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1 Introduction

1.1 AdS/CFT Correspondence

The AdS/CFT correspondence is a conjecture about the equivalence of two theories. On
one side, we have a theory of gravity or strings on thee Anti-de Sitter (AdS) spacetime
in D ` 1 dimensions. On the other side, we have a conformal field theory (CFT) in D

dimensions. The AdS/CFT correspondence states that the two descriptions are dual to
each other,

Physics of gravity on AdSD`1 spacetime “ Physics of CFT in D dimensions

which was originally proposed by Juan Maldacena [1].
This correspondence has many interesting features. Firstly it is a bulk-boundary cor-

respondence, namely a CFT in D dimensions is somehow realized on the boundary of AdS
spacetime in D` 1 dimensions (the bulk). If there is a phenomenon happening on the AdS
boundary, you should also be able to see the equivalent phenomenon in the bulk, and vice
versa.1

Secondly, AdS/CFT is a concrete realization of large-N (or holographic) dualities pro-
posed earlier by Gerard ’t Hooft. He argued that the planar limit of an SUpNq gauge

1Some people distinguish between duality and correspondence. The word ‘duality’ means that anything
in one description has a counterpart in the other description. The word ‘correspondence’ means that
a moderately complicated mathematical structure shows up in two different situations. We argue that
AdS/CFT is an example of the duality.
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theory should behave as the string worldsheet on a sphere, and the 1{N expansion of the
gauge theory matches the genus expansion of string theory [2]. Furthermore he argued that
gravity in d` 1 dimensions should have a description in terms of a non-gravity theory in d
dimensions, based on the fact that the entropy of a black hole is proportional to the area
rather than the volume of the black hole [3].

Thirdly, Maldacena’s idea is based on string theory in the presence of D-branes. He
placed large-N coincident D3-branes on flat space. In the closed string description, D3-
branes make the spacetime curved, which is interpreted as a black brane solution. The
black brane solution becomes AdS5 ˆ S5 in the near-horizon limit, with N units of RR
flux. In the open string description, we probe N coincident D-branes by attaching an
open string ending on the branes, giving SUpNq degrees of freedom. This brane setup
preserves 16 supercharges and 16 superconformal charges. Thus, we discover the following
correspondence

Type IIB superstring on AdS5 ˆ S5 spacetime

ô D “ 4 N=4 super Yang-Mills (SYM) theory with gauge group SUpNq. (1.1)

This is a strong-weak duality in the sense that the AdS5 ˆ S5 description is perturbative
when λ “ R2

α1 " 1, and the SYM description is perturbative when λ “ Ng2YM ! 1.2 For
this reason, it is hard to ‘prove’ this correspondence in a rigorous way.

The setup (1.1) is one of the most studied examples of AdS/CFT correspondence. We
make comments on some of the interesting features:
• It is notoriously hard to quantize the superstring theories covariantly on the spacetime

with RR-fluxes, which are sourced by D-branes.
• N=4 SYM is an interacting superconformal theory in four dimensions, with the central

charge equal to dimSUpNq

4 “ N2´1
4 .

• Numerous examples of AdS/CFT have already been proposed in the literature. There
exist other versions of AdS/CFT which may or may not be related to Maldacena’s pro-
posal.3 In this regard, the setup (1.1) is special because we can study both sides precisely,
as we discuss shortly.

1.2 Integrability

One way to introduce integrability is the so-called Liouville (or classical) integrability.
Suppose that we have a classical system with n dynamical degrees of freedom pqi , piq with
i “ 1, 2, . . . , n. If the system has as many conserved charges as the degrees of freedom,
the system is Liouville integrable. In such a system, qi as a function of some parameter s
satisfies

qiptq ´ qip0q “
ż t

0
ds 9qi (1.2)

2Here R is the radius of AdS5 and S5, 1{α1 is the string tension, gYM is the Yang-Mills coupling, N is
the number of supercharges and N is the rank of the gauge group.

3You can propose your own version of AdS/CFT.
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where 9qi is a constant determined by the conserved charges like energy, angular momentum,
etc.

Quantum integrability is more difficult to introduce, especially from a rigorous mathe-
matical point of view. One working definition is that quantum integrable systems, typically
with a mass gap, have infinite-dimensional symmetry related to Yang-Baxter relations.

Integrable systems are often solved by an Ansatz (a working hypothesis like Bethe
Ansatz). An integrable QFT is mostly found in 1 ` 1 dimensions. Consider the S-matrix
in a QFT in 1+1 dimensions, defined as the operator which evolves the asymptotic states
with n particles,

S12...n |a1a2 ¨ ¨ ¨ anyin “ ˇ

ˇa1
1a

1
2 ¨ ¨ ¨ a1

n

D

out
. (1.3)

When this n-body S-matrix factorizes into products of two-body S-matrices, and is insensi-
tive to the order of the product, then this QFT is integrable.4 This factorization condition
at n “ 3 is called the Yang-Baxter (YB) relation, which is diagrammatically presented as:

S123 “ “ “ (1.4)

By using the YB relations, we can compute physical observables, such as the energy
spectrum and correlation functions. This is because behind the YB relations we find an
infinite-dimensional algebra called Yangian, which guarantees the existence of an infinite
number of conserved quantities. The process of how to make use of quantum integrability
is well-understood, known as the quantum inverse scattering method.

One may want to know if a given system is integrable or not. This is a hard question,
but there are some ways to check integrability. One way is to study whether the classical
phase space trajectory is periodic or chaotic. If the trajectory is chaotic, it is unlikely that
this system is integrable in the sense of Liouville. Another way is to study the level-spacing
distributions. If the level-spacing pattern follows the Poisson distribution, then this system
is likely to be classical or quantum integrable [5].

1.3 AdS/CFT and Integrability

The (maximally supersymmetric) AdS/CFT pair like (1.1) is believed to be integrable in
the planar large N limit. The AdS/CFT dictates that the conformal dimensions ∆ of a
single-trace operator Oα should correspond to the energy E of a closed string state Ψα on
AdS5 ˆ S5 as a function of the ’t Hooft coupling

∆αpλq Ø Eαpλq. (1.5)

A priori, we do not know which operator Oα corresponds to which string state Ψα due to the
strong/weak nature of the AdS/CFT duality. Remarkably, the integrability method enables
us to compute yet another energy Epintq

α pλq at any value of λ. By comparing Epintq
α pλq with

4The opposite is not true, particularly when a QFT contains massless excitations [4].
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∆αpλq at λ ! 1, and with Eαpλq at λ " 1, we can construct the dictionary between CFT
operators and string states.

In this lecture I discuss partition functions, not the spectral problem. Let me finish the
introduction by making a few more comments:
• The integrability method can be applied to QCD, in the sense that N “ 4 SYM can

predict part of the QCD data [6, 7].
• We do not fully understand why the integrability shows up in the maximally supersym-

metric setups. Whether other AdS/CFT pairs can be integrable remains a challenging
question [8].

• Integrable systems can also be called exactly solvable models. However, this does not
always mean that problems can be exactly solved. The computations are often quite
involved, and we need to work hard to find a good Ansatz based on explicit computations
using e.g. Mathematica. For this reason, we explain the basic usage of Mathematica in
appendices.

1.4 Collection of reviews

There is a large amount of literature on this subject. We pick up review articles closely
related to the topics in this lecture.

‚ Collection of reviews on integrability in AdS/CFT correspondence up to 2010 [9]

‚ Lecture note on integrability at ETH [10]

‚ Collection of lecture notes on integrability at YRIS summer school [11].

‚ A classic introduction to the XXX spin chain [12]

‚ Thermodynamic Bethe Ansatz for one-dimensional Hubbard model [13].5

‚ More classics are found in [14].

More review materials will be introduced as we discuss each topic.

1.5 Structure of this lecture note

In sections 2-5 and in section 9, we introduce N “ 4 SYM, superstring and gravity on
AdS5 with an emphasis on the partition functions and the Hagedorn behavior. Most of the
materials are elementary, so students should be able to follow part of the calculations.

In sections 6-8, we summarize the minimal material for explaining TBA equations for
the Hagedorn temperature in N “ 4 SYM. Some topics are advanced, and students should
be able to understand basic ideas.

In appendices, we explain the basic usage of Mathematica.

2 N “ 4 Super Yang-Mills Theory

The simplest way to obtain the Lagrangian of D “ 4, N “ 4 SYM is to start from D “ 10,
N=1 SYM and apply trivial dimensional reduction. To be more concrete, we start from

5The one-dimensional Hubbard model is closely related to the asymptotic spin chain of N “ 4 SYM.
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the Lagrangian:

LD“10 “ ´ 1

4g2YM
tr

`

FMNF
MN

˘ ` fermions (like λaα) (2.1)

FKM “ r∇K ,∇M s , K,M “ 0, 1, . . . , 9 (2.2)

where FKM is the field strength associated with the SUpNq gauge field AM .6 We split AM
into two sets AM “ pAµ, ϕIq, where µ “ 0, 1, 2, 3 and I “ 4, . . . , 9. The trivial dimensional
reduction throws away BI for all I, and thus

Fµν “ r∇µ,∇νs , FµI “ ´FIµ “ ∇µϕI , FIJ “ ´g2YM rϕI , ϕJ s . (2.3)

By substituting this into (2.1), we obtain the (bosonic part of) D “ 4, N “ 4 SYM
Lagrangian,7

LD“4 Ñ ´ 1

4g2YM

tr
´

F 2
µν ` 2 p∇µϕIq2 ´ g2YM rϕI , ϕJ s2

¯

` . . . . (2.4)

Here we list important properties of N “ 4 SYM:
• All fields in N “ 4 SYM are adjoint under the gauge group SUpNq. There are no

dynamical quarks (i.e. the elementary fields in the fundamental representation) as in
QCD.8

• We can count the (off-shell) degrees of freedom of each elementary field as

pAµqij : 4pN2 ´ 1q, pϕIqij : 6pN2 ´ 1q,
pλaαqij : 4 ˆ 2pN2 ´ 1q, `

λ̄a 9α

˘

ij
: 4 ˆ 2pN2 ´ 1q (2.5)

We need to add auxiliary fields to match the degrees of freedom between bosons and
fermions, as usual.

• This theory is maximally supersymmetric inD “ 4; maximal in the sense that the helicity
h of all elementary fields must satisfy |h| ď 2.

• This is an example of an interacting 4d (S)CFT, already at UV. To show the conformal
invariance perturbatively, we need to check that the β function of the Yang-Mills coupling
is zero, and the trace of the energy-momentum tensor vanishes,9

βpgYM q “ 0 ñ scale invariant, xTµµy “ 0 ñ conformal invariant. (2.6)

From the maximal supersymmetry and the conformal invariance, we expect that N “ 4

SYM has the global superconformal symmetry PSUp2, 2|4q.10 The bosonic subgroup of

6The commutator of the covariant derivatives is well-defined, as one can see from ∇Kϕ “ BKϕ `

igYM rAK , ϕs for any ϕ.
7Strictly speaking, we should redefine the Yang-Mills coupling gYMpD “ 10q to gYMpD “ 4q after

integrating LD“10 over the internal 6-dimensional space.
8One can construct baryons in N “ 4 SYM by using a D5-brane [15].
9Proving the conformal invariance of N “ 4 SYM non-perturbatively is a challenging problem [16].

10The superconformal symmetry has been classified in [17]; see also [18, 19].
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PSUp2, 2|4q is SUp2, 2q ˆ SUp4qR, where SUp2, 2q represents 4d conformal symmetry and
SUp4qR is the R-symmetry of the N “ 4 supersymmetry. The same symmetry shows up
on the superstring theory side, since the spacetime AdS5 ˆ S5 is realized as a supercoset

PSUp2, 2|4q
USpp2, 2q ˆ USpp4q Ą SOp2, 4q

SOp1, 4q ˆ SOp6q
SOp5q “ AdS5 ˆ S5. (2.7)

More details about N “ 4 SYM can be found e.g. in [20–22].
Consider the Lie superalgebra psup2, 2|4q. Its Cartan subalgebra consists of six ele-

ments; the conformal dimensions ∆, Lorentz spins pS1, S2q, and R-charges pJ1, J2, J3q. The
Lorentz spins and R-charges correspond to the angular momenta along the compact di-
rections of AdS5 ˆ S5, and thus they are quantized. The conformal dimensions can be an
arbitrary real number that may depend on the coupling constant.

