delta_{a^{\prime}}}}, \quad \Delta_{a^{\prime}}=\Delta_{0}+\gamma_{a^{\prime}}
$$

Scaling transformation: $\left(x, \Lambda_{\mathbf{U V}}\right) \rightarrow\left(\lambda x, \lambda^{-1} \Lambda_{\mathbf{U V}}\right), \quad Z\left(\Lambda_{\mathbf{U V}}\right) \rightarrow \lambda^{-\gamma} Z\left(\Lambda_{\mathbf{U V}}\right)$
The one-loop dilatation operator in the scalar sector is

$$
\mathcal{D}_{\text {1-loop }}=\frac{d Z}{d \log \Lambda_{\mathrm{UV}}} Z^{-1}=\frac{-\lambda}{16 \pi^{2} N}\left(\operatorname{tr}:\left[\Phi_{m}, \Phi_{n}\right]\left[\check{\Phi}_{m}, \check{\Phi}_{n}\right]:+\frac{1}{2} \operatorname{tr}:\left[\Phi_{m}, \check{\Phi}_{n}\right]^{2}:\right)
$$

This produces the operator mixing through algebraic rules of Φ, Φ-check's

$$
\operatorname{tr}\left(A \check{\Phi}_{m} B \Phi_{n}\right)=\delta_{m n} \operatorname{tr} A \operatorname{tr} B, \quad \operatorname{tr}\left(A \check{\Phi}_{m}\right) \operatorname{tr}\left(\Phi_{n} B\right)=\delta_{m n} \operatorname{tr}(A B)
$$

$\mathcal{N}=4$ SYM and spin chain

In the large N limit, the $\mathcal{N}=4$ SYM dilatation operator reduces to the Hamiltonian of an integrable spin chain $\operatorname{tr} Z^{L}$ (half-BPS operator) $=$ Spin-chain ground state

$$
\begin{aligned}
& \mathcal{D}_{1-\text { loop }}=\frac{-\lambda}{16 \pi^{2} N}\left(\operatorname{tr}:\left[\Phi_{m}, \Phi_{n}\right]\left[\check{\Phi}_{m}, \check{\Phi}_{n}\right]:+\frac{1}{2} \operatorname{tr}:\left[\Phi_{m}, \check{\Phi}_{n}\right]^{2}:\right) \\
& \left.\mathcal{D}_{1-\text { loop }}\right|_{L}=\frac{\lambda}{16 \pi^{2}}: \sum_{l=1}^{L}\left(2-2 P_{l, l+1}+K_{l, l+1}\right) \quad \begin{cases}P_{l, l+1} & =\delta_{m_{l}}^{n_{l+1}} \delta_{m_{l+1}}^{n_{l}} \\
K_{l, l+1} & =\delta_{m_{l}, m_{l+1}} \delta^{n_{l}, n_{l+1}}\end{cases} \\
& \text { Can be diagonalized by Bethe Ansatz } \\
& Z=\boldsymbol{\Phi}_{5}+i \boldsymbol{\Phi}_{\mathbf{6}} \\
& \boldsymbol{Y}=\boldsymbol{\Phi}_{3}+i \boldsymbol{\Phi}_{4}
\end{aligned}
$$

$\mathfrak{N}=4 \mathrm{SYM}$ and spin chain

Symmetry almost determines the dispersion and S-matrix, and allows us to propose all-loop (asymptotic) Bethe Ansatz

- Global symmetry of $\mathcal{N}=4$ SYM $=\mathfrak{p s u}(2,2 \mid 4)$
- The choice of vacuum as $\operatorname{tr} Z^{L}$ breaks it to $\mathfrak{p s u}(2 \mid 2)^{2} \times \mathrm{R}$

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2 \mid 2)^{2} \ltimes \mathbb{R} \sim\left(E=\Delta, S_{1}, S_{2}, J_{1}, J_{2}, L\right)
$$

-The residual global symmetry enhances to

$$
\begin{aligned}
& \mathfrak{p s u}(2 \mid 2)^{2} \times \mathbb{R}^{3}=\mathfrak{s u}(2 \mid 2)^{2} \times \mathrm{R} \text { in the asymptotic limit } \\
& \operatorname{tr}\left(Z^{L-m} \chi Z^{m}\right) \rightarrow(\ldots Z Z \ldots Z \chi Z \ldots Z Z \ldots) \\
& \mathfrak{p s u}(2 \mid 2)^{2} \ltimes \mathbb{R} \rightarrow \mathfrak{p s u}(2 \mid 2)^{2} \ltimes \mathbb{R}^{3}=\mathfrak{s u}(2 \mid 2)^{2} \ltimes \mathbb{R}
\end{aligned}
$$

Finite L spectrum

The large L (but finite) spectrum is governed by transfer matrix

$$
T_{a}(q \mid \vec{p}) \equiv(\mathrm{s}) \operatorname{tr}_{V_{a}}\left[\mathbb{S}_{a 1}\left(q, p_{1}\right) \cdots \mathbb{S}_{a N}\left(q, p_{N}\right)\right]
$$

