Finite-size effects in AdS $_5 \times S^5$ superstring

Ryo Suzuki[†]

Based on papers 0801.0747, 0807.0643 with Yasuyuki Hatsuda[‡]

[†] Trinity College Dublin, [‡] University of Tokyo

November 10, 2008

The σ -model on AdS₅×S⁵ is interesting, because of

• The AdS/CFT correspondence: [Maldacena (1997)]

Superstring on $\operatorname{AdS}_5 \times \operatorname{S}^5 \quad \leftrightarrow \quad \mathcal{N} = 4 \; SU(N) \; \operatorname{SYM}$ string tension $\lambda = R^4/{\alpha'}^2 \quad \leftrightarrow \quad$ 't Hooft coupling $\lambda = Ng_{\operatorname{YM}}^2$

In the limit $N
ightarrow \infty$ with λ fixed.

Large $N \Leftrightarrow$ String is free $g_s = g_{
m YM}^2 = 0$,

• The (classical) integrability:

The classical σ -model on

$$ext{AdS}_5 imes ext{S}^5 = rac{PSU(2,2|4)}{SO(1,4) imes SO(5)} ext{ supercoset}$$

is integrable. [Bena, Polchinski, Roiban (2003)]

Decompactification limit

There are many classically integrable 2d field theories known. Usually they are defined on a plane, rather than a cylinder.

Let us take the following decompactification limit:

- Rescale $\sigma \in [-\pi,\pi] \mapsto ilde{\sigma} \in [-\infty,\infty]$
- Forget periodicity (level-matching) condition (tentatively)

[Hofman, Maldacena (2006)]

Under this limit,

- We can define **asymptotic states** for soliton-like solutions
- We can define their scattering on worldsheet

Sigma model in uniform light-cone gauge

Uniform light-cone gauge is useful for decompactification limit.

$$H_{
m ws} = -P_- \equiv E - J_1, ~~ p_{
m ws} \equiv -\int_{-r}^r d\sigma \, \pi_i \, \partial_\sigma X^i, ~~ r \equiv rac{\pi P_+}{\sqrt{\lambda}} \, .$$

E and J_1 are conserved charges of AdS₅×S⁵.

[Kruczenski, Ryzhov, Tseytlin (2004); Arutyunov, Frolov, Zamaklar (2006)]

In the limit $P_+
ightarrow \infty$, we can find soliton-like solutions with

$$egin{aligned} \epsilon_{
m ws}(p_{
m ws}) &= rac{\sqrt{\lambda}}{\pi} \left| \sin rac{p_{
m ws}}{2}
ight| & p_{
m ws} \sim \mathcal{O} \left(1
ight) \ \epsilon_{
m ws}(p_{
m ws}) &= \sqrt{1 + \left(rac{\sqrt{\lambda} \, p_{
m ws}}{2\pi}
ight)^2} & p_{
m ws} \sim \mathcal{O} \left(rac{1}{\sqrt{\lambda}}
ight) \ll 1 \end{aligned}$$

Sigma model in uniform light-cone gauge

Uniform light-cone gauge is useful for decompactification limit.

$$H_{
m ws}=-P_{-}\equiv E-J_{1}, ~~ p_{
m ws}\equiv -\int_{-r}^{r}d\sigma \, \pi_{i} \, \partial_{\sigma}X^{i}, ~~ r\equiv rac{\pi P_{+}}{\sqrt{\lambda}}\, .$$

E and J_1 are conserved charges of $AdS_5 \times S^5$.

[Kruczenski, Ryzhov, Tseytlin (2004); Arutyunov, Frolov, Zamaklar (2006)]

In the limit $P_+
ightarrow \infty$, we can find soliton-like solutions with

$$\epsilon_{
m ws}(p_{
m ws}) = \sqrt{1+rac{\lambda}{\pi^2}\,\sin^2rac{p_{
m ws}}{2}} \qquad ext{(Giant magnon)}$$

Dispersion relation of (decompactified) $AdS_5 \times S^5 \sigma$ -model is non-relativistic

Dispersion and S-matrix

Asymptotic states and their *S*-matrix are important in this limit. The residual $su(2|2)^2$ symmetry of the action constrains them.