3 Hagedorn Transition in Gauge Theory

3.1 Partition Function

Let us compute the thermal partition function of N “ 4 SYM on S1 ˆS3 at zero coupling.
The spacetime S1 ˆS3 is constructed by taking the polar coordinates in the flat Euclidean
space, R4 » R ˆ S3, and by periodically identifying the radial direction with the period of
β “ 1{T . The radial direction is regarded as time, and T is the temperature of the system.
This also implies that the Hamiltonian (the generator of time translation) is the dilatation
operator D (the generator of overall scaling). Since N “ 4 SYM is superconformal, only
the ratio of the radii between S1 and S3 is meaningful. We set the radius of S3 to 1.11

The partition function is given by,

ZS1ˆS3 “
ż

DAµDϕIDλADλ̄A e´S “ tr
´

e´βD
¯

. (3.1)

We should integrate over gauge-invariant states in the path-integral formalism, and should
take the trace over gauge-invariant states in the Hamiltonian formalism.

We argue that all states should satisfy the Gauss law constraint on S3. The charge
density of SUpNq gauge fields at weak coupling is given by

j0 “ ∇µF
µ0 “ Bk BkA0 ´ Bk B0Ak `OpgYMq (3.2)

where k “ 1, 2, 3 and µ “ 0, 1, 2, 3. The second term disappears if we choose the gauge
BkAk “ 0. Now the conserved charge is given by

Q “
ż

S3

d3xj0 “
ż

S3

d3x BkBkA0 “ 0 (3.3)

where we used the fact that the integral of a total derivative is equal to boundary terms,
and BS3 “ H. Physically, this means that the total SUpNq charge over S3 is zero, which

11CFT has the unique vacuum owing to the state-operator correspondence. The radii break the conformal
symmetry, which makes it possible that the theory undergoes a phase transition.
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is called Gauss law constraint on S3. This argument fails for R3 because there can be an
extra charge at infinity. A non-trivial distribution j0pxq is allowed as long as its integral
over S3 vanishes. Note that the Gauss law constraint is a result of the topology of S3, and
not related to the QCD color confinement that comes from the strong coupling dynamics.

What kind of local degrees of freedom contribute to j0pxq is a non-trivial question. If
all local degrees of freedom are SUpNq singlets, then the Gauss law constraint is satisfied
trivially. By SUpNq singlets, we mean composite operators whose color indices are con-
tracted, e.g. tr pϕ1ϕ2 . . . q=ř

a,b,...pϕ1qabpϕ2qbc ¨ ¨ ¨ . We may also imagine the situation that
the local degrees of freedom are SUpNq adjoints, because all elementary fields in the N “ 4

SYM Lagrangian are in the adjoint representation. The SUpNq adjoints are a collection of
N2 ´ 1 fields like tpϕIqabu before taking a trace. The two situations correspond to different
vacua of the theory. We should compare the free energy

ZS1ˆS3 “ e´βF (3.4)

to determine the true vacuum.

A physical expectation of the phase space of N “ 4 SYM is shown in Table 1. Around
T “ 0, the color degrees of freedom are confined due to the Gauss law constraints. The
free energy is of order 1, and typical states are multi-trace operators. When T " 1, a
large number of virtual particles with color degrees of freedom is created and annihilated.
The Gauss law constraints become unimportant, and the free energy becomes of order N2.
The phase transition occurs at the critical temperature TH , which is called the Hagedorn
temperature.

Temperature Below TH Above TH
Color degrees of freedom Confined Deconfined
Free energy OpN0q OpN2q
Typical states Multi-trace operators Particles along color flux tubes

Table 1. Expected phase space of N “ 4 SYM.

3.2 Counting single letters

In order to check our expectation in Table 1, we compute ZS1ˆS3 “ tr
`

e´βD
˘

at tree-level,
by counting gauge-invariant local operators of N “ 4 SYM at a low-temperature phase
[23–25]. The gauge-invariant operators are equivalent to multi-trace operators, which are
products of single-trace operators. A general single-trace operator can be written as

O “ tr
`

WA1WA2 ¨ ¨ ¨WAL
˘

(3.5)
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where WA is an adjoint field of SUpNq, also called a single letter of N “ 4 SYM. Written
explicitly, a single letter should be chosen from

WA P
"

∇pµ1∇µ2 ¨ ¨ ¨∇µsqϕ
I , {∇ {∇ . . . {∇λaα,

{∇ {∇ . . . {∇λ̄a 9α, ∇pµ1∇µ2 ¨ ¨ ¨∇µsqFµν

*

ps P Zě0q. (3.6)

Since r∇µ ,∇νs “ Fµν , we can always symmetrize ∇µ1∇µ2 ¨ ¨ ¨∇µs with respect to Lorentz
indices.

Let us define x ” e´β and count independent on-shell degrees of freedom. There are
six scalars ϕI with I “ 1, . . . , 6 of dimensions ∆0 “ 1. We subtract the degrees of freedom
killed by the equations of motion, ϕI ´∇2ϕI “ 0. In total, they contribute to the partition
function Z by 6x´ 6x3. For each ϕI , its conformal descendants exist as shown in (3.6),

ϕ ÞÑ ∇pµ1∇µ2 ¨ ¨ ¨∇µsqϕ, pµk “ 0, 1, 2, 3q. (3.7)

Therefore, the contribution to Z from scalars is

Zscalars “ 6x´ 6x3

p1 ´ xq4 . (3.8)

The denominator can be expanded as p1 ´ xq´4 “ 1 ` 4x` 10x2 ` ¨ ¨ ¨ , and the coefficients
agree with the counting of (3.7). For example, 4x corresponds to ∇µϕ and 10x2 corresponds
to ∇pµ∇νqϕ.

The same argument can be repeated for fermions λaα and λ̄a 9α, where a “ 1, 2, 3, 4

is the SUp4qR index and α, 9α “ 1, 2 are Lorentz spinor indices. They have the canonical
dimensions ∆0 “ 3{2, and their equations of motion are λaα ´ p {∇λaqα “ 0 and λ̄a 9α ´
p {∇λ̄aq 9α “ 0. Thus the contribution from fermions is

Zfermions “ 16x3{2 ´ 16x5{2

p1 ´ xq4 . (3.9)

Note that fermions are anti-periodic when going around the thermal circle S1
β . If we want

to impose anti-periodicity, we should multiply x by e2πi, so that pe2πixq1{2 “ ´x1{2.
There are six gauge fields Fµν “ r∇µ,∇νs with µ, ν “ 0, 1, 2, 3 at ∆0 “ 2, and this

contribution is Zgauge “ 6x2{p1 ´ xq4 ` . . . . Then we subtract the degrees of freedom
corresponding to the equations of motion and Bianchi identities,

0 “ ∇µFµν (3.10)

0 “ ∇µF̃µν “ εµνρσ∇µF ρσ. (3.11)

Since both equations contain one derivative ∇µ, they have fewer descendants compared to
(3.7). We count the additional contribution as ´8x3{p1 ´ xq3.

This is not the end of the story about counting the descendants. Consider trivial
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identities

Xµν ” p∇µ∇ν ` ∇ν∇µqFµν “ 0 (3.12)

X̃µν ” p∇µ∇ν ` ∇ν∇µq F̃µν “ 0 (3.13)

where we do not sum over µ, ν. They cancel part of the contribution from the conformal
descendants of Fµν to Zgauge .

We can create Xµν for each Fµν , so there exist 6 constraint equations Xµν “ 0. How-
ever, when we sum over µ in Xµν , we encounter the equations of motion which we have
already subtracted,

ÿ

µ

Xµν “
ÿ

µ

p∇µ∇ν ` ∇ν∇µqFµν “ 0. (3.14)

This implies that 4 equations are doubly counted. Furthermore, when we sum over µ, ν
we have a trivial relation

ř

µ,ν Xµν “ 0. Thus we doubly counted 1 equation in (3.14). In
total 6 ´ 4 ` 1 “ 3. We apply the same argument for X̃µν , and they contribute to Z by
´6x4{p1 ´ xq4.

The total contribution from gauge fields to the partition function is

Zgauge “ 6x2

p1 ´ xq4 ´ 8x3

p1 ´ xq3 ´ 6x4

p1 ´ xq4 . (3.15)

We have counted all single letters in (3.6). Let us define the single-letter function by
collecting Zscalars , Zfermions , Zgauge in (3.8), (3.9), (3.15) as

ζpxq “ ζBpxq ` ζF pxq, ζBpxq “ Zscalars ` Zgauge , ζF pxq “ Zfermions . (3.16)

Explicitly, this function is

ζpxq “ 2xp3 ´ x1{2q
p1 ´ x1{2q3 “ 6x` 16x3{2 ` p24 ` 6qx2 ` ¨ ¨ ¨ (3.17)

where 6x comes from ϕI , 16x3{2 from λaα and λ̄a 9α, and p24 ` 6qx2 from ∇µϕ
I , Fµν .

The single-letter function ζpxq is related to the partition function of single-trace oper-
ators, Zsingle-trpxq. The original partition function ZS1ˆS3 “ tr

`

e´βD
˘

contains the contri-
bution from all multi-trace operators, and the two quantities are related by the plethystic
exponential [26],

tr
´

e´βD
¯

“ exp

˜

8
ÿ

n“1

1

n
Zsingle-trpe´nβq

¸

. (3.18)

Our argument so far is purely classical. However, the partition functions receive quantum
corrections because the spectrum of the dilatation operator D depends on the ’t Hooft
coupling λ. This property is different from the computation of superconformal indices,
which are SUSY protected.
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3.3 Pólya Enumeration Theorem

We compute the single-trace partition function Zsingle-trpxq again by an alternative com-
binatorial argument, called Pólya enumeration theorem (or power enumeration theorem).
This method works well if we do not introduce more than one chemical potentials.

Consider the problem of counting the number of maps from a given domain to a given
range. For simplicity, we choose the domain as t1, 2, . . . , Lu and the range as tZ, Y u.12 We
want to count the number of single-trace operators of length L made out of Z or Y ,

trpZZ . . . Y Y . . .
looooooomooooooon

L

q Ø Map pZLzDomain Ñ Rangeq (3.19)

where ZL comes from the cyclic translation symmetry of single-traces. Define the weight
function cpx, yq “ x` y such that xmyn corresponds to ZmY n with m`n “ L. If we want
to count the number of all possible single-trace operators of N “ 4 SYM, we should replace
cpx, yq by ζpxq with x “ e´β .

Some examples of counting are illustrated as

Z2Y “
# +

Z2Y 2 “
#

,

+

(3.20)

where the white and gray circles represent Z and Y , respectively. This suggests that there
is one single-trace operator of weight x2y, and two single-trace operators of weight x2y2. It
will turn out that the single-trace partition function has the following series expansion,

Zsingle-tr “ 1 ` px` yq ` px2 ` xy ` y2q ` px3 ` x2y ` xy2 ` y3q
` px4 ` x3y ` 2x2y2 ` xy3 ` y4q ` ¨ ¨ ¨ . (3.21)

The coefficients in front of x2y and x2y2 are consistent with the examples (3.20).

Pólya enumeration theorem gives the generating function of the number of inequivalent
maps (3.19). The (weighted version of) theorem relates this generating function to the cycle
index of the cyclic group ZL . The cycle index of ZL is given by

CIZL
pt1, t2, . . . , tLq “ 1

L

ÿ

h|L

Totphq tL{h
h (3.22)

where h|L (h divides L) means we sum over h such that L{h is an integer, and Totphq is

12Here pZ, Y q are the complex scalars of N “ 4 SYM, defined by Z “ ϕ5 ` iϕ6 and Y “ ϕ3 ` iϕ4 .
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Euler’s totient function,13

Totphq “
h

ÿ

d“1

δpgcdph, dq, 1q pTotp1q,Totp2q,Totp3q, . . .q “ p1, 1, 2, 2, 4, . . .q (3.23)

which counts the number of positive integers no more than h that are relatively prime to h.
Skipping the details, the generating function for the number of single-trace operators made
of pZ, Y q is given by14

ZPólyapx, yq “
ÿ

L“1

1

L

ÿ

h|L

Totphqcpxh, yhqL{h (3.24)

By performing the sum over L, we find

ZPólyapx, yq “ ´
8
ÿ

h“1

Totphq
h

log
´

1 ´ cpxh, yhq
¯

. (3.25)

The generating function of all possible single-traces of N “ 4 SYM is

Zsingle-trpxq “ ´ζpxq ´
8
ÿ

h“1

Totphq
h

log
“

1 ´ ζ
`p´1qn`1xn

˘‰

“ 21x2 ` 96x5{2 ` 376x3 ` ¨ ¨ ¨

where we subtracted ζpxq to impose the traceless condition trWA “ 0 for the SUpNq gauge
group. The factor p´1qn`1 is added to ensure that fermions are anti-periodic when going
around S1

β .