Yang-Baxter relation for integrable S-matrices $\Rightarrow\left[T_{a}\left(q_{a} \mid \vec{p}\right), T_{b}\left(q_{b} \mid \vec{p}\right)\right]=0$
By taking q as one of the momentum of physical excitations, we obtain the Bethe Ansatz equations

$$
\begin{gathered}
\left.T(q \mid \vec{p}) e^{-i L q}\right|_{q=p_{k}}=\prod_{j=1}^{M} S\left(p_{j}, p_{k}\right) e^{-i L p_{k}}=-1 \\
\Delta-L=\sum_{j=1}^{M} \sqrt{1+4 g^{2} \sin ^{2} \frac{p_{j}}{2}+\mathcal{O}\left(e^{-c L}\right)} g=\frac{\sqrt{\lambda}}{2 \pi}
\end{gathered}
$$

Finite L spectrum

The large L (but finite) spectrum is governed by transfer matrix

$$
T_{a}(q \mid \vec{p}) \equiv(\mathrm{s}) \operatorname{tr}_{V_{a}}\left[\mathbb{S}_{a 1}\left(q, p_{1}\right) \cdots \mathbb{S}_{a N}\left(q, p_{N}\right)\right]
$$

Yang-Baxter relation for integrable S-matrices $\Rightarrow\left[T_{a}\left(q_{a} \mid \vec{p}\right), T_{b}\left(q_{b} \mid \vec{p}\right)\right]=0$
By taking q as the "mirror" momentum of virtual excitations, we obtain the Lüscher formula

$$
\begin{gathered}
\Delta_{\text {Lüscher }} \sim \sum_{Q} \int_{-\infty}^{\infty} d \widetilde{p}_{Q} e^{-\widetilde{\mathcal{E}}_{Q}\left(\widetilde{p}_{Q}\right) J} \\
\left(\mathcal{E}_{Q}, p_{Q}\right)=\left(-i \widetilde{p}_{Q},-i \widetilde{\mathcal{E}}_{Q}\right), \quad \widetilde{\mathcal{E}}_{Q}=2 \operatorname{arcsinh}\left(\sqrt{Q^{2}+\widetilde{p}_{Q}^{2}} /(2 g)\right)
\end{gathered}
$$

Determinants and giant-gravitons

Spherical Maximal Giant Gravitons (SMGG's)

Giant graviton $=$ Half-BPS, D3-brane solution on $\mathbf{A d S}_{5} \times \mathbf{S}^{5}$ carrying a large angular momentum $L=\mathcal{O}(N)$

Spherical $\Leftrightarrow \quad$ "wrap" on $S^{3} \subset S^{5}$ bound on the angular momentum $L \leq N$
Maximal $\Leftrightarrow \quad L=N$

SMGG's are classified by the choice:

$$
\begin{aligned}
\mathrm{S}^{3} \subset \mathrm{~S}^{5} & =\left\{|X|^{2}+|Y|^{2}+|Z|^{2}=R_{\text {sphere }}^{2}\right\} \\
X & =0 \text { or } Y=0 \text { or } Z=0 \cdots
\end{aligned}
$$

$\bar{Y}=0$ brane \Leftrightarrow Carrying negative angular momentum compared to $Y=0$

Giant graviton is determinant

SMGG's are dual to determinants

$$
\operatorname{det} \Phi^{N}=\epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \Phi_{i_{1}}^{j_{1}} \cdots \Phi_{i_{N}}^{j_{N}}
$$

Open strings on the $Y=0$ brane are dual to det-like operator

$$
\operatorname{det}\left(Y^{N-1} V\right)=\epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{j_{N}}
$$

A pair of open strings on $\mathrm{Y}=0$ and $\mathrm{Ybar}=0$ should be dual to:
$\mathcal{O}_{\boldsymbol{Y}, \overline{\boldsymbol{Y}}}[\boldsymbol{V}, \boldsymbol{W}] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \boldsymbol{Y}_{i_{1}}^{j_{1}} \cdots \boldsymbol{Y}_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \overline{\boldsymbol{Y}}_{k_{N-1}}^{l_{N-1}} \boldsymbol{W}_{\boldsymbol{k}_{N}}^{j_{N}}$

SMGG as boundary condition

 SMGG is an integrable boundary condition for an asymptotic open spin chain / open string$Y=0$ brane: $\quad \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}(Z Z \ldots Z Z)_{i_{N}}^{j_{N}}$
Dilatation operator $=$ Open spin chain Hamiltonian (discussed later)

- Ground state
(ZZ...ZZ)
$|0\rangle$
- One-particle state

$$
\sum_{x} e^{i p x}(Z \ldots Z \chi Z \ldots Z) \sim A_{\chi}^{\dagger}(p)|0\rangle
$$

- Two-particle state

$$
\sum_{x<x^{\prime}} e^{i p_{1} x+i p_{2} x^{\prime}}\left(Z \ldots Z \chi Z \chi^{\prime} Z \ldots Z\right) \sim A_{\chi}^{\dagger}\left(p_{1}\right) A_{\chi}^{\dagger}\left(p_{2}\right)|0\rangle
$$