[Arutyunov, Frolov, Zamaklar (2006)]

- Asymptotic spectrum?
 - Classified by atypical representations of su(2|2)
 - There are also boundstates, (2Q|2Q)-representation
- Dispersion relations?
 - Follow from BPS relation of the $su(2|2)^2$
- *S*-matrix among them?
 - The su(2|2) determines the S-matrix up to a scalar factor

[Beisert (2005)]

Dispersion and S-matrix

Asymptotic states and their S-matrix are important in this limit. The residual $su(2|2)^2$ symmetry of the action constrains them.

[Arutyunov, Frolov, Zamaklar (2006)]

- The scalar factor?
 - The generalized crossing symmetry constrains this factor [Janik (2006)]
 - There is a conjecture on the exact dressing phase $\sigma_{
 m dress}$

[Beisert, Eden, Staudacher (2006)]

$$S_0(y^{\pm},x^{\pm}) = rac{y^- - x^+}{y^+ - x^-} rac{1 - rac{1}{y^+ x^-}}{1 - rac{1}{y^- x^+}} \, \sigma^2_{ ext{dress}}(y^{\pm},x^{\pm})
onumber \ x^{\pm}(p) = e^{\pm i p/2} \, rac{1 + \sqrt{1 + 16g^2 \sin^2 rac{p}{2}}}{4g \sin rac{p}{2}} \,, \quad g \equiv rac{\sqrt{\lambda}}{4\pi}$$

In the target-space language,

Dispersion for Finite- J_1

$$\epsilon(\Delta\phi_1)=\sqrt{1+16g^2\sin^2rac{\Delta\phi_1}{2}}+\delta\epsilon(\Delta\phi_1)$$

At strong coupling $g \gg 1$,

$$\delta\epsilon(\Delta\phi_1) = -16g\sin^3rac{\Delta\phi_1}{2}\,\exp\left(-2-rac{J_1}{2g\sinrac{\Delta\phi_1}{2}}
ight)+\dots$$

[Arutyunov, Frolov, Zamaklar (2006); Astolfi, Forini, Grignani, Semenoff (2007)]

The Lüscher formula

Finite-size effects can be computed also from the Lüscher formula:

- Consider a relativistic QFT on a cylinder with size L
- Mass of a particle receives corrections of

$$\delta m = \mathcal{O}\left(e^{ - cmL}
ight) + \mathcal{O}\left(e^{ - 2cmL}
ight) + \dots$$

• The leading correction is related to the S-matrix

for a theory with the single mass scale m.

[Lüscher (1986); Klassen, Melzer (1991)]

The Lüscher formula

Finite-size effects can be computed also from the Lüscher formula:

$$\delta m = \delta m^F + \delta m^\mu$$

$$\delta m^F = -m \sum_b \int rac{d heta}{2\pi} \cosh heta \ e^{-mL \cosh heta} \left[S^{ba}_{ba} \left(heta + rac{i\pi}{2}
ight) - 1
ight]
onumber \ \delta m^\mu = -i rac{\sqrt{3}}{2} m \sum_b e^{-rac{\sqrt{3}}{2} mL} \mathop{\mathrm{Res}}_{ heta = heta_*} S^{ba}_{ba} \left(heta
ight)$$

for a theory with the single mass scale m.

[Lüscher (1986); Klassen, Melzer (1991)]

Generalized Lüscher formula

The generalized formula for non-relativistic dispersion

$$egin{aligned} &\delta \epsilon_a = \delta \epsilon_a^F + \delta \epsilon_a^\mu \ &\delta \epsilon_a^F = -\sum_b (-1)^{F_b} \int rac{d ilde{q}}{2\pi} \left(1 - rac{\epsilon_a'(p)}{\epsilon_b'(q)}
ight) e^{-iqL} \left[S^{ba}_{ba}\left(q,p
ight) - 1
ight] \ &\delta \epsilon_a^\mu = -i \sum_b (-1)^{F_b} \left(1 - rac{\epsilon_a'(p)}{\epsilon_b'(q_*)}
ight) e^{-iq_*L} \mathop{\mathrm{Res}}\limits_{ ilde{q} = ilde{q}_*} S^{ba}_{ba}\left(q,p
ight) \end{aligned}$$

[Janik, Łukowski (2007)]

- Incoming particle is a with $(p^0, p^1) = (\epsilon_a(p), p)$.
- Wrapping particle is b with $(q^0,q^1)=(\epsilon_b(q),q)$ and $ilde q=iq^0$.
- The exponent $-iq_*L$ must be negative and large..