The Euler’s totient function satisfies

ÿ

h|L

Totphq “ L,
ÿ

k“1

Totpkq
k

logp1 ´ xkq “ ´ x

1 ´ x
. (3.26)

By applying the plethystic exponential (3.18), we obtain the multi-trace partition function
as

tr
´

e´βD
¯

“ exp

˜

8
ÿ

m“1

1

m
Zsingle-trpxmq

¸

“ exp

˜

´
ÿ

m

ζpxmq
m

¸

¨
8

ź

m“1

1

1 ´ ζpxmq (3.27)

We see that both Zsingle-tr and ZS1ˆS3 “ tr
`

e´βD
˘

diverge if ζpxHq “ 1 at some xH . The
possible values of xH are

xH “ e´βH “ 7 ˘ 4
?
3 „ t0.07, 13.9u. (3.28)

13gcd is the greatest common divisor.
14We added the sum over L because the terms with different L do not mix. The statement and proof of

the weighted version of Pólya enumeration theorem can be found in [27].

– 11 –



We find xH “ 7´4
?
3 is the correct value because e´β ă 1 for β ą 0. This is the Hagedorn

temperature. Further developments about ZS1ˆS3 can be found in [28–31].

4 Hagedorn Temperature in String Theory

We discuss the Hagedorn transition of superstring theory on the flat spacetime following
[32].

4.1 Hagedorn behavior

Consider the low-temperature expansion of the partition function

tr
´

e´βD
¯

“ tr
`

xD
˘ ”

8
ÿ

m“0

Cm{2 x
m{2. (4.1)

Naively, large m terms are small because x “ e´β ă 1. This expectation is not true if the
number of states Cm{2 grows exponentially with respect to m,

Cm{2 „ eαm{2 ñ tr
`

xD
˘ „

ÿ

m

e
m
2

pα´βq . (4.2)

The partition function diverges at β˚ “ α. The exponential growth of the number of states
is typical in string theory, and is called Hagedorn behavior.

4.2 Density of states

Consider the spacetime (not worldsheet) partition function of IIB superstring theory on
S1
β ˆ R9 at zero string coupling (i.e. gs “ 0), which is equivalent to the partition function

of supergravity on S1
β ˆR9 with infinite types of particles with mass α1m2 “ 0, 4, 8, . . . . We

write this partition function as

Z “
ż

ź

n

rdϕndψns e´
ř

n Srϕn,ψns, (4.3)

where Srϕn, ψns is the action for the free bosons and fermions in ten dimensions. Since all
fields are free, we can compute its logarithm as [33]

logZ “
ż

dm ρpmq
ż

d9k?
k2 `m2

log

˜

1 ` e´β
?
k2`m2

1 ´ e´β
?
k2`m2

¸

, (4.4)

where ρpmq is the density of states with mass m. The superstring partition function takes
the form

Z “ ΠNS,NS ` ΠNS,R ` ΠR,NS ` ΠR,R . (4.5)

We compute only the first term, because other sectors are not important for computing the
Hagedorn temperature at least for gs “ 0.
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Let us calculate ρpmq in the NS-NS sector. We apply the usual CFT techniques in the
flat spacetime, which is to count the number of states of the form

|0y , αµ´1 |0y , ψµ´1 |0y , αµ´1α
ν
´1 |0y , ψµ´2 |0y , . . . , (4.6)

where tαµ´m, ψν´nu are the (left-moving) bosonic and fermionic oscillators. The commutation
relations are given by

rαµm, ανns “ mηµνδm`n,0 , tψµm, ψνnu “ ηµνδm`n,0 . (4.7)

There are also right movers tᾱµ´m, ψ̄ν´nu. The mass is given by

α1m2 “ 4Ntot “ 4 pNB `NB̄ `NF `NF̄ q (4.8)

where Ntot is the sum of the number operators for left- and right-moving bosons and
fermions.

We compute the quantity

tr
`

xNB`NF x̄NB̄`NF̄
˘

(4.9)

and impose the level-matching conditions later. We are interested in the caseNtot " 1. First
we count the states created by bosons. Such states are generally given by pα´mqppᾱ´nqq |0y
for all p, q P Zě0 , and they contribute to (4.9) as

ÿ

pě0

ÿ

qě0

xmp x̄nq “ 1

1 ´ xm
1

1 ´ x̄n
, m, n P Zě1 . (4.10)

Second, we count the states created by fermions. They are given by pψ´mqppψ̄´nqq |0y for
p, q “ 0, 1, and contribute to (4.9) as

ÿ

p“0,1

ÿ

q“0,1

xmp x̄nq “ p1 ` xmqp1 ` x̄nq. (4.11)

Recall that both bosonic and fermionic oscillators carry the spacetime index µ. Since there
are 8 physical directions, we sum over all 8B ` 8F directions to get

trxNB`NF x̄NB̄`NF̄ “
8

ź

m“1

ˆ

1 ` xm

1 ´ xm

˙8 ˆ

1 ` x̄m

1 ´ x̄m

˙8

”
ÿ

n,n̄

dn,n̄ x
n x̄n̄. (4.12)

Now we impose the level-matching conditions n “ n̄, and redefine z ” x̄ “ x. It follows
that

Πpzq ”
ÿ

N

dN,N z
2N “ 1

θ4p0|τq16 , (4.13)

where θ4 is the elliptic theta function with the modulus τ defined by z “ eπiτ . This is the
partition function for the NS-NS sector (4.5).
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From (4.13), we can determine dN,N as the residue,

dN,N “
¿

z“0

dz

2πi

Πpzq
z2N`1

. (4.14)

The integrand Πpzq is singular at z “ 1 or τ “ 0. Mathematica expands Πpzq as

Πpzq „
ˆ

1 ´ z

4π

˙8

exp

ˆ

2π2
1 ` z

1 ´ z

˙

, pz „ 1q. (4.15)

We evaluate (4.14) by the saddle point approximation at large N . Thanks to the factor
z´2N´1 the saddle point is shifted to z˚ „ 1 ´ π

b

2
N . The integral becomes

pdN,N q˚ „ e4π
?
2N

4096N4
ñ ρpmq „ em

?
8π2α1

16 pα1m2q4 pm " 1q, (4.16)

where we used α1m2 “ 4Ntot in (4.8).
Let us simplify the kinematic factor in the spacetime partition function (4.4). By taking

the polar coordinates in k⃗, we get

ż

d9k?
k2 `m2

log

˜

1 ` e´β
?
k2`m2

1 ´ e´β
?
k2`m2

¸

“ VolpS9q
ÿ

odd n

2

n

ż

dk k8?
k2 `m2

e´nβ
?
k2`m2

“ VolpS9q
ÿ

odd n

2

n

´m

n

¯4
K4pnβmq,

(4.17)

where K4 is the modified Bessel function. Substituting the density of states (4.16), the
partition function becomes

lnZ „
ÿ

n

ż

dm ρpmqK4pnβmq „
ÿ

n

ż 8

0
dm exp

´

m
?
8π2α1 ´mnβ

¯

. (4.18)

This integral diverges at n “ 1 if

β ď βH “
?
8π2α1 . (4.19)

The critical value βH is the Hagedorn temperature in string theory.
Note that this Z in (4.18) is the partition function of single strings. For the comparison

with (3.27) we should compute the partition function of multiple strings.15

4.3 Closed string tachyons

The Hagedorn temperature in string theory can be understood as the special radius of
the thermal circle such that the closed string winding mode around S1

β becomes tachyonic.
Above this temperature closed string tachyons will condensate, deforming the background

15We thank Troels Harmark for this comment.
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spacetime [34]. In the AdS background, this interpretation is consistent with the Hawking-
Page transition, where AdS becomes AdS-BH [35].

5 Thermodynamics of AdS Gravity

We discuss the thermodynamical properties of gravity in AdS5 . If we start from AdS5 ˆ S5

superstring, we will obtain AdS5 ˆ S5 IIB supergravity by taking the α1 Ñ 0 limit, i.e. by
neglecting all massive string states. The AdS5ˆS5 supergravity is equivalent to supergravity
on AdS5 with an infinite tower of KK modes coming from S5. We may neglect fermions in
the classical approximation, which gives gravity in AdS5 .

The contents in this section are based on [36, 37] as well as reviews [38, 39].

5.1 Gravity Action

The gravity action for AdS5 is

S “ ´ 1

16πGN

ż

d5x
?´g pR ´ 2Λq , Λ “ ´ 6

L2
, (5.1)

where L is the AdS radius. The equations of motion are

Rµν ´ R

2
gµν ` Λgµν “ 0. (5.2)

Since AdS is non-compact, we need to regularize p5.1q by adding various boundary (and
boundary counter) terms.

5.2 Black hole temperature (conical defect trick)

Let us write a general black hole metric as

ds2 “ ´V prqdt2 ` dr2

V prq ` . . . . (5.3)

The event horizon is defined by grr “ 8, namely V pr0q “ 0. We introduce the imaginary
time t “ iτ and expand the metric around r “ r0 as

ds2 „ ϵV 1pr0qdτ2 ` dϵ2

ϵV 1pr0q ` ¨ ¨ ¨ , pϵ “ r ´ r0 ! 1q. (5.4)

We want to impose a periodic boundary condition on the τ direction, and interpret the
period as the inverse temperature of the black hole. The period of τ is determined by
demanding the absence of conical singularity on the event horizon ϵ “ 0.

In order to check possible singularity, we rewrite the metric as a locally-flat form,

ds2 “ dR2 `R2dθ2 ` ¨ ¨ ¨ “ dzdz̄ ` ¨ ¨ ¨ , pz “ Reiθq. (5.5)
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If θ is periodic with the 2π period, then the metric does not have a conical singularity at
R “ 0. If θ » θ ` 2π{α, we define Θ ” αθ and rewrite the metric as

ds2 “ dR2 ` pRαq2dΘ2, pΘ » Θ ` 2πq. (5.6)

An example of the conical singularity is illustrated below:

z “ ?
w, (5.7)

If θ „ θ ` π, the variable w “ z2 has the 2π period. Now a point w “ w0 is inversely
mapped to two points z0 “ ˘?

w0 . The origin z “ 0 has a non-zero curvature in general
relativity, which is a defect operator insertion in the CFT language.

By comparing the two equations (5.4) and (5.5), we obtain

dϵ

dR
“ ?

ϵV 1 . (5.8)

With the boundary condition ϵ “ 0 at R “ 0, we get

ϵpRq “ R2V 1pr0q
4

. (5.9)

The metric becomes

ds2 “ dR2 `
ˆ

RV 1pr0q
2

˙2

dτ2 (5.10)

When τ has the period β “ 1{T , θ in (5.5) should have the period 2π. This means that the
black hole (or Bekenstein-Hawking) temperature TBH is given by

TBH “ V 1pr0q
4π

. (5.11)

5.3 Black holes in AdS

In order to write down the full metric (5.3) of an AdS5 black hole, we need to specify the
topology of the event horizon. The AdS black hole with a planar horizon is

ds̃2 “ ´fprqdt2 ` dr2

fprq ` r2

L2

3
ÿ

i“1

dx2i , fprq “ r2

L2

ˆ

1 ´ r40
r4

˙

, (5.12)

and the black hole with a spherical horizon is

ds2 “ ´V prqdt2 ` dr2

V prq ` r2dΩ3 , V prq “ 1 ` r2

L2
´ µ

r2
, (5.13)
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where µ is the black hole mass.

The metric ds̃2 in (5.12) is invariant under the rescaling

pxi, r, r0q Ñ paxi, r{a, r0{aq, (5.14)

which corresponds to the scale invariance of CFT4 at the boundary. The metric ds2 in
(5.13) is not invariant under the rescaling, indicating a possible phase transition at a finite
β. The spacetime (5.13) should be dual to CFT4 on S1

β ˆ S3.

By applying the conical defect trick to (5.13), we obtain the horizon temperature

βBH “ 4π

V 1
“ 2πr`L

2

L2 ` 2r2`
, (5.15)

where r` is the horizon radius, namely the outermost solution of V prq “ 0. By plotting
βBH as a function of r` as in Figure 1, we find that there exists a minimum black hole
temperature

βm “ πL?
2
. (5.16)

When β ă βm, there exist two values of r` giving the same temperature, rlarge` and

1 2 3 4

r+

L

0.5

1.0

1.5

2.0

β

L

Figure 1. The temperature of AdS5 black hole with a spherical horizon, which shows β ď βm .

rsmall
` . The thermodynamical properties of a small AdS black hole is similar to those in the

flat space-time, having a negative specific heat.16 The large AdS black hole has a positive
specific heat, and a new object in AdS. The large black hole gives the dominant contribution
to the partition function Z “ e´S .

Physically, we can think of AdS as a finite-size box in the sense that a particle reaches
the horizon in a finite proper time [38]. The black hole and thermal radiation reach thermal
equilibrium, because the radiation reflects back from the AdS boundary. The free energy
of a large AdS black hole increases by absorbing radiation, while it decreases for a small

16One has to calculate the free energy of a black hole to check this property; see Section 5.4.
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AdS black hole.