SMGG as boundary condition

 SMGG is an integrable boundary condition for an asymptotic open spin chain / open string$\mathbf{Y}=0$ brane: $\quad \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \boldsymbol{Y}_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}(Z Z \ldots Z Z)_{i_{N}}^{j_{N}}$
The $Y=0$ preserves the symmetry psu(1|2) ${ }^{2}$ which determines the reflection matrix, a solution of the boundary Yang-Baxter relation

$$
\begin{gathered}
\mathbb{S}\left(-p_{2},-p_{1}\right) \mathbb{R}_{Y}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}_{Y}\left(p_{2}\right)=\mathbb{R}_{Y}\left(p_{2}\right) \mathbb{S}\left(p_{2},-p_{1}\right) \mathbb{R}_{Y}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right) \\
\mathbb{R}_{Y}^{-}(p)=R_{0}^{-}(p)^{2}\left(\begin{array}{llll}
e^{-i p / 2} & & & \\
& -e^{i p / 2} & & \\
& & 1 & \\
& & & 1
\end{array}\right)^{\otimes 2}
\end{gathered}
$$

$$
R_{0}^{-}(p)^{2}=-e^{-i p} \sigma(p,-p) \quad \text { obeys boundary crossing relation }
$$

The $\mathrm{Y}_{\theta}=0$ boundary condition

New reflection amplitudes can be found by rotating $\boldsymbol{R}_{\boldsymbol{Y}}$

- $\mathcal{N}=4$ SYM: Field redefinition: $\operatorname{det} Y^{N} \rightarrow \operatorname{det}(Y \cos \theta+\bar{Y} \sin \theta)^{N}$
- Integrable system:

$$
\begin{gathered}
\text { Rotation } T:\binom{1}{2} \rightarrow\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{1}{2}, \quad \text { same for }(\mathbf{1}, \dot{2}) \\
\mathbb{R}_{\theta}^{-}(p) \equiv T R_{Y}^{-} T^{-1}=R_{0}^{-}(p)^{2}\left(\begin{array}{ccc}
\cos ^{2} \theta e^{-i p / 2}-\sin ^{2} \theta e^{i p / 2} & \sin \theta \cos \theta\left(e^{-i p / 2}+e^{i p / 2}\right) & \\
\sin \theta \cos \theta\left(e^{-i p / 2}+e^{i p / 2}\right) & \sin ^{2} \theta e^{-i p / 2}-\cos ^{2} \theta e^{i p / 2} & \\
& & 1
\end{array}\right)^{\otimes 2}
\end{gathered}
$$

- \boldsymbol{R}_{θ} still solves boundary Yang-Baxter relation!
$\mathbb{S}\left(-p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1},-p_{2}\right) \mathbb{R}\left(p_{2}\right)=\mathbb{R}\left(p_{2}\right) \mathbb{S}\left(p_{2},-p_{1}\right) \mathbb{R}\left(p_{1}\right) \mathbb{S}\left(p_{1}, p_{2}\right)$
- $\theta=\pi / 2$ corresponds to the Ybar=0 brane

Asymptotic Bethe Ansatz (and Lüscher formula, etc) can be generalized to boundary integrable models

Dilatation on det-like operators

One-loop dilatation operator acting on the $\mathrm{Y}=0$ det-like operators = Hamiltonian of an integrable open spin-chain

$$
\mathcal{O}_{Y, Y}[V]=\epsilon^{i_{1} \ldots i_{N}} \epsilon_{j_{1} \ldots j_{N}} Y_{i_{1}}^{j_{1}} \ldots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{j_{N}}, \quad V \sim Z^{L}
$$

$\mathcal{D}_{1 \cdot \text { loop }}=\frac{\lambda}{8 \pi^{2}} Q_{1}^{Y} Q_{L}^{Y}\left[\sum_{l=1}^{L-1}\left(I_{l, l+1}-P_{l, l+1}+\frac{1}{2} K_{l, l+1}\right)+\left(1-Q_{1}^{Y}\right)+\left(1-Q_{L}^{Y}\right)\right] Q_{L}^{Y} Q_{1}^{Y}$
Projector: $Q_{\ell}^{Y}\left(\Phi_{m_{1}} \ldots \Phi_{m_{L}}\right)=\left(1-\delta_{Y, m_{\ell}}\right)\left(\Phi_{m_{1}} \ldots \Phi_{m_{L}}\right)$
[Berenstein Vazquez] (2005) [Hofman Maldacena] (2007)
Dilatation on the $\mathrm{Y}=0$ and $\mathrm{Ybar}=0$ det-like operators should look like

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}} W_{\boldsymbol{k}_{N}}^{j_{N}} \\
& \mathcal{D}_{\text {1-loop }}=\mathcal{D}_{\text {1-loop }}^{(L)}+\mathcal{D}_{\text {1-loop }}^{(R)} \\
& \mathcal{D}_{1-\text { loop }}^{(L)}=\frac{\lambda}{8 \pi^{2}} Q_{1}^{\bar{Y}} Q_{L}^{Y}\left[\sum_{l=1}^{L-1}\left(I_{l, l+1}-P_{l, l+1}+\frac{1}{2} K_{l, l+1}\right)+\left(1-Q_{1}^{Y}\right)+\left(1-: \begin{array}{c}
Q_{L}, \\
\hdashline Q_{L}
\end{array}\right] Q_{1}^{Q_{1}}\right.
\end{aligned}
$$

Actually the representative state is not a dilatation eigenstate

$$
\mathcal{O}_{Y, \bar{Y}}[V, W] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \boldsymbol{Y}_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}
$$

An example of mixings

$$
\begin{aligned}
\mathcal{O}_{Y, \bar{Y}}^{\prime}[V, W] \sim & \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots(Y \bar{Y})_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \delta_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}} \\
& +\epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} Y_{i_{1}}^{j_{1}} \cdots \bar{Y}_{i_{N-1}}^{j_{N-1}} V_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots Y_{k_{N-1}}^{l_{N-1}} W_{k_{N}}^{j_{N}}
\end{aligned}
$$

We must use the true eigenstate before computing anomalous dimensions. However, the classification of dilatation eigenstate at finite N is difficult particularly when the length of operator exceeds N.