Generalized Lüscher formula

Apply the formula to the gauge-fixed σ -model on AdS₅×S⁵

• μ -term \leftrightarrow Correction to **classical** energy of a giant magnon

$$\delta \epsilon^\mu(p) = -16g \sin^3 rac{p}{2} \, \exp\left(-2 - rac{J_1}{2g \sin rac{p}{2}}
ight)$$

[Janik, Łukowski (2007)]

• F-term \leftrightarrow Correction to **one-loop** energy of a giant magnon

$$\delta \epsilon^F(p) = -\sqrt{rac{g}{\pi J_1}} rac{16 \sin^2 rac{p}{4}}{1 - \sin rac{p}{2}} \exp\left(-2 \sin rac{p}{2} - rac{J_1}{2g}
ight)$$

[Heller, Janik, Łukowski (2008); Gromov, Schäfer-Nameki, Vieira (2008)]

Further generalization

There is a rich variety of spectrum.

Boundstates

 \leftrightarrow Dyonic Giant Magnon with spin $J_2=Q$

$$\epsilon_Q(p) = \sqrt{Q^2 + 16g^2 \sin^2 rac{p}{2}}\,, \qquad Q \in \mathbb{Z}_{\geq 1}$$

[Chen, Dorey, Okamura (2006); Roiban (2006)]

Multi-magnon states

Incoming particles being M giant magnons,

 (Q_1,\ldots,Q_M) boundstates with momenta (p_1,\ldots,p_M)

$$\epsilon_{ ext{total}} = \sum_{k=1}^{M} \epsilon_{Q_k}(p_k)$$

Now the questions are:

- What are the finite-*J* corrections?
- Is the Lüscher formula modified?

Can we still find agreement of the two results in the end?

Now the questions are:

- What are the finite-*J* corrections?
- Is the Lüscher formula modified?

Can we still find agreement of the two results in the end?

Let's see how...

Sigma model in conformal gauge

Conformal gauge is useful to study classical string spectrum through integrability methods.

1. Equations of motion in terms of coset current

$$\Rightarrow \quad [\partial_\sigma - J_\sigma(x), \partial_ au - J_ au(x)] = 0 \qquad orall x \in \mathbb{C}.$$

2. Given a classical string solution,

$$\overline{\mathcal{P}}\exp\left(\oint d\sigma J_{\sigma}(x)
ight)\simeq ext{diag}\left\{e^{ip_{1}(x)},\ldots,e^{ip_{8}(x)}
ight\}$$

defines a (non-)algebraic curve on a Riemann surface.

[Kazakov, Marshakov, Minahan, Zarembo (2004); Beisert, Kazakov, Sakai, Zarembo (2005)]

Efficient method to compute classical (and one-loop) energy

[Gromov, Vieira (2007)]

Modification to the *F*-term formula

Now we know finite- J_1 corrections in string theory. Look for the modified formula that agrees with these results

- For boundstates, use the dispersion for boundstates and the S-matrix between fundamental magnon and boundstates
- For multi-magnon states,

$$\delta \epsilon^F_a = -\sum_b (-1)^{F_b} \int \frac{d\tilde{q}}{2\pi} \left(1 - \frac{\epsilon'_a(p)}{\epsilon'_b(q)}\right) e^{-iqL} \left[S^{ba}_{ba}\left(q,p\right) - 1\right]$$
should become

Relation to Thermodynamic Bethe Ansatz

This is consistent with the TBA-like result in sinh-Gordon model:

$$egin{split} E(L) &= \sum_{j=1}^M m\cosh heta_j - \int_{-\infty}^\infty rac{d heta}{2\pi}\,m\cosh heta\,\log[1+Y(heta)] \ \log Y(heta) &= -mL\cosh heta - \sum_{j=1}^M\log S(heta- heta_j-irac{\pi}{2}) \ -i\int_{-\infty}^\infty rac{d heta'}{2\pi}\left(rac{d\log S}{d heta}
ight)(heta- heta')\log[1+Y(heta')] \end{split}$$

If $L \gg 1$, they can be solved order by order.