(5.17)

5.4 On-Shell Euclidean Action

We compute the classical partition function of the on-shell Euclidean action

Z “ e´S ” e´βF . (5.18)

Various classical solutions contribute to this partition function, such as a small AdS black
hole, a large AdS black hole and thermal AdS solutions.17 Due to the non-compactness of
the AdS spacetime, we need to regularize the action. We use I for the regularized on-shell
action on M “ AdS5, which is given by

I “ ´ 1

16πGN

ż

d5x
?
g pRpgq ´ 2Λq

` 1

8πGN

ż

r“1{ϵ
d4x

?
h pKAdS ´Kflatq

` 1

8πGN

ż

r“1{ϵ
d4x

?
h

ˆ

3

L
` L

4
Rphq

˙

.

(5.19)

The first line is the Einstein-Hilbert term, the second line is the Gibbons-Hawking-York
term, and the third line is the boundary counter-terms. The symbol gµν is the bulk metric,
and hab is the metric on the boundary BM living on r “ 1{ϵ. K is the extrinsic curvature
on BM , given by

2K “ hµν∇µnν “ hµνBrhν “ Br
?
h?
h

, (5.20)

where nν is normal to BM .
By substituting the AdS-Schwarzschild metric (5.13) we obtain

IAdS-Sch “ πβ

32GNL2

`

3L4 ` 4L2r2` ´ 4r4`
˘

, µ “
´r`

L

¯2
`

L2 ` r2`
˘

. (5.21)

One finds that Z “ e´IAdS-Sch becomes large if r` is large. The thermal AdS spacetime can
be obtained by taking the limit r` “ 0 since the black hole mass µ approaches zero. The
difference between IAdS-Sch and Ith (for thermal AdS5) is given by

∆I ” IAdS-Sch ´ Ith “ πβ

8GN

´r`

L

¯2
`

L2 ´ r2`
˘

. (5.22)

Recalling that r` is a function of βBH as in (5.15), we can express ∆I as a function of
T “ 1{βBH . The resulting function is plotted in Figure 2.

17The thermal AdS is important when µ „ r2` Ñ 0.
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Figure 2. The upper (orange) branch corresponds to the small AdS black hole, the lower (blue)
branch corresponds to the large AdS black hole, and the dashed (red) line corresponds to the
thermal AdS.

The free energy of the thermal AdS agrees with the free energy of the large AdS black
hole at the temperature

THP “ 3

2πL
ô ∆Ipr` “ Lq “ 0, (5.23)

which is called the Hawking-Page temperature. The thermal AdS is stable for T ă THP

and the large black hole is stable for T ą THP .

For curiosity, let us compare the Hagedorn temperature of flat superstring, TH “ 1
2

?
2α1π

with the Hawking-Page temperature, THP “ 3
2πL . The ratio between the two temperatures

is
ˆ

TH
THP

˙2

“ L2

18α1
“

?
λ

18
, (5.24)

showing that TH ă THP if
?
λ ă 18.

Physically speaking, only the gravitons contribute to the Hawking-Page transition,
whereas all massive string modes contribute to the Hagedorn temperature of the superstring.
The inequality (5.24) suggests that massive string modes contribute to the thermal-black
hole transition more than gravitons (massless string modes) when the string tension („ ?

λ)
is small.

6 Integrability in N “ 4 SYM

6.1 Half BPS states

N “ 4 SYM has six real scalars, ϕI with I “ 1, 2, . . . , 6. We introduce the SUp3q notation

Z “ ϕ5 ` iϕ6, Y “ ϕ3 ` iϕ4, X “ ϕ1 ` iϕ2, (6.1)

Z̄ “ ϕ5 ´ iϕ6, Ȳ “ ϕ3 ´ iϕ4, X̄ “ ϕ1 ´ iϕ2 (6.2)
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and the SUpNq Wick rule,

pϕIqijpϕJqkl “ δIJ
ˆ

δi
lδk

j ´ δi
jδk

l

N

˙

, pi, j, k, l “ 1, 2, . . . , Nq. (6.3)

This implies XX “ Y Y “ ZZ “ 0 but ZZ̄ ‰ 0.

The half-BPS states belong to the irreducible representation r0, L, 0s of SUp4qR , which
are symmetric traceless combinations of the scalars. An example with L “ 2 is

OIJ “ tr
`

ϕIϕJ
˘ ´ δIJ

6
tr

´

ϕkϕk
¯

. (6.4)

The highest weight states (HWS) of the irreducible representation r0, L, 0s are

Ozz “ trZ2, Ozzz “ trZ3, . . . , Oz...z “ trZL. (6.5)

To see that these operators are HWS, we take the generators of sup4qR as
¨

˚

˝

XBX Y BX ZBX
XBY Y BY ZBY
XBZ Y BZ ZBZ

˛

‹

‚

P sup4qR , (6.6)

which shows that the upper triangular parts annihilate trZL.

Let us introduce γ-matrices for SUSY transformations. We need the 4D part for the
spacetime, and the 6D part for the internal space. The 4D part is

γµ “
˜

pσµqα 9β

pσµq 9αβ

¸

, α, β, 9α, 9β “ 1, 2 and µ “ 0, 1, 2, 3 (6.7)

γµν ” rγµ, γνs “
˜

pσµνqαβ
pσµνq

9α 9β

¸

(6.8)

and the 6D part is

pγIqab “ ´pγIqba , a, b “ 1, 2, 3, 4 and I “ 1, 2, . . . . (6.9)

By using these γ matrices, we can introduce the spinor notation for the fundamental fields,18

Fµν Ñ F`
αβ “ F`

βα and F´

9α 9β
“ F´

9β 9α
, 6 Ñ 3 ‘ 3 P SOp1, 3q (6.10)

ϕI Ñ ϕab “ ´ϕba , 6 P SOp6qR . (6.11)

The N “ 4 supercharges are denoted by Qaα, Q̃b9α. In the spinor notation, the operator

18Recall that sup4q » sop6q.
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in the r0, 2, 0s representation (6.4) becomes

Oabcd “ tr
´

ϕabϕcd
¯

´ ϵabcd ϵefgh
24

tr
´

ϕefϕgh
¯

(6.12)

The supercharge acts on the scalars in a simple manner,

Qaα ϕbc “ ϵabcd λ
d
α (6.13)

If we regard pϕ12 , ϕ34q as pZ̄, Zq, then Z is annihilated by half of the 4 supercharges,

Q1αZ̄ “ Q2αZ̄ “ 0 (Half-BPS). (6.14)

We also find other SUSY descendants,

QaαQbβ Qcγ Qdδ O
abcd „ F`

αβF
`
γδ , Q̄a 9α Q̄b 9β Q̄c 9γ Q̄d 9δ O

abcd „ F´

9α 9β
F´

9γ 9δ
(6.15)

Thus, the r0, 2, 0s half-BPS multiplet contains trF 2
µν „ trpF`q2 ` trpF´q2, which is part of

the N “ 4 SYM Lagrangian. We conclude that the coefficient 1{g2YM in (2.4) is protected
by N “ 4 SUSY.

6.2 Spin Chain

To introduce the spin chain of N “ 4 SYM, we consider operators close to trZL,

tr
`

ZL´2χ2
˘ „ tr pZZ . . . ZχZ . . . ZχZ . . . ZZq (6.16)

where χ can be any of the words in (3.6) in the adjoint representation of SUpNq.
These operators are generally non-BPS and mix under renormalization. In order to

compute the conformal dimensions at a loop level, we need to diagonalize the quantum
dilatation operator (or anomalous dimension matrix),

∆Oa “ MabOb Ñ ∆Oα “ γαOα . (6.17)

When χ “ Y , another complex scalar, the one-loop dilatation takes the form

∆1 “ λ

8π2
tr prY,ZsrBY , BZsq , (6.18)

which interchanges the position of Y and Z. This operator is identical to the Hamiltonian
of 1D spin chain (XXX spin chain) through the map

pZ, Y q ÐÑ pÒ, Óq (6.19)

tr pZZ . . . Y Y . . . q ÐÑ |ÒÒ . . . ÓÓ . . . y with PBC (6.20)

∆1 ÐÑ `

λ{8π2˘

HXXX (6.21)
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where the XXX Hamiltonian is

HXXX “
L

ÿ

k“1

pIk,k`1 ´ Pk,k`1q (6.22)

Ik,k`1 |. . . ak bk`1y “ |. . . ak bk`1 . . . y (6.23)

Pk,k`1 |. . . ak bk`1y “ |. . . bk ak`1 . . . y (6.24)

with pak, bkq P pÒ, Óq. If we introduce 2 ˆ 2 Pauli matrices tσxk , σyk , σzku, we get Pk,k`1 “
pIk,k`1 ` σ⃗k ¨ σ⃗k`1q{2, and thus

HXXX “ 1

2

L
ÿ

k“1

pIk,k`1 ´ σ⃗k ¨ σ⃗k`1q . (6.25)

It is known that the XXX model is integrable [12, 40]. Its energy spectrum is given by

HXXX ψα “ Eα ψα , Eα “
M
ÿ

j“1

ϵpupαq

j q, ϵpuq “ 1

4u2 ` 1
, (6.26)

where the rapidities upαq

j of the state ψα are determined by solving the Bethe Ansatz
Equations for the XXX model

ˆ

uj ` i{2
uj ´ i{2

˙L

“
M
ź

k‰j

uj ´ uk ` i

uj ´ uk ´ i
, pj “ 1, 2, . . . ,Mq. (6.27)

The XXX Hamiltonian (6.25) has the global symmetry sup2q. Each regular solution
of XXX Bethe Ansatz Equations is in one-to-one correspondence with the highest weight
state (HWS) of sup2q. The sup2q HWS is characterized by a Young diagram with two rows,

rL´M,M s “ , pM ď L{2q. (6.28)

It is also known that the number of consistent solutions of XXX Bethe Ansatz Equations
is equal to the number of Young tableaux of the shape rL´M,M s [41, 42]. In this lecture
we just explain simple examples of energy eigenstates by using Mathematica in Appendix
B.

7 All-loop Asymptotic Spin Chain

It is believed that the planar N “ 4 SYM has an all-loop planar integrable structure. The
all-loop integrability typically predicts physical observables in the form

(Observables) “ (Asymptotic part) ` (Wrapping part). (7.1)

The observables include correlation functions and scattering amplitudes. The asymptotic
part is mostly determined by symmetry, and the wrapping part is given by a sum over
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infinite virtual particles. By ‘asymptotic’, we mean an infinitely long background (e.g.
L Ñ 8 in trZL). Similarly, ‘wrapping’ correspond to the finite size (finite L) corrections.
The above structure is valid at any λ at large N .

7.1 Symmetry of Asymptotic Spin Chain

The asymptotic spin chain was first introduced by Beisert [43, 44] (see [45] for refinement).
As we mentioned earlier, N “ 4 SYM exhibits perturbative integrability.19 However, all-
loop planar integrability comes from a different idea. We consider trZL with L " 1, and
ignore the periodicity condition coming from the cyclicity of the trace. The extra freedoms
enlarge the global symmetry through a central extension, which turns out to be part of the
Yangian algebra.

The global symmetry algebra of N “ 4 SYM is psup2, 2|4q whose Cartan algebra
consists of t∆, S1, S2, J1, J2, J3u, as explained in Section 2. The symmetry corresponding
to ∆, J3 are broken when we specify the operator trZJ3 as the vacuum of an effective theory.
The residual symmetry is psup2|2q2 ˙ R.