Heuristic arguments

- The $Y=0$ and $Y Y$ bar operators should differ only by boundary interaction, ie. wrapping corrections starting at the order $\sim \boldsymbol{O}(L)$ (actually $2 L$)
- The wrapping computation seem to be insensitive to the details of Y,Ybar

Degeneracy of 2pt functions

Consider the two-point function of a YbarY operator

$$
\begin{gathered}
\left\langle\mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{L^{\prime}}\right](x) \mathcal{O}_{\bar{Y}, Y}\left[\bar{Z}^{L^{\prime}}, \bar{Z}^{L}\right](0)\right\rangle \sim|x|^{-2 \Delta} \\
\mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{L^{\prime}}\right] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{\epsilon_{1} \cdots l_{N}} \times \\
Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}}
\end{gathered}
$$

Computation goes in almost the same way as on a YY operator

$$
\begin{aligned}
& \mathcal{O}_{\mathrm{BPS}}\left[Z^{L}, Z^{L^{\prime}}\right] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} Y_{k_{1}}^{l_{1}} \cdots Y_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}}
\end{aligned}
$$

After a lot of tree-level contractions between $\boldsymbol{Y} \overline{\boldsymbol{Y}}$, we obtain the following diagrams

Wrapping diagram

Spacetime structure (amputated)

this is same as the so-called zig-zag diagram

Wrapping diagram

The result is

$$
\left(g=\frac{\sqrt{\lambda}}{2 \pi}\right)
$$

$\delta \Delta_{L}=-\frac{4(g / 2)^{4 L}}{4 L-1}\binom{4 L}{2 L} \zeta(4 L-3)+\mathcal{O}\left(g^{4 L+2}\right), \quad g \ll 1$
Agree with the boundary Lüscher formula for $L>1$
Our heuristic argument should be improved at $\boldsymbol{L}=\mathbf{1}$

BTBA equations

and energy bound

Exact dimension/energy

Begin with the equivalence of Euclidean worldsheet partition functions

[Zamolodchikov (1990)]
[Arutyunov, Frolov (2007)]

In Hamiltonian formalism, $\quad \operatorname{tr} e^{-R H(L)}=\operatorname{tr} e^{-L \tilde{H}(R)}$
Take the large \boldsymbol{R} limit,

$$
e^{-R E_{0}(L)}=\lim _{R \rightarrow \infty} e^{-\tilde{\mathcal{F}}(\mathcal{R})}
$$

The "mirror" free energy can be computed by the "mirror" asymptotic Bethe Ansatz equations in the thermodynamic limit
\Rightarrow Thermodynamic Bethe Ansatz equations (TBA)

TBA in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}=\mathrm{Y}$-system + discontinuity

TBA (schematically): $\log Y_{A}=V_{A}+\sum_{B} \log \left(1 \pm Y_{B}\right) \star K_{B A}$

$$
\log (1+Y) * K(v)=\int d t \log (1+Y(t)) \frac{1}{2 \pi i} \frac{\partial}{\partial t} \log S(t, v)
$$

Exact energy: $E-L=-\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d \tilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right), \quad Y_{Q}=Y_{Q, 0}$

The hook is related to functional equations called Y-system, which can be derived from the TBA equations.

$$
\begin{gathered}
\frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a-1, s} Y_{a+1, s}}=\frac{\left(1+Y_{a, s-1}\right)\left(1+Y_{a, s+1}\right)}{\left(1+Y_{a-1, s}\right)\left(1+Y_{a+1, s}\right)} \\
Y^{ \pm}(v)=\boldsymbol{Y}(v \pm i / g)
\end{gathered}
$$

Mirror trick with boundary

A simple generalization is to change boundary conditions

Take the large \boldsymbol{R} limit, $e^{-R E_{\alpha \beta, 0}(L)}=\lim _{R \rightarrow \infty} e^{-\tilde{\mathcal{F}}(\mathcal{R})+B_{\alpha \beta}(R)}$
Difficult to derive the boundary factor $\boldsymbol{B}_{\alpha \beta}$ in integrable models with non-diagonal S-matrix

BTBA for YbarY

- Notice that the boundary just introduces a momentum-dependent chemical potential which just changes the source term V_{a}
- We define the source term V_{a} by asymptotic Y-functions, and conjecture the BTBA of the $Y=0$ \& $\mathrm{Ybar}=0$ as follows:

$$
\begin{gathered}
\log Y_{a}=\log \left(1 \pm Y_{b}\right) \star K_{b a}+V_{a} \\
V_{a} \equiv \log Y_{a}^{\circ}-\log \left(1 \pm Y_{b}^{\circ}\right) * K_{b a} \\
Y_{\text {aux }}^{\circ}=\text { asymptotitc Y-functions, } \quad Y_{Q}^{\circ}=0
\end{gathered}
$$

The asymptotic source term for the ground-state BTBA should be exact

- The asymptotic ground-state Y's have double zeroes or poles at the origin.
- Those zeroes are correlated to $\mathrm{Y}=(-\mathrm{I})^{\mathrm{F}}$ at $v= \pm \mathrm{i} / g$
- It follows that the singularities at the origin cannot move as long as all Y-functions are real and parity-even.