[Teschner (2007)]

Relation to Thermodynamic Bethe Ansatz

This is consistent with the TBA-like result in sinh-Gordon model: The result

$$\delta E_{
m shG}(L) pprox - \int_{-\infty}^{\infty} rac{d heta}{2\pi} m \cosh heta \ e^{-mL \cosh heta} \prod_{k=1}^{M} S(ilde{ heta}_k - heta + irac{\pi}{2})
onumber \ + \sum_{j=1}^{M} m \sinh ilde{ heta}_j \delta heta_j$$

can be compared with

$$egin{aligned} \delta \epsilon^F_A &= -\sum_b (-1)^{F_b} \int rac{d ilde{q}}{2\pi} \left(1 - \sum_{\ell=1}^M lpha_\ell \, rac{\epsilon'_{a_k}(p_k)}{\epsilon'_b(q)}
ight) e^{-iqL} imes \ & \left(\prod_{\ell=1}^M S^{\,ba_\ell}_{ba_\ell}(q,p_\ell) - 1
ight) \end{aligned}$$

[Bajnok, Janik (2008); Hatsuda, RS (2008)]

Modification to the μ -term formula

Corrections to classical energy are found in [Minahan, Ohlsson-Sax (2008)]

$$\delta \epsilon^{\mu}_{a} = -i \sum_{b} (-1)^{F_{b}} \left(1 - rac{\epsilon'_{a}(p)}{\epsilon'_{b}(q_{*})}
ight) e^{-iq_{*}L} \operatorname{Res}_{ ilde{q}= ilde{q}_{*}} S^{ba}_{ba}\left(q,p
ight)$$

should become

$$\delta \epsilon^{\mu}_{A} = \operatorname{Re}\left\{ egin{array}{c} \sum_{\ell=1}^{M} \sum_{b} (-1)^{F_{b}} \left\{ \epsilon'_{b}(q^{*}_{\ell}) - \epsilon'_{a_{\ell}}(p_{\ell})
ight\} e^{-iq^{*}_{\ell}L} imes \ & \left. \operatorname{Res}_{q^{1}=q^{*}_{\ell}} S^{\,ba_{\ell}}_{ba_{\ell}}(q^{1}\,,p_{\ell}) \prod_{k
eq \ell}^{M} S^{\,ba_{k}}_{ba_{k}}(q^{*}_{\ell}\,,p_{k})
ight\}
ight\}$$

Implying

 μ -term \leftrightarrow Residue of *F*-term at simple poles

[Hatsuda, RS (2008)]

Comments on μ -term

Some remarks:

- Take the real part (: originally $2 e^{-iqL}$ was $e^{-iqL} + e^{iqL}$)
- Sum the residues of two 'physical' poles There are four poles in the fundamental-boundstate S-matrix

$$x_q^\pm = X^+\,,\qquad x_q^\pm = 1/X^+$$

Only the first two combinations satisfy

$$\left|x_q^{\pm}\right| > 1 \quad \mathrm{and} \quad \left|X^{\pm}\right| > 1$$

[Arutyunov, Frolov (2007)]

Moreover, both $x_q^{\pm} = X^+$ satisfy the conservation law

$$E_Q(p_x) = E_{Q-1}(p_y) + E_1(p - p_y)$$
 $(Q \gg 1)$

Comments on μ -term

Some questions:

- The same poles do not satisfy the energy-momentum conservation at weak coupling.
 - Why the μ -term appears only at strong coupling?
- The residues at $x_q^- = X^+$ and $x_q^+ = X^+$ come in "wrong" sign.

$$\delta E_{ ext{classical string}} = ext{Re} \left\{ \delta \epsilon_{\mu} \Big|_{x_q^- = X^+} - \delta \epsilon_{\mu} \Big|_{x_q^+ = X^+}
ight\}$$

For
$$Q\sim \mathcal{O}(1)\ll g$$
, $-16g\sin^3rac{p}{2}=-8g\sin^3rac{p}{2}\left\{\left(1+rac{1}{Q}
ight)+\left(1-rac{1}{Q}
ight)
ight\}$

Summary and outlook

Summary:

- Proposed Lüscher formula for multi-particle (bound)states
- That agrees with the results of σ -model on AdS₅ \times S⁵

Some Applications:

• Remarkable agreement beyond perturbative region $\lambda \ll 1$

 $\Delta_{
m Konishi} ext{ from SYM} = \Delta_{
m Bethe} + \Delta_{
m L\"{u}scher} \quad ext{up to } \mathcal{O}(\lambda^4)$

[Bainok, Janik (2008)]

• Other models, like σ -model on AdS₄ $\times \mathbb{CP}^3$

[Bombardelli, Fioravanti (2008); Łukowski, Ohlsson-Sax (2008); Ahn, Bozhilov (2008)]