The single-letter χ entering trpZZ ¨ ¨ ¨χ ¨ ¨ ¨ZZq behaves as the fundamental represen-
tation p2|2q2 of psup2|2q2, which has 8 bosons and 8 fermions. We can relate χ with the
fundamental fields of N “ 4 SYM by

χ P
˜

Dα 9αZ λbα
λ̄a 9α Φab

¸

, a, b, α, 9α “ 1, 2, (7.2)

where Φab are pX,Y, X̄, Ȳ q. This χ satisfies ∆0 ´ J3 “ 1. Other letters such as Z̄, DΦ, Dλ
have ∆0 ´ J3 “ 2. They are the bound states of (7.2) in the asymptotic spin chain. We
can also label χ in terms of p2|2qL ‘ p2|2qR as

χ „ pϕa|ψαqL b pϕ̄b b ψ̄ 9αqR , (7.3)

which will be used in the next subsection.
Let us discuss the central extension of psup2|2q ˙R. For simplicity we consider the left

moving part only. The generators consist of

J P tRa
b,Lαβ, Qαa, Sbβ, Ĉu, (7.4)

where Ra
b,Lαβ are the sup2q2 rotations, Qαa is the supercharge, Sbβ is the superconformal

charge, and Ĉ is the center related to ∆ ´ J3. The supercharges and the superconformal
charges satisfy the commutation relations

tQαa, Sbβu “ δαβRb
a ` δba Lαβ ` δbaδ

α
β Ĉ . (7.5)

After the central extension, the algebra becomes psup2|2q ˙ R3. The extra centers K̂, P̂

19Also string theory on AdS5 ˆ S5 is classically integrable.
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show up as

tQαa, Qβbu “ ϵαβ ϵab P̂ (7.6)

tSaα, Sbβu “ ϵab ϵαβ K̂. (7.7)

7.2 One-Particle States

We make an ansatz for one-particle states as the superposition of plane-waves,

|χppqy “
ÿ

n

eipn
ˇ

ˇ

ˇ
ZZ . . .

n
q

χ . . . ZZ
E

loooooooooomoooooooooon

L fields

, (7.8)

where p is the momentum and n is the position. |ABC . . . y means trpABC . . . q without
trace cyclicity. In the limit L Ñ 8, this state is invariant (up to a constant) under the
addition or removal of extra Z’s. The additional centers P̂ , K̂ can act non-trivially on
|χppqy.20

We write |χppqy “ |χLy b |χRy P p2|2qL b p2|2qR . The charges tQ,Su act on |χLy as21

Qαa

ˇ

ˇ

ˇ
ϕb

E

“ Aδba |ψαy (7.9)

Qαa

ˇ

ˇ

ˇ
ψβ

E

“ B ϵαβϵab

ˇ

ˇ

ˇ
Z`ϕb

E

(7.10)

Saα

ˇ

ˇ

ˇ
ϕb

E

“ C ϵabϵαβ

ˇ

ˇ

ˇ
Z´ψβ

E

(7.11)

Saα

ˇ

ˇ

ˇ
ψβ

E

“ D δβα |ϕay (7.12)

where Z˘ is the addition or removal of extra Z’s. The commutation relations of psup2|2q˙R3

give

Ĉ |χy “ AD `BC

2
|χy , (7.13)

tQ,Qu |χy „ P̂ |χy “ AB |χy , tS, Su |χy „ K̂ |χy “ CD |χy (7.14)

tQ,Su |χy „ pR ` L ` Ĉq |χy ñ 1 “ AD ´BC. (7.15)

Motivated by the perturbative data of N “ 4 SYM, we define new variables,

A “ a

fγ, B “
?
f

γ

ˆ

1 ´ x`

x´

˙

,

C “ i
?
fγ

x`
, D “

?
fx`

iγ

ˆ

1 ´ x´

x`

˙

,

(7.16)

20If we keep the trace cyclicity, trpZZ . . . χ . . . ZZq becomes a descendant of the half-BPS state whose
centers are all trivial. One should think of |χppqy as a mathematical building block.

21The action on |χRy is the same.
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then AD ´BC “ 1 implies

x` ` 1

x`
´ x´ ´ 1

x´
“ i

f
. (7.17)

This equation can be solved by Zhukovski map x “ xpuq,

xpuq ` 1

xpuq “ u, x˘puq “ x

ˆ

u˘ i

2f

˙

. (7.18)

Define the momentum p by
x`

x´
” eip. (7.19)

The center Ĉ in (7.13) becomes

2 Ĉ “ 1 ` 1
x`x´

1 ´ 1
x`x´

“
c

1 ` 16f2 sin2
p

2
, (7.20)

which is identified as ∆ ´ J3 “ Eppq (the magnon energy). In this argument, f is an
arbitrary function of the ’t Hooft coupling λ. It is known that 16f2 “ λ

π2 in N “ 4 SYM.
In ABJM, the comparison of the BPS Wilson lines with the localization method fixes this
function fpλq [46].

7.3 Two-Particle States

We make the following ansatz for two-particle states,

|χapp1qχbpp2qy “
ÿ

n1!n2

´

eip1n1`ip2n2 |Z . . . Z χa Z . . . Z χb Z . . . y

` eip1n2`ip2n1Scdabpp1, p2q |Z . . . Z χc Z . . . Z χd Z . . . y
¯

` pn1 „ n2q,

(7.21)

where Scdabpp1, p2q is a two-particle S-matrix. The last line denotes the case when n1 is
close to n2, which is not important in our discussion. The two-particle states form a 162-
dimensional (reducible) representation of psup2|2q2 ˙ R3.

We impose the condition that the S-matrix commutes with all generators of psup2|2q2˙
R3. This condition determines Scdabpp1, p2q up to an overall factor called the dressing factor.
Moreover, this psup2|2q2-invariant S-matrix satisfies Yang-Baxter relations, unitarity and
crossing. The entire algebra is part of Yangian of psup2|2q2.22 23 See [47, 48] for more
details.

22Yangian can be defined in several ways, and one definition is more or less equivalent to the Yang-Baxter
relation.

23The Killing form of psup2|2q ˙ R3 is degenerate. Some people prefer the exceptional superalgebra
dp2, 1; εq, which is a deformation of psup2|2q ˙ R3.
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7.4 Asymptotic Bethe Ansatz Equations

We have seen that the energy of one-particle states is given by (7.20). In integrable systems,
the energy of a multi-particle state is a sum of the single-particle energies. Thus, the energy
of an M -particle state is

∆ ´ J3 “
M
ÿ

k“1

c

1 ` 16fpλq2 sin2 pk
2
. (7.22)

The momenta tpku are unconstrained in the strict L p“ J3q Ñ 8 limit. When L is large
but finite, we should impose the periodic boundary conditions, or equivalently asymptotic
Bethe Ansatz Equations (BAE). The momenta tpku should be a solution of the asymptotic
BAE.

Suppose the system is periodic. We can take one excitation, say j-th particle, and let it
go around the spin chain. Two factors contribute to the wave function of the system under
this operation. The first factor is eipjL where pj is the momentum of the j-th particle. The
second factor is the scattering phase between the j-th and other magnons, which are given
by the product of two-body S-matrices (7.21). The periodic boundary condition requires
that the product of the two factors should be equal to one,

1 “ e´ipjL
ź

k‰j

Sppj , pkq pj “ 1, 2, . . . ,Mq (7.23)

which are the asymptotic Bethe Ansatz Equations. The situation forM “ 3 is schematically
shown as:

p3p2p1
(7.24)

Strictly speaking, both sides of the equation (7.23) are still operators. To derive alge-
braic equations for tpku we need to diagonalize the S-matrix. After the diagonalization, we
obtain the asymptotic BAE with psup2|2q2 symmetry.

Before writing down the asymptotic BAE, we fix the branch choice of the Zhukovski
map by

xspuq ” u

2

˜

1 `
c

1 ´ 4

u2

¸

(7.25)

The branch cut is running in between u “ ˘2. We require |xspuq| ě 1 on the top sheet
of u P C, from the comparison with the perturbative data. The asymptotic BAE for the
momentum-carrying node are given by

ˆ

x`
k

x´
k

˙L

“
KI
ź

ℓ‰k

S0puk, uℓq x
`
k ´ x´

ℓ

x´
k ´ x`

ℓ

d

x`
ℓ x

´
k

x´
ℓ x

`
k

ź

α“L,R

KII
α

ź

m“1

x´
k ´ y

pαq
m

x`
k ´ y

pαq
m

d

x`
k

x´
k

. (7.26)
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There are also extra four types of asymptotic BAE which determine the auxiliary Bethe
roots pypαq, wpαqq with α “ L,R.

7.5 Dressing Factor

We have argued that the centrally-extended algebra psup2|2q2 ˙ R3 determines the two-
particle S-matrix up to an overall scalar ‘dressing’ factor. To be more concrete, let us write
the S-matrix as

S
`

x˘
1 , x

˘
2

˘ “ S0
`

x˘
1 , x

˘
2

˘ “

Ŝsup2|2qL
b Ŝsup2|2qR

‰

(7.27)

where S0
`

x˘
1 , x

˘
2

˘

is the dressing factor, and Ŝsup2|2qL
b Ŝsup2|2qR

is the matrix component
determined by symmetry. We also introduces variables x˘

j “ xpuj ˘ i
2g q.

We know that S0 ‰ 1 from the perturbative data, both the dilatation spectrum of
N “ 4 SYM and the energy spectrum of AdS5 ˆ S5 superstring. For example, higher-loop
computation shows that the anomalous dimensions contain transcendental numbers such
as ζp3q, ζp5q, . . . whereas the asymptotic BAE without dressing phase can produce only
algebraic numbers (i.e. polynomial roots).

One way to obtain S0 is to solve the crossing relations, which can be illustrated as

a ā

0

0

S0a S0ā

“

a ā

1

(7.28)

If a test particle (0) scatters against a pair of particle and anti-particle (a, ā), then the
total S-matrix should be trivial owing to the Yang-Baxter relation. Here the anti-particle
(E ă 0) is mathematically given by the crossing transformation x˘ Ñ 1{x˘. See [49] for
more details.

Note that ‘crossing symmetry’ is natural only from the viewpoint of worldsheet theory
(2d QFT). From the viewpoint of N “ 4 SYM spin chain, the existence of the crossing
symmetry is mysterious.

The solutions of the crossing equations are not unique due to the ambiguity of periodic
(or crossing-invariant) functions. This is also called the CDD factor [50]. The correct
dressing phase for N “ 4 SYM and AdS5 ˆ S5 string is determined in [51].

Finally, we do not need an explicit form of S0 if we use the Quantum Spectral Curve
method, which is equivalent to TBA [52].

8 TBA for Hagedorn Temperature

We review Thermodynamic Bethe Ansatz (TBA) equations for Hagedorn temperature,
following on [53, 54]. Recall that the N “ 4 SYM partition function on S1

β ˆ S3 is given
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by (3.18),

tr
´

e´βD
¯

“ exp

˜

8
ÿ

n“1

1

n
Zsingle-trpe´nβq

¸

. (8.1)

We look for the largest β “ β˚pλq (“ smallest T˚ P Rě0) such that the partition function
diverges. This time β˚ is a function of λ. Perturbative computation shows that the n “ 1

term is dominant, and we assume that this is true at any λ.24

We rewrite the dilatation operator as D “ Dλ“0 ` δD, and expand the single-trace
partition as

Zsingle-tr

´

e´nβ
¯

“
ÿ

m“2

tr e´β rm
2

`δDpm
2 qs ”

ÿ

m

e´βFm . (8.2)

Here Fm is a sum of anomalous dimensions of all single-trace operators with the canonical
dimensions D0 “ m{2. According to Cauchy’s root test,

ř

n an converges (or diverges) if
limnÑ8panq1{n “ r satisfies r ă 1 (or r ą 1).25

In our case, we want to test

lim
mÑ8

exp

ˆ

´ β

m
Fm

˙

ÝÑ r
?“ 1 (8.3)

or equivalently,

log r „ ´ 1

m

"

βm

2
` log tr

”

eβδDpm
2 qı

looooooooomooooooooon

”
βm
2

FpT q

*

?“ 0. (8.4)

The Hagedorn temperature TH is now defined by

FpTHq “ ´1. (8.5)

Here F can be thought of as a sum of anomalous dimensions of very long operators, which
can be computed by the thermodynamic limit of asymptotic BAE.

8.1 TBA Equations

We want to sum free energy over the states which solve BAE in a thermodynamic limit. This
limit is defined by letting the spin chain length L Ñ 8, the number of particles M Ñ 8,
the ratio M{L kept fixed.26 After performing the sum we obtain a set of nonlinear integral
equations called TBA equations [56].

The free energy of a grand canonical ensemble is given by

F “ E ´ TS ´ T ¨ iγN (8.6)

24Strictly speaking, the n “ 2 term (or higher) can be dominant in some range of the chemical potentials
[55] where TH for n “ 1 is not lying on the positive real axis.

25Roughly speaking, we expect
ř

m am „
ř

n nc rn for some fixed c.
26Usually, the spin chain length is the same as the parameter L in (7.26). However, in (8.2) we should

take D0 “ m{2 Ñ 8. The two limiting procedures should agree with each other because D0 Ñ 8 implies
infinite L Ñ 8 and M Ñ 8.
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where the third term represents a pure-imaginary chemical potential for fermions.27 The
first and the third term can be rewritten as

E ´ TiγN “
ÿ

a

ż

du peapuq ´ Tiγaq ρapuq (8.7)

where u is rapidity (or momentum), and ρapuq is the density of type-a particles. The second
term, the entropy, can be computed by counting the number of all possible states.