BTBA for YbarY

- Notice that the boundary just introduces a momentum-dependent chemical potential which just changes the source term V_{a}
- We define the source term V_{a} by asymptotic Y-functions, and conjecture the BTBA of the $Y=0$ \& $\mathrm{Ybar}=0$ as follows:

$$
\begin{aligned}
& \log Y_{a}=\log \left(1 \pm Y_{b}\right) \star K_{b a}+V_{a} \\
& \quad V_{a} \equiv \log Y_{a}^{\circ}-\log \left(1 \pm Y_{b}^{\circ}\right) * K_{b a}
\end{aligned}
$$

$$
Y_{\text {aux }}^{\circ}=\text { asymptotitc Y-functions, } \quad Y_{Q}^{\circ}=0
$$

Our ground-state BTBA takes the form

$$
\begin{aligned}
\log \frac{Y_{a}}{Y_{a}^{\circ}} & =\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b a} \quad \text { for auxiliary } \mathbf{Y} \\
\log \frac{Y_{Q}}{Y_{Q}^{\circ}} & =\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b Q}
\end{aligned}
$$

Summary of YbarY energy

$$
\text { YbarY BTBA: } \quad \log \frac{Y_{a}}{Y_{a}^{\circ}}=\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b a}
$$

(∞ nonlinear integral equations can be solved by numerical iteration)
BTBA energy: $\quad E_{\text {BtBA }}(L, g)=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)$
Our BTBA describes Δ of the determinant-like operator:

$$
\begin{aligned}
& \mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{L^{\prime}}\right] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}} \\
& \Delta=2 N-2+L+L^{\prime}+\frac{E_{\text {BTBA }}(L, g)+E_{\text {BTBA }}\left(L^{\prime}, g\right)}{\text { all wrapping corrections, negative values }}
\end{aligned}
$$

Summary of YbarY energy

$$
\text { YbarY BTBA: } \quad \log \frac{Y_{a}}{Y_{a}^{\circ}}=\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b a}
$$

(∞ nonlinear integral equations can be solved by numerical iteration)
BTBA energy: $\quad E_{\text {BtBA }}(L, g)=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)$
Our BTBA describes Δ of the determinant-like operator:

$$
\begin{gathered}
\mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{L^{\prime}}\right] \sim \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} \overline{\boldsymbol{Y}}_{k_{1}}^{l_{1}} \cdots \overline{\boldsymbol{Y}}_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}} \\
\Delta=2+L+L^{\prime}+E_{\mathrm{BTBA}}(L, g)+\boldsymbol{E}_{\mathrm{BTBA}}\left(L^{\prime}, g\right) \\
\text { Energy of D-branes } \quad \text { Energy of a pair of open strings } \\
\boldsymbol{E}_{\text {open }}\left[Z^{L}\right]=-1+L+E_{\mathrm{BTBA}}(\boldsymbol{L}, g)
\end{gathered}
$$

Summary of YbarY energy

YbarY BTBA: $\quad \log \frac{Y_{a}}{Y_{a}^{\circ}}=\log \left(\frac{1 \pm Y_{b}}{1 \pm Y_{b}^{\circ}}\right) \star K_{b a}$
(∞ nonlinear integral equations can be solved by numerical iteration)
BTBA energy: $\quad E_{\text {BtBA }}(L, g)=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)$
Our BTBA describes Δ of the determinant-like operator:

$$
\begin{aligned}
\mathcal{O}_{Y, \bar{Y}}\left[Z^{L}, Z^{L^{\prime}}\right] \sim & \epsilon^{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \epsilon^{k_{1} \cdots k_{N}} \epsilon_{l_{1} \cdots l_{N}} \times \\
& Y_{i_{1}}^{j_{1}} \cdots Y_{i_{N-1}}^{j_{N-1}}\left(Z^{L}\right)_{i_{N}}^{l_{N}} \bar{Y}_{k_{1}}^{l_{1}} \cdots \bar{Y}_{k_{N-1}}^{l_{N-1}}\left(Z^{L^{\prime}}\right)_{k_{N}}^{j_{N}} \\
\Delta=2 N-2+ & L+L^{\prime}+E_{\mathrm{BTBA}}(L, g)+E_{\mathrm{BTBA}}\left(L^{\prime}, g\right)
\end{aligned}
$$