Let us pause for a moment and examine the meaning of all possible states. We sum over
all possible states in the grand canonical ensemble. Each state is a solution of asymptotic
BAE. In the thermodynamic limit, we may use the saddle-point approximation; namely
only the saddle-point configuration contributes to the free energy.28 The saddle-point con-
figuration is also a solution of the BAE, characterized by the density of the occupied state
ρapuq and the unoccupied state ρ̄apuq.

We define Napuq “ ρapuqdu and N̄apuq “ ρ̄apuqdu as the number of occupied and
unoccupied states of the saddle-point configuration inside the rapidity range ru, u ` dus.
The sum Napuq ` N̄apuq is the number of all possible states in the same range. Thus, the
entropy S in (8.6) is given by

S “
ÿ

a

ż

du log
pNapuq ` N̄apuqq!
Napuq!N̄apuq!

Ñ
ÿ

a

ż

du

"

pρa ` ρ̄aq logpρa ` ρ̄aq ´ ρa log ρa ´ ρ̄a log ρ̄a

*

, (8.8)

where we used Stirling’s formula.29

Let us extremize Frρa, ρ̄as as

δF “ BF
Bρa δρa ` BF

Bρ̄a δρ̄a “ 0. (8.9)

We use BAE to relate δρa and δρ̄a:

logpBAEq : 2πi na,k “ ippukqLa `
ÿ

b

ÿ

j‰k

logSabpuk, ujq. (8.10)

Here na,k is not just an integer, but belongs to a finite interval with upper and lower bounds.
This is because when we choose the branch of the logarithm as Im log z P p´π, πs, and thus
the imaginary part of RHS is finite. It is expected that for each appropriate choice of tna,ku,

27The particles in many integrable systems obey Fermion statistics, because the scattering factor becomes
´1 when the rapidities coincide, Spu, uq “ ´1. See RHS of (6.27).

28In a free fermion system, one can compute F by rigorously enumerating all possible states in the
ensemble, and derive a TBA-like equation.

29One can compute subleading corrections to Stirling’s formula as in [57].
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there is a consistent solution tua,ku of BAE. Then, the continuum limit of (8.10) becomes

ρa ` ρ̄a “ ppuqLa
2π

`
ÿ

b

ż

dv
1

2πi
Bv logSabpu, vq ¨ ρbpvq. (8.11)

After a little algebra, we obtain

δF “ 0 ô log Ybpuq “ ebpuq
T

loomoon

source term

´
ÿ

a

ż

dv log
`

1 ` eiγaYapvq˘

Kabpv, uq (8.12)

which is the TBA equations. Our notation is

eiγaYapuq “ ρapvq
ρ̄apuq , Kabpv, uq “ 1

2πi

B
Bv logSabpv, uq. (8.13)

The free energy at the extremum is

F “ ´T
8
ÿ

a

ż

du

2π
log

`

1 ` eiγaYapuq˘

. (8.14)

The sum over a can be finite for simple integrable models, but we have an infinite number
of Y-functions in N “ 4 SYM. The TBA for N “ 4 SYM can be derived from the string
hypothesis [58–60].

8.2 Y-system

It is known that TBA equations derived from the asymptotic spin chains is more or less
equivalent to the Y-system equipped with discontinuity relations [61, 62] (see [63] for the
Y-system in general integrable systems). The Y-system is a set of functional relations given
by

Y `
a,sY

´
a,s “ p1 ` Ya,s´1qp1 ` Ya,s`1q

´

1 ` 1
Ya´1,s

¯ ´

1 ` 1
Ya`1,s

¯ , f˘ “ f

ˆ

u˘ i

g

˙

. (8.15)

If we introduce the T-functions by

Ya,s “ Ta,s`1 Ta,s´1

Ta`1,s Ta´1,s
(8.16)

the Y-system can be rewritten as

T`
a,s T

´
a,s “ Ta,s´1 Ta,s`1 ` Ta´1,s Ta`1,s , (8.17)

which is called the T-system (or Hirota equations). The T-system is invariant under the
gauge transformation

Ta,s Ñ g
ra`ss

1 g
ra´ss

2 g
r´a`ss

3 g
r´a´ss

4 Ta,s , (8.18)
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where f rns “ f
´

u` in
g

¯

. The Y-functions Ya,s are gauge-invariant objects.
The T-functions in N “ 4 SYM are defined on the psup2, 2|4q T-hook, which can be

illustrated as

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

a

s
p0, 0q

(8.19)

The T-functions Ta,s with a P Zě0 , s P Z obey the following boundary conditions:

• Ta,s “ 0 outside the T-hook (points without ˆ in (8.19))

• T0,s “ 1 and T2,˘Q “ TQ,˘2 for Q ě 3

The second condition comes from our choice of gauge fixing.
If Ta,spuq is a constant (i.e. independent of u), then T˘

a,s becomes Ta,s , and we can
identify the T-system as the Plücker relations for group characters.30 T-functions are
identified as

Ta,s “ PSUp2, 2|4q character for the aˆ s rectangular representation. (8.20)

8.3 PSUp2, 2|4q Characters

We follow [64, 65] and introduce PSUp2, 2|4q characters. See [66] for the definition of
superalgebra psup2, 2|4q, and [67] for the unitary irreducible representations of supergroup
PSUp2, 2|4q.

The generating function for GLpM |Nq characters is known as

wM |N pt, ξq “ Sdet
1

1 ´ ξt
“

śN
n“1p1 ´ yntq

śM
m“1p1 ´ xmtq

”
8
ÿ

s“1

ts T
pM |Nq

1,s pξq, (8.21)

where
ξ “ diag px1 , x2 , . . . , xM | y1 , y2 , . . . yN q P GLpM |Nq (8.22)

and r1, ss in T1,s denotes the s-th totally symmetric representation of GLpM |Nq. We can
decompose (8.21) as

w4|4pt, ξL ˆ ξRq “ wp2|2qpt, ξLq ˆ wp2|2qpt, ξRq (8.23)

30Some people call the T-system with the replacement T˘
a,s Ñ Ta,s the Q-system.
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giving us

T
p4|4q

1,s pξL ˆ ξRq “
s

ÿ

j“0

T
p2|2q

1.s´jpξLqT p2|2q

1,j pξRq. (8.24)

We need GLp2, 2|4q characters and not GLp4|4q characters. Let us try expanding
GLp2|2qR in 1{t and ξ´1

R as

T
p2,2|4q

1,s pξL ˆ ξRq “ y3y4
x3x4

8
ÿ

j“maxp0,´sq

T
p2|2q

1,s`jpξLqT p2|2q

1,j pξ´1
R q. (8.25)

It turns out that (8.25) is the GLp2, 2|4q character for the r1, ss representation. We param-
eterize ξ P PSUp2, 2|4q as

ξ “ diag
´

x1 , x2 , x3 , x4
looooooomooooooon

SUp2,2q

ˇ

ˇ

ˇ
y1 , y2 , y3 , y4
loooooomoooooon

SUp4qR

¯

, x1 x2 x3 x4 “ y1 y2 y3 y4 “ 1. (8.26)

The last two equations reduce Up2, 2|4q to PSUp2, 2|4q.
If we set

x1 “ x2 “ 1

x3
“ 1

x4
“ ´e´β{2 , y1 “ y2 “ y3 “ y4 “ 1, (8.27)

then we find
T1,0 “ ζpxq, x “ e´β, (8.28)

which is the single-letter function of N “ 4 SYM, given by (3.17). The relation (8.28) comes
from the fact that the irreducible representation r1, 0s can be identified as the singleton
representation of psup2, 2|4q,

ˆ ˆ
r 0 0 | 0 1 0 | 0 0 s (8.29)

8.4 Solving TBA

There are two situations where TBA equations in N “ 4 SYM have constant solutions given
by the PSUp2, 2|4q characters. The first situation is the quasi-classical limit g ”

?
λ

2π “ 8.
The T-functions T˘

a,s become Ta,s , which can be identified as the trace of the monodromy
of Lax connections on the AdS5 ˆ S5 worldsheet [68],

Ta,s » Stra,s

«

Pexp

ˆ
¿

dσLσ
˙

ff

. (8.30)

The second situation is the zero coupling limit g “ 0 in Hagedorn TBA. We can neglect
the source term in (8.12), and the constant Y-function becomes a solution of TBA.31

31Rigorously speaking, we should look at the simplified form of Hagedorn TBA to see the source term
vanishes.
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Let us look for the constant solution for the Hagedorn TBA around g “ 0. The TBA
equations consist of an infinite number of nonlinear integral equations of the form (8.12).
One of them can be written as

log Y1,1Y2,2 “
8
ÿ

Q“1

logp1 ` YQ,0q ˚KQy (8.31)

where

f ˚Kpuq “
ż 8

´8

dvfpvqKpv, uq. (8.32)

Since all Y-functions are constant, the RHS of (8.31) becomes „ ş8

´8
dvKpv, uq “ pconstantq

from (8.13). Thus

1 “ Y1,1Y2,2 “ T1,0
T0,1

T2,3
T3,2

“ T1,0 (from our gauge choice in Section 8.2) (8.33)

Therefore, T1,0 “ 1 solves TBA at g “ 0, which is consistent with the condition that
ζpxHq “ 1 through (8.28). However, the free energy vanishes for this constant solution,
implying that the equation F “ ´1 in (8.5) is not satisfied. To rescue the situation, we
need to study the corrections at higher orders in g .

We can also solve TBA numerically, starting from the character solution at g “ 0, and
extending the solution towards λ ą 0. For this type of computation, the Quantum Spectral
Curve is particularly useful [69]. The numerical solution is given by (see [54] for the precise
figure):

?
g

TH

0.38

(8.34)

Here the dotted line represents the numerical solution, starting at the value THpg “ 0q
corresponding to xH “ 7 ´ 4

?
3 in (3.28). The solid line represents the leading order

approximation at the strong coupling, namely

TH „
c

g

4π
“ R?

8π2α1
. (8.35)

One finds that THpg " 1q approaches the Hagedorn temperature of the flat space superstring
(4.19) measured in the unit of AdS radius R.

Here are miscellaneous remarks. First, we can include general chemical potentials in the
identification (8.27) [70]. Second, Hagedorn TBA gives the Hagedorn temperature THpλq,
but not the value of the partition function Z “ trpe´βDq around T “ TH . Third, the
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Hagedorn temperature at the next leading order of 1{g is computed in [71] by considering
the winding mode on EAdS5 at the radius where the ground state becomes massless,

TH “
c

g

4π
` 1

2π
`Op1{gq. (8.36)

9 Free Energy of N “ 4 SYM

We compute the free energy of N “ 4 SYM at zero coupling to examine if F „ OpN2q
or „ Op1q. The derivation consists of five steps, and we omit some of the details. See
[23, 72, 73] for technical aspects.

Step 1

As a warm-up, let us consider the partition function trpe´βHq of a free boson ϕptq on a
thermal circle. We heuristically evaluate the partition function by inserting the resolution
of identity expanded by coherent states,

trpe´βHq “
ż

ź

k

df̄k dfk
π

A

f
ˇ

ˇ

ˇ
e´βH

ˇ

ˇ

ˇ
f

E

. (9.1)

The free boson Hamiltonian is quantized as H “ ř

k ωkaka
:

k, and the coherent state can be
written as the product state |fy “ bk |fky. Then

A

fk

ˇ

ˇ

ˇ
e´βωkaka

:

k

ˇ

ˇ

ˇ
fk

E

“
ÿ

n

xfk |ny e´βωkn xn|fky “
ÿ

n

pf̄k fkqn
n!

e´βωkn´f̄k fk

“ exp
´

´ f̄k fk ` f̄k fk e
´βωk

¯

(9.2)

where one can compute the overlap between the coherent state and the energy eigenstate in
a textbook way [74]. Now the partition function (9.1) is a collection of Gaussian integrals.
The partition function of a free fermion can be computed in a similar way.

Next, we count the number of G-singlets for a Lie group G. We introduce a Haar
measure on G by

ż

dg 1 “ 1,

ż

dg pRgqαβ “ δαβ (9.3)

and the resolution of identity by
ż

ź

α

d2fα
π

ż

dg1dg2 |Rg1 fy xRg2 f | “ 1, (9.4)

where Rg is the representation matrix of g P G in some representation. The partition
function of the free boson system is written as

trpe´βHq “
ż

ź

k,α

df̄k,α dfk,α
π

ż

dg1dg2

A

Rg2 f
ˇ

ˇ

ˇ
e´βH

ˇ

ˇ

ˇ
Rg1 f

E

. (9.5)

– 34 –



After a little algebra, we arrive at

trpe´βHq “
ż

dg
ź

k

1

detp1 ´ e´βωk Rgq . (9.6)

The N “ 4 SYM at zero coupling consists of free bosons and free fermions in the
adjoint representations of SUpNq. The partition function can be written as

tr
´

e´βD0

¯

“
ż

dg
ź

n

det
`

1 ` e´βωn Rg
˘

det p1 ´ e´βωn Rgq , (9.7)

where Rg is in the adjoint representation. The numerator/denominator comes from the
fermionic/bosonic oscillators, respectively. The frequency ωn is related to the eigenvalue of
D0 .

Step 2

We rewrite the determinant in (9.7) by using

detp1 ¯Aq¯1 “ exp
´

¯tr logp1 ¯Aq
¯

“ exp

˜

ÿ

k“1

p´1qk`1

k
trAk

¸

. (9.8)

The structure of PSUp2, 2|4q symmetry is hidden in the index n in (9.7). Heuristically we
can rewrite the product over n as

tr
´

e´βD0

¯

“
ż

dg exp

˜

8
ÿ

n“1

1

n

”

ζBpxnqχadjpgnq ` p´1qn`1ζF pxnqχadjpgnq
ı

¸

(9.9)

where ζB and ζF are the bosonic and fermionic parts of the single-letter function ζpxq in
(3.16). Since N b N̄ “ adj ` 1, we have32

χadjpgq “ χN pgqχN̄ pgq ´ 1. (9.10)

Suppose g P SUpNq is diagonal. We can parameterize g as

g “ diag
`

eiα1 , eiα2 , . . . , eiαN
˘

,
N
ÿ

j“1

αj “ 2πk pk P Zq (9.11)

which implies
χadjpgq “

ÿ

j,k

eipαj´αkq ´ 1 “
ÿ

jďk

2 cospαj ´ αkq ´ 1. (9.12)

Step 3

We evaluate the Haar measure on SUpNq [75].

32N and N̄ is the fundamental and anti-fundamental representation of SUpNq.
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An invariant measure on UpNq is given by

dg “
śN
i,j“1 dgij

pdet gqN (9.13)

and the invariance can be readily checked by substituting g̃ “ Mg,

śN
i,j“1 dg̃ij

pdet g̃qN “ pdetMqN śN
i,j“1 dgij

pdetMgqN “
śN
i,j“1 dgij

pdet gqN . (9.14)

For g P SUpNq we impose det g “ 1.

Since a unitary matrix is diagonalizable, we write

g “ MΛM :, Λ “ diag
`

eiα1 , eiα2 , . . . , eiαN
˘

. (9.15)

We substitute this decomposition (9.15) into the Haar measure (9.13). Since our inte-
grand (9.9) depends only on Λ, the integral over angular directions is trivial except for its
contribution to the Jacobian. The result for the SUpNq integral is

dg “
N

ź

j“1

dαj
ź

jăk

4 sin2
ˆ

αj ´ αk
2

˙

dΩ ˆ δp
ÿ

i

αi ´ 2πkq, pk P Zq (9.16)

where dΩ “ M :dM is the collection of the integration measure for the angular directions.

In summary, we obtain

tr
´

e´βD
¯

“
ż

ź

j

dαj δ

˜

ÿ

j

αj ´ 2πk

¸

exp

«

ÿ

j‰k

log

ˇ

ˇ

ˇ

ˇ

2 sin
αj ´ αk

2

ˇ

ˇ

ˇ

ˇ

`

8
ÿ

n“1

ζBpxnq ´ p´1qnζF pxnq
n

´

ÿ

jďk

2 cos pn pαj ´ αkqq ´ 1
¯

ff

. (9.17)

Step 4

We take the large N limit; namely we introduce the density of eigenvalues ρpαq and look
for the saddle point of the integrand. Operationally, in the large N limit we substitute

ÿ

n

fpαnq Ñ N

ż

dα ρpαqfpαq (9.18)

for functions of a single variable, and

ÿ

măn

fpαm, αnq Ñ N2

2
p.v.

ĳ

dαdβ ρpαqρpβqfpα, βq (9.19)
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for fpα, βq “ fpβ, αq. Here p.v. denotes the principal value prescription coming from
αm ‰ αn in the original sum. We also add a Lagrangian multiplier

λ

ˆ
ż

dαρpαq ´ 1

˙

(9.20)

for the normalization of ρpαq. The factors of N in (9.18), (9.19) should explain the scaling
of the free energy F “ OpN2q unless the coefficient in front vanishes.

The partition function becomes

tr
´

e´βD
¯

“
ż

Dρdλ e´Srρs`λp
ş

dαρpαq´1q, (9.21)

where33

Srρs “ ´N2

ĳ

dαdβρpαqρpβqKpα, βq `
8
ÿ

n“1

ζB pxnq ´ p´1qnζF pxnq
n

, (9.22)

K “ log

ˇ

ˇ

ˇ

ˇ

2 sin
α ´ β

2

ˇ

ˇ

ˇ

ˇ

`
8
ÿ

n“1

ζB pxnq ´ p´1qnζF pxnq
n

cospnpα ´ βqq (9.23)

Since all eigenvalues show up in the difference form pα´βq, ρ “ constant is a saddle point,
which gives the free energy S „ Op1q.

Step 5

Let us look for a non-constant solution. Again we expect that the n “ 1 term gives the
dominant contribution to the free energy. After focusing on n “ 1, this problem becomes
the Gross-Witten-Wadia matrix model [76–78].

Two types of solutions are known in the GWW model. In the first type of solution,
ρpαq ‰ 0 over the interval ´π ď α ď π. We can expand the density as

ρpαq „ c0 ` c1 cosα, (9.24)

which gives S „ Op1q. In the second type, ρpαq ‰ 0 over ´αc ď α ď αc with αc ă π. The
density is given by

ρpαq “ cos α2
π sin2 αc

2

c

sin2
αc
2

´ sin2
α

2
, sin2

αc
2

“ 1 ´
d

1 ´ 1

ζpxq , (9.25)

which gives S „ OpN2q. It is complicated to derive these results analytically because we
need to solve a Riemann-Hilbert problem with the periodicity condition on α.34 According

33One should not forget the principal value prescription (9.19).
34General methods to solve Riemann-Hilbert problems can be found in e.g. [79, 80].
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to [23], the free energy is given by

Fą „ ´N2

2

"

ζ ´ 1 `
a

ζ2 ´ ζ ´ log
´

ζ `
a

ζ2 ´ ζ
¯

*

` ζ (9.26)

Fă „ ζ (9.27)

where Fą (Fă) denotes the free energy after (before) the Hagedorn transition. Note that
the first term in the RHS of (9.26) vanishes if ζ “ 1.
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A Basic Usage of Mathematica

Below we summarize basic methods in Mathematica. Mathematica is frequently used in
many areas of physics, but it is usually not a topic covered by the standard curriculum in
universities.

A.1 Why Mathematica?

Mathematica is suitable for symbolic or analytic computation more than other software.
For example, you can

• integrate or series expand functions
• solve algebraic and differential equations
• guess the general formula from integer patterns

However, there are also troubles, such as

• license is expensive
• math kernel is a black box, sometimes has bugs

If you do not have a Mathematica license, try one of the followings,

• ask your University or Institute
• download the trial version
• use Raspberry Pi. It has Mathematica though it may not work as fast as usual computers.

If you prefer other software, you may try

• Maple; popular for engineers. Useful to double-check the numerical precision of Mathe-
matica.35

• SageMath; free software. The cloud service (CoCalc) has a paid plan [81]

35For example, Maple also supports GNU Multiple Precision Arithmetic Library

– 38 –



• Python; free software, allows dynamic typing as in Mathematica.36 Popular for deep
learning, quantum computing, Google Colab, etc.

A.2 References

If you are puzzled by a concrete problem, you would probably find a solution at Mathematica
StackExchange. At the same time, beginners are recommended to read through one of the
textbooks such as [82, 83], because Mathematica has its own structure that you would not
realize just by looking at help pages. If you want to learn how Mathematica is used in the
actual problem of theoretical high-energy physics, take a look at [84].

A.3 Notation

We begin by explaining the notation. Sometimes you want to increase the readability of
your code without changing its behavior. At other times you may want to save your energy.

A simple way to use a concise notation is to redefine built-in commands,

In[1]:= FS=FullSimplify;
FF=FullForm;

A more sophisticated way is to use Notation package,

In[2]:= <<Notation`

We can redefine the human notation (LHS) as the machine notation (RHS),
!

Notation
”

δk_,l_ ðñ KroneckerDeltark_, l_s
ı)

;

Mathematica interpret the following two expressions in the same way,

In[3]:= KroneckerDelta[a,b]//FF
δδδa,b//FF

Out[3]//FullForm=

KroneckerDelta[a,b]

Out[4]//FullForm=

KroneckerDelta[a,b]

Sometimes, the expressions are indistinguishable until you inspect FullForm. Define
"

Notation
„

Xa_j_
i_ ðñ Xra_, i_, j_s

ȷ*

;

Here LHS is Subsuperscript, and not Power. For example,

In[5]:= Ya_j_i_//FF
36It means that user-defined variables are initially all pointers, and Python determines the variable type

during runtime.
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Out[5]//FullForm=

Subsuperscript[Superscript[Y,Pattern[a,Blank[]]],Pattern[i,Blank[]],
Pattern[j,Blank[]]]

This is the usual notation.

In[6]:= A2//FF

Out[6]//FullForm=

Power[A,2]

A.4 Functional vs Procedural programming

Mathematica (or Lisp) is a functional programming language, whereas C or Fortran is a
procedural programming language [85]. To illustrate what it actually means, let us compute
a sum of random real numbers. We generate 104 random numbers in the interval r0, 1s,

In[7]:= repeat=10^4;
array=RandomReal[1,repeat];
sum=0;

and take the sum in three different methods. The first method is a For loop, the second
method is replacing List by Plus, and the third method is applying a list operation Total.

In[8]:= AbsoluteTiming[For[i=1,iďďďrepeat,i++,sum+=array[[i]]];sum]
AbsoluteTiming[array/.ListÑÑÑPlus]
AbsoluteTiming[Total[array]]

Out[8]= {0.0105,5039.34}

Out[9]= {0.002681,5039.34}

Out[10]= {0.00009,5039.34}

The For loop is slow, and Total is fast.

A.5 Operators and Operations

Examples of Prefix, Postfix and Infix notations are explained below.
When we apply a function, we can use @ instead of square brackets [ ],

In[11]:= Table[i,{i,3}];
{Total[%],Total@%}

Out[11]= {6,6}

We can apply a function after the expression by using //,

In[12]:= Table[ai,{i,3}];
%//Total
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Out[12]= a1+a2+a3

If a function has two arguments, we can place the function in between the arguments by
using „,

In[13]:= x~f~y
%/.fÑÑÑPlus

Out[13]= f[x,y]

Out[14]= x+y

This operation may look strange, but the operator ` behaves in this way. Finally, when
joining text strings, use <>,

In[15]:= (* Join text strings *)
a6=30;
a<>6//FF
ToExpression[%]

Out[16]//FullForm=

a6

Out[17]= 30

Let us discuss advanced notation. Since Mathematica can quickly execute list opera-
tions, we should learn how to apply a function to a list, a list of lists, a list of lists of lists,
and so on.

First, the symbol @@ rewrites the Head of the expressions

In[18]:= Apply[Times,Table[ai,{i,3}]]
Times@@Table[ai,{i,3}]

Out[18]= a1 a2 a3

Out[19]= a1 a2 a3

We can understand why we obtained the product of ai’s by looking at FullForm,

In[20]:= %//FF

Out[20]//FullForm=

Times[Subscript[a,1],Subscript[a,2],Subscript[a,3]]

Next, the symbol /@ distributes an operation over a list,
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In[21]:= Map[Sqrt,Table[ai,{i,3}]]
Sqrt/@Table[ai,{i,3}]

Out[21]= {
?
a1,

?
a2,

?
a3}

Out[22]= {
?
a1,

?
a2,

?
a3}

Finally, the symbol @@@ applies a function at one level deeper inside Table. The symbol
function@@@variable is equivalent to Apply[function, variable,{1}]. For example,
we generate a tensor by

In[23]:= mat=Table[aibjck,{i,2},{j,3},{k, 4}];
MatrixForm/@%

We obtain

#

¨

˚

˝

a1b1c1 a1b1c2 a1b1c3 a1b1c4
a1b2c1 a1b2c2 a1b2c3 a1b2c4
a1b3c1 a1b3c2 a1b3c3 a1b3c4

˛

‹

‚

,

¨

˚

˝

a2b1c1 a2b1c2 a2b1c3 a2b1c4
a2b2c1 a2b2c2 a2b2c3 a2b2c4
a2b3c1 a2b3c2 a2b3c3 a2b3c4

˛

‹

‚

+

. (A.1)

We apply Times on different levels, as

In[24]:= {Times@@mat,Times@@@mat,Apply[Times,mat,{2}]};
MatrixForm/@%

The results are

#

¨

˚

˝

a1a2b
2
1c

2
1 a1a2b

2
1c

2
2 a1a2b

2
1c

2
3 a1a2b

2
1c

2
4

a1a2b
2
2c

2
1 a1a2b

2
2c

2
2 a1a2b

2
2c

2
3 a1a2b

2
2c

2
4

a1a2b
2
3c

2
1 a1a2b

2
3c

2
2 a1a2b

2
3c

2
3 a1a2b

2
3c

2
4

˛

‹

‚

,

˜

a31b1b2b3c
3
1 a

3
1b1b2b3c

3
2 a

3
1b1b2b3c

3
3 a

3
1b1b2b3c

3
4

a32b1b2b3c
3
1 a

3
2b1b2b3c

3
2 a

3
2b1b2b3c

3
3 a

3
2b1b2b3c

3
4

¸

,

˜

a41b
4
1c1c2c3c4 a

4
1b

4
2c1c2c3c4 a

4
1b

4
3c1c2c3c4

a42b
4
1c1c2c3c4 a

4
2b

4
2c1c2c3c4 a

4
2b

4
3c1c2c3c4

¸+

.