Interestingly, there exists a lower bound for the (B)TBA energy

$\mathrm{YQ}(\mathrm{v})$ at large v

BTBA equation for $Y Q$ in the large v limit

$$
\begin{aligned}
& \log \frac{Y_{Q}(v)}{Y_{Q}^{\bullet}(v)}=-2 \int_{-\infty}^{\infty} d t \log \left(1+Y_{Q^{\prime}}(t) K_{\Sigma}^{Q^{\prime} Q}(t, v)+\ldots\right. \\
& \sim-4 E_{B T B A} \log (v), \quad v \gg 1 \\
& \Leftrightarrow \quad \log Y_{Q}(v) \sim-\left(4 L+4 E_{\mathrm{BTBA}}\right) \log (v) \\
& K_{Q, Q}^{\square}(t, v)=\frac{1}{2 \pi i} \frac{\partial}{\partial t} \log \Sigma^{Q^{\prime}}(t, v) \\
& \frac{1}{i} \log \Sigma^{Q^{\prime} Q}(t, v)=\Phi\left(y_{1}^{+}, y_{2}^{+}\right)-\Phi\left(y_{1}^{+}, y_{2}^{-}\right)-\Phi\left(y_{1}^{-}, y_{2}^{+}\right)+\Phi\left(y_{1}^{-}, y_{2}^{-}\right) \\
& +\frac{1}{2}\left(\Psi\left(y_{2}^{+}, y_{1}^{+}\right)+\Psi\left(y_{2}^{-}, y_{1}^{+}\right)-\Psi\left(y_{2}^{+}, y_{1}^{-}\right)-\Psi\left(y_{2}^{-}, y_{1}^{-}\right)\right) \\
& -\frac{1}{2}\left(\Psi\left(y_{1}^{+}, y_{2}^{+}\right)+\Psi\left(y_{1}^{-}, y_{2}^{+}\right)-\Psi\left(y_{1}^{+}, y_{2}^{-}\right)-\Psi\left(y_{1}^{-}, y_{2}^{-}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(x_{1}, x_{2}\right)=i \oint \frac{d w_{1}}{2 \pi} \oint \frac{d w_{2}}{2 \pi} \frac{1}{\left(w_{1}-x_{1}\right)\left(w_{2}-x_{2}\right)} \log \frac{\Gamma\left[1+\frac{i g}{2}\left(w_{1}+\frac{1}{w_{1}}-w_{2}-\frac{1}{w_{2}}\right)\right]}{\Gamma\left[1-\frac{i q}{2}\left(w_{1}+\frac{1}{w_{1}}-w_{2}-\frac{1}{w_{2}}\right)\right]} \\
& \Psi\left(x_{1}, x_{2}\right)=i \oint \frac{d w}{2 \pi} \frac{1}{w-x_{2}} \log \frac{\Gamma\left[1+\frac{i g}{2}\left(x_{1}+\frac{1}{x_{1}}-w-\frac{1}{w}\right]\right]}{\Gamma\left[1-\frac{i g}{2}\left(x_{1}+\frac{1}{x_{1}}-w-\frac{1}{w}\right)\right]} \\
& x(v)=\frac{1}{2}\left(v-i \sqrt{4-v^{2}}\right), \quad y_{1}^{ \pm}=x\left(t \pm \frac{i Q^{\prime}}{g}\right), \quad y_{2}^{ \pm}=x\left(v \pm \frac{i Q}{g}\right)
\end{aligned}
$$

$\mathrm{YQ}(\mathrm{v})$ at large v

BTBA equation for YQ in the large v limit

$$
\begin{aligned}
& \log \frac{Y_{Q}(v)}{Y_{Q}^{\bullet}(v)}=-2 \int_{-\infty}^{\infty} d t \log \left(1+Y_{Q^{\prime}}(t)\right) K_{\Sigma}^{Q^{\prime} Q}(t, v)+\ldots \\
& \sim-4 E_{B T B A} \log (v), \quad v \gg 1 \\
& \Leftrightarrow \quad \log Y_{Q}(v) \sim-\left(4 L+4 E_{\mathrm{BTBA}}\right) \log (v)
\end{aligned}
$$

However, the integrals in BTBA energy diverges if $Y_{Q}(v) \sim 1 / v$

$$
\int_{0}^{\infty} \frac{d v}{2 \pi} \frac{d \widetilde{p}_{Q}}{d v} \log \left(1+Y_{Q}(v)\right) \sim(\text { const }) \int^{\infty} d v v^{-4 L-4 E_{\mathrm{BTBA}}}
$$

The BTBA energy cannot be negative and large
$4 L+4 E_{\mathrm{BTBA}}>1 \quad \Leftrightarrow \quad E_{\mathrm{BTBA}}>1 / 4-L$

BTBA equation for $Y \mathrm{Q}$ in the large Q limit

$$
\Leftrightarrow \quad \log Y_{Q}(v) \sim\left(3-4 L-4 E_{\mathrm{BTBA}}\right) \log (Q)
$$

However, the sum in BTBA energy diverges if $Y_{Q}(v) \sim 1 / Q$

$$
\begin{aligned}
E_{\mathrm{BTBA}} & =-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right) \\
& \sim \sum_{Q=1}^{\infty}(\mathrm{const}) Q^{3-4 L-4 E_{\mathrm{BTBA}}}
\end{aligned}
$$

The BTBA energy cannot be negative and large $4 L+4 E_{\mathrm{BTBA}}>4 \Leftrightarrow E_{\mathrm{BTBA}}>1-L$

The stronger bound is

$$
E_{\text {open }}\left[Z^{L}\right]=L-1+E_{\mathrm{BTBA}}(L, g)>0
$$

It is impossible to saturate this lower bound.

Suppose $\boldsymbol{E}_{\mathrm{BTBA}}=1-\boldsymbol{L}$ then BTBA dictates $Y_{Q}(v) \sim 1 / Q$
This implies $\boldsymbol{E}_{\text {BtBA }}$ diverges, which is a contradiction

A sign of divergences can also be seen at numerical analysis (ie. indeed TBA energy seems to "hit" the bound)

Mars Beowulf cluster (Utrecht University)

Mathematica

Sushiki server (Yukawa Institute)

Numerical Results

Solid: BTBA solution, Dashed: Lüscher formula, Dotted: Lower bound $E_{\mathrm{BTBA}}^{(\mathrm{num})}(L, g)=-\sum_{Q=1}^{Q_{\max }} \int_{-\infty}^{\infty} \frac{d \tilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)-\sum_{Q=Q_{\max }+1}^{100} \int_{-\infty}^{\infty} \frac{d \tilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}^{\bullet}\right)$

Numerical Results

- Cannot go further just by a brute-force computation
- Not clear how to go beyond the critical coupling analytically

Phase diagram

under the assumption that the $L=\mathbf{1}$ energy diverges at $\boldsymbol{g}=\mathbf{0}$

Physical interpretation?