Here we multiplied a’s, b’s or c’s of (A.1) in different ways, depending on which level Times
is applied.

A.6 Functions

There are several ways to define a function in Mathematica. Usually, we give a name to a
function and specify the argument, like

In[25]:= f[x_]:=3+x;
f[y]

Out[26]= 3+y

Alternatively, we may define a pure function, whose argument is specified by #. When we
apply a pure function to a variable, we use @.
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In[27]:= Function[3+#][x]
(3+#)&@x

Out[27]= 3+x

Out[28]= 3+x

A pure function with two variables can be constructed as

In[29]:= (3+#1+#2)&@@{x,y}

Out[29]= 3+x+y

Pure functions are useful for manipulating differential equations. Consider the equa-
tions of motion of a harmonic oscillator,

In[30]:= eqϕϕϕ=-D[ϕϕϕ[x],{x,2}]-m2ϕϕϕ[x]

Out[30]= -m2 ϕ[x]-ϕ11[x]

This differential equation eqϕ “ 0 has solutions ϕpxq “ e˘imx. However, if we just replace
ϕpxq by eiωx, Mathematica does not replace the derivative term in eqϕ. A better solution
is to replace ϕ with a pure function,

In[31]:= eqϕϕϕ;
%/.ϕϕϕ[x_]:Ñ:Ñ:ÑExp[Iωωωx]
%%/.ϕϕϕ:Ñ:Ñ:Ñ(Exp[Iωωω#]&)//Factor

Out[32]= -eixω m2-ϕ11[x]

Out[33]= eixω(-m+ω)(m+ω)

A.7 Tips for Writing Fast Mathematica Code

We choose two topics from [86] to demonstrate efficient ways of writing a Mathematica
code.

The first topic is to remember the value that you will need in the future. Compare two
ways of computing Fibonacci numbers,

In[34]:= fib[1]=1;
fib[2]=2;
fib[n_]:=fib[n]=fib[n-1]+fib[n-2];

fib2[1]=1;
fib2[2]=2;
fib2[n_]:=fib2[n-1]+fib2[n-2];
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We remember the functional value in the first method, while we do not remember in the
second method.

In[40]:= AbsoluteTiming[fib[25]]
AbsoluteTiming[fib2[25]]

Out[40]= {8.ˆ10^-6,121393}

Out[41]= {0.077958,121393}

The first method is faster.
Incidentally, Mathematica can guess the functional form of a sequence of integers, ,

In[42]:= Table[fib[n],{n,30}]

Out[42]= {1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,

17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269}

In[43]:= FindSequenceFunction[%]

Out[43]=
1
2

(Fibonacci[#1]+LucasL[#1])&

Here the Lucas numbers Ln popped up because Mathematica’s Fibonacci is defined by

Fibonaccir1s “ Fibonaccir2s “ 1, Fibonaccirn`2s “ Fibonaccirn`1s`Fibonaccirns.

The second topic is parallelization. Parallelize distributes the task to different CPUs.
Since it requires some computational overhead, Parallelize may not speed up the com-
putation if the task is too simple. Moreover, parallelization is not beneficial if the problem
is not parallelizable.37

In order to parallelize, we launch multiple kernels,

In[44]:= LaunchKernels[]

Consider the prime factorization of a large integer,

In[45]:= fl[n_]:=Length[FactorInteger[(10^n-1)/9]];

We execute this job with and without parallelization,

In[46]:= ParallelMap[fl,Range[55,65]]//AbsoluteTiming
Map[fl,Range[55,65]]//AbsoluteTiming

Out[46]= {0.833741,{8,12,6,8,2,20,7,5,13,15,7}}

Out[47]= {1.538477,{8,12,6,8,2,20,7,5,13,15,7}}

ParallelMap is faster in this parameter range.
37A problem is parallelizable if the computation at the m-th step does not require any of the results at

the n-th steps with n ă m.
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B XXX1{2 spin chain

We construct the spin -12 XXX spin chain and study its properties using Mathematica.

B.1 Definitions

In[48]:= (* notation *)
FS=FullSimplify;
MF=MatrixForm;

(* commutation *)
comm[a_,b_]:=a.b-b.a;

(* 2x2 Pauli matrices *)
id[n_]:=DiagonalMatrix[ConstantArray[1,n]];
sp=Sqrt[2]{{0,1},{0,0}};
sm=Transpose[sp];
sx=PauliMatrix[1];
sy=PauliMatrix[2];
sz=PauliMatrix[3];

Let us check the notation,

In[49]:= MF/@{sx,sy,sz,sp,sm}

which gives
!

˜

0 1

1 0

¸

,

˜

0 ´i
i 0

¸

,

˜

1 0

0 ´1

¸

,

˜

0
?
2

0 0

¸

,

˜

0 0?
2 0

¸

)

We construct an operator Lij acting on the i-th and j-th site, with 1 ď i ă j ď L,

Lijptakuq “ a1 ` a2 σ
z
i σ

z
j ` a3 σ

`
i σ

´
j ` a4 σ

´
i σ

`
j . (B.1)

This operator acts trivially on the remaining sites. We create Lij by (1) preparing L identity
matrices, (2) substituting with Pauli matrices at the sites i and j, and (3) replacing List
with KroneckerProduct.

In[50]:= generateTensors[i_,j_,LL_]:=Module[
{iTab=Table[id[2],{n,LL}],spm,smp,szz},
spm=ReplacePart[iTab,{iÑÑÑsp,jÑÑÑsm}];
smp=ReplacePart[iTab,{iÑÑÑsm,jÑÑÑsp}];
szz=ReplacePart[iTab,{iÑÑÑsz,jÑÑÑsz}];
Array[a#&,{4}].(KroneckerProduct@@@{iTab,szz,spm,smp})
];

At L “ 2, the following matrix is generated,
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In[51]:= generateTensors[1,2,2]//MF

¨

˚

˚

˚

˝

a1 ` a2 0 0 0

0 a1 ´ a2 2a3 0

0 2a4 a1 ´ a2 0

0 0 0 a1 ` a2

˛

‹

‹

‹

‚

B.2 Solving Yang-Baxter relations

We make the following ansatz for the R-matrix

Rijpui ´ ujq “ Lijptak “ bkpui ´ ujq ` ckuq, pk “ 1, 2, 3, 4q (B.2)

In[52]:= R[i_,j_]:=generateTensors[i,j,3]/.ak_:Ñ:Ñ:Ñbk(ui-uj)+ck//FS;

and we solve the Yang-Baxter relations,

R12pu1 ´ u2qR13pu1 ´ u3qR23pu2 ´ u3q “ R23pu2 ´ u3qR13pu1 ´ u3qR12pu1 ´ u2q. (B.3)

In[53]:= R12=R[1,2];
R23=R[2,3];
R13=R[1,3];
R12.R13.R23-R23.R13.R12//FS//Flatten//Tally;
eqYB=%[[All,1]]

This equation should vanish for any value of u’s,

In[54]:= Fold[CoefficientList,eqYB,{u1,u2,u3}]//Flatten//FS//Tally;
eqYB2=%[[All,1]]

These equations can be solved in terms of pbk , ckq,
In[55]:= Array[u b#+c#&,{4}]/.Solve[eqYB2==0,Variables[eqYB2]];

solYB=%//DeleteDuplicates

We want to pick up the solutions with
ś4
k“1 ak ‰ 0, and normalize them as a4 “ 1.

In[56]:= Position[solYB,0];
solPos=Complement[Range[Length[solYB]],DeleteDuplicates[%[[All,1]]]];

Table[Table[
solYB[[a,k]]
solYB[[a,4]]

,{k,4}],{a,solPos}]//DeleteDuplicates//FS

The results are

Out[58]= {{1,1+
u b2
c3

,1,1},{1+
u b1
c3

,1,1,1},{1,1,1,1}}

The last solution does not depend on u’s, so only two non-trivial solutions are found. We
can remove b and c by rescaling the rapidity u. Thus the R-matrix is given by
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In[59]:= I generateTensors[1,2,2]/.{a1ÑÑÑ1
2
-I u,a2ÑÑÑ1

2
,a3ÑÑÑ1

2
,a4ÑÑÑ1

2
}//FS;

I generateTensors[1,2,2]/.{a1ÑÑÑ1
2
,a2ÑÑÑ1

2
-I u,a3ÑÑÑ1

2
,a4ÑÑÑ1

2
}//FS;

MF/@{%%,%}

!

¨

˚

˚

˚

˝

u` i 0 0 0

0 u i 0

0 i u 0

0 0 0 u` i

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

u` i 0 0 0

0 ´u i 0

0 i ´u 0

0 0 0 u` i

˛

‹

‹

‹

‚

)

.

The first solution agrees with [12].

B.3 Diagonalize the Hamiltonian numerically

Here we diagonalize the XXX Hamiltonian under periodic boundary conditions numerically
for small L.38

HXXX “
L

ÿ

i“1

Hi,i`1 , Hi,j “ Ii,j ´ σ´
i σ

`
j ´ σ`

i σ
´
j ´ σzi σ

z
j . (B.4)

We recycle the previous code to generate HXXX ,

In[60]:= HXXX[L_]:=HXXX[L]=Sum[generateTensors[i,i+1,L],{i,L-1}]+
generateTensors[L,1,L]/.a1ÑÑÑ1/.ai_:Ñ:Ñ:Ñ-1;

The Hamiltonian at L “ 2 is

In[61]:= HXXX[2]//MF
¨

˚

˚

˚

˝

0 0 0 0

0 4 ´4 0

0 ´4 4 0

0 0 0 0

˛

‹

‹

‹

‚

and its eigenvalues are t8, 0, 0, 0u. At L “ 3,

In[62]:= HXXX[3]//MF
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0

0 4 ´2 0 ´2 0 0 0

0 ´2 4 0 ´2 0 0 0

0 0 0 4 0 ´2 ´2 0

0 ´2 ´2 0 4 0 0 0

0 0 0 ´2 0 4 ´2 0

0 0 0 ´2 0 ´2 4 0

0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and its eigenvalues are t6, 6, 6, 6, 0, 0, 0, 0u. At L “ 4,
38We can derive this Hamiltonian from the transfer matrix, following the standard method in quantum

integrable system.
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In[63]:= HXXX[4]//MF
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 ´2 0 0 0 0 0 ´2 0 0 0 0 0 0 0

0 ´2 4 0 ´2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4 0 ´2 0 0 0 0 ´2 0 0 0 0 0

0 0 ´2 0 4 0 0 0 ´2 0 0 0 0 0 0 0

0 0 0 ´2 0 8 ´2 0 0 ´2 0 0 ´2 0 0 0

0 0 0 0 0 ´2 4 0 0 0 ´2 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 ´2 0 0 ´2 0

0 ´2 0 0 ´2 0 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 ´2 0 0 0 4 ´2 0 0 0 0 0

0 0 0 ´2 0 0 ´2 0 0 ´2 8 0 ´2 0 0 0

0 0 0 0 0 0 0 ´2 0 0 0 4 0 ´2 0 0

0 0 0 0 0 ´2 0 0 0 0 ´2 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ´2 0 4 ´2 0

0 0 0 0 0 0 0 ´2 0 0 0 0 0 ´2 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and its eigenvalues are

HXXXpL “ 4q „ diagt12, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0u. (B.5)

In general, eigenvalues are irrational numbers. For example, at L “ 7 we find roots of the
polynomial

x6 ´ 60x5 ` 1416x4 ´ 16696x3 ` 102624x2 ´ 306784x` 337856 “ 0.

B.4 Solution of the Bethe Ansatz

We compare the energy