- The breakdown may indicate open string tachyon at strong coupling via AdS/CFT
- In string theory, the classical energy of short string is zero, but the quantum zero-point energy can be complex
- No gauge-theory description of $\boldsymbol{O}(\boldsymbol{N})$ operators for $\boldsymbol{g}>\boldsymbol{g}_{\text {cr }}$

$$
\Delta \sim 2 N+2 E_{\text {open }} \xrightarrow{g \rightarrow \infty} \text { complex }
$$

- Unitarity of $\mathcal{N} \mathcal{N}=4$ SYM requires Δ to be real at any g
- The energy of the string-brane system after tachyon condensation should be real
- Then, $\boldsymbol{g}_{\text {cr }}$ may be related to the radius of convergence in gauge theory

$$
\Delta \sim 2 N+2 E_{\mathrm{BTBA}}=\infty-\infty
$$

Physical interpretation?

$\Delta \sim 2 N+2 E_{\text {open }} \xrightarrow{g \rightarrow \infty}$ complex / tachyon condensation
tachyonic open string $\Delta \sim 2 N+2 E_{\mathrm{BTBA}}=\infty-\infty$

$$
\xrightarrow{g \rightarrow \infty} \mathcal{O}\left(N^{0}\right) ?
$$

Summary and outlook

Summary

- Studied the spectrum of determinant-like operators dual to open strings ending on giant gravitons
- Wrapping corrections from $\mathcal{N}=4$ SYM agree with the Lüscher formula
- Proposed and solved BTBA equations for $Y=0$ \& $Y b a r=0$
- Found the lower-bound for the (B)TBA energy

Future works

- Beyond the critical coupling? Compare with string theory?
- How to compute the dimension of the L=I state?
- AdS/CFT for unstable systems?

Thank you for attention

Infinite-dimensional symmetry

The centrally-extended $\mathfrak{s u}(2 \mid 2)$ determines the asymptotic dispersion and S-matrix of fundamental representations almost uniquely

$$
\begin{gathered}
\Delta-J=\sum_{j=1}^{N} \sqrt{1+4 f(g)^{2} \sin ^{2} \frac{p_{j}}{2}}, \quad f(g)=g \equiv \frac{\sqrt{\lambda}}{2 \pi} \text { in } \mathcal{N}=4 \mathrm{SYM} \\
A_{a}^{\dagger}\left(p_{1}\right) A_{b}^{\dagger}\left(p_{2}\right)=\mathbb{S}_{a b}^{c d}\left(p_{1}, p_{2}\right) A_{c}^{\dagger}\left(p_{2}\right) A_{d}^{\dagger}\left(p_{1}\right), \quad \mathbb{S}=S_{0}\left[\hat{S}_{\mathfrak{s u}(2 \mid 2)} \otimes \hat{S}_{\mathfrak{s u}(2 \mid 2)}\right]
\end{gathered}
$$

The (fundamental) S-matrix of AdS/CFT satisfies Yang-Baxter relation

$$
\mathbb{S}_{12} \mathbb{S}_{13} \mathbb{S}_{23}=\mathbb{S}_{23} \mathbb{S}_{13} \mathbb{S}_{12} \equiv \mathbb{S}_{123}
$$

NB. boundstate S-matrices are obtained by fusion while imposing the YBR

Infinite-dimensional symmetry

An N-particle state and its dimension/energy is

$$
\left|p_{1}, \ldots p_{N}\right\rangle=A_{1}^{\dagger}\left(p_{1}\right) \ldots A_{N}^{\dagger}\left(p_{N}\right)|0\rangle, \quad \Delta-J=\sum_{j=1}^{N} \sqrt{\left.1+4 g^{2} \sin ^{2} \frac{p_{p}}{2}\right]}
$$

The creation-annihilation operators have a free-field-like representation (Zamolodchikov-Faddeev algebra)

$$
A_{1}^{\dagger} A_{2}^{\dagger}=A_{2}^{\dagger} A_{1}^{\dagger} \mathbb{S}_{12}, \quad A_{1} A_{2}=\mathbb{S}_{12} A_{2} A_{1}, \quad A_{1} A_{2}^{\dagger}=A_{2}^{\dagger} A_{1} \mathbb{S}_{12}+\delta_{12}
$$

The centrally-extended su(2|2) extends
further to the Hopf-algebra with a non-trivial co-product

$$
\begin{gathered}
\Delta \mathfrak{J}^{A}=\mathfrak{J}^{A} \otimes 1+e^{i p[A]} \otimes \mathfrak{J}^{A}, \quad \mathfrak{J}^{A}: \mathfrak{s u}(2 \mid 2) \text { generators } \\
{\left[\Delta \mathfrak{J}^{A}, \mathbb{S}\right]=0}
\end{gathered}
$$

eventually to the Yangian of su(2|2) [Beisert (2005) and others

Bethe-Yang equation (BYE)

For a large and finite J, momenta of the particles are determined by the Bethe-Yang (or Bethe Ansatz) equation

$$
\begin{gathered}
-1=e^{-i J p_{k}} \prod_{j=1}^{N} S\left(p_{j}, p_{k}\right) \\
S(p, p)=-1
\end{gathered}
$$

BYE in terms of transfer matrix

$$
T_{a}(q \mid \vec{p}) \equiv(\mathrm{s}) \operatorname{tr}_{V_{a}}\left[\mathbb{S}_{a 1}\left(q, p_{1}\right) \cdots \mathbb{S}_{a N}\left(q, p_{N}\right)\right]
$$

Yang-Baxter relation for integrable S-matrices $\Rightarrow\left[T_{a}\left(q_{a} \mid \vec{p}\right), T_{b}\left(q_{b} \mid \vec{p}\right)\right]=0$

$$
\text { BYE } \quad \Leftrightarrow \quad-1=\left.e^{-i J q} T(q \mid \vec{p})\right|_{q=p_{k}}
$$

Wrapping corrections

- The dimension Δ of SYM operator with a finite R-charge \boldsymbol{J}
receives exponentially small "wrapping" corrections
- The leading wrapping correction is related to the transfer matrix via the Lüscher formula

$$
\begin{gathered}
\Delta_{\text {Lüscher }} \sim \sum_{Q} \int_{-\infty}^{\infty} d \widetilde{p}_{Q} e^{-\widetilde{\mathcal{E}}_{Q}\left(\widetilde{p}_{Q}\right) J} \\
\left(\mathcal{E}_{Q}, p_{Q}\right)=\left(-i \widetilde{p}_{Q},-i \widetilde{\mathcal{E}}_{Q}\right), \quad \widetilde{\mathcal{E}}_{Q}=2 \operatorname{arcsinh}\left(\sqrt{Q^{2}+\widetilde{p}_{Q}^{2}} /(2 g)\right) \\
\Delta_{\text {Lüscher }}=-\sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\bullet}\left(\widetilde{p}_{Q}\right), \quad Y_{Q}^{\bullet}\left(\widetilde{p}_{Q}\right)=e^{-\widetilde{\mathcal{E}}_{Q} J} T_{Q}\left(\widetilde{p}_{Q} \mid \vec{p}\right)
\end{gathered}
$$

Boundary Bethe-Yang equation

Integrable open spin chains obey boundary BYE

$$
\begin{aligned}
1=e^{-i 2 J p_{K}} & \prod_{j \neq k}^{N} S\left(p_{k}, p_{j}\right) R^{-}\left(p_{k}\right) \times \\
& \prod_{j \neq k}^{N} S\left(p_{j},-p_{k}\right) R^{+}\left(-p_{k}\right)
\end{aligned}
$$

BBYE from double-row transfer matrix $D_{a}=\operatorname{tr}_{a}\left[\mathbb{S}_{a N} \cdots \mathbb{S}_{a 1} \mathbb{R}^{-} \mathbb{S}_{1 a} \cdots \mathbb{S}_{N a} \tilde{\mathbb{R}}^{+}\right]$
$\mathbb{R}^{ \pm}$: reflection matrix

Boundary Yang-Baxter for $\mathbb{R}^{ \pm} \quad \Rightarrow \quad\left[D_{a}, D_{b}\right]=0$

$$
\mathrm{BBYE} \quad \Leftrightarrow \quad-1=\left.e^{-2 i q J} D_{a}(q \mid \vec{p})\right|_{q=p_{k}}
$$

Boundary wrapping corrections

- Boundary Lüscher formula has been conjectured and tested

- In terms of the double-row transfer matrix

$$
\Delta_{\text {Lüscher }}=-\sum_{Q=1}^{\infty} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} Y_{Q}^{\bullet}, \quad Y_{Q}^{\bullet}=e^{-\widetilde{\mathcal{E}}_{Q} 2 J} D_{Q}
$$

Agree with $\mathcal{N}=4$ SYM perturbation at weak coupling for simple states

Error bars

We put Qmax=6 to draw the solid line

$$
E_{\mathrm{BTBA}}^{(\mathrm{num})}(J, g)=-\sum_{Q=1}^{Q_{\max }} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right)-\sum_{Q=Q_{\max }+1}^{100} \int_{0}^{\infty} \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}^{\bullet}\right)
$$

The error from the truncation of YQ is huge around the critical value

$$
E_{\mathrm{BTBA}}=\sum_{Q} \mathrm{E}(Q), \quad \mathrm{E}(Q)=-\int \frac{d \widetilde{p}_{Q}}{2 \pi} \log \left(1+Y_{Q}\right) \sim Q^{-4 J-4 E_{\mathrm{BTBA}}}
$$

We extrapolate the BTBA energy from $Q \max =6$ to $\mathrm{Qmax}=100$ using the large Q asymptotics of $\mathrm{E}(\mathrm{Q})$

$$
\tilde{E}_{\mathrm{BTBA}}=\sum_{Q=1}^{6} \mathrm{E}^{(\text {original) }}(Q)+\sum_{Q=7}^{100} \mathrm{E}^{(\mathrm{fit})}(Q)\left(<E_{\mathrm{BTBA}}^{(\mathrm{num})}\right)
$$

Estimate of truncation error: $\delta E_{\mathrm{BTBA}} \equiv E_{\mathrm{BTBA}}^{(\text {num })}-\tilde{E}_{\mathrm{BTBA}}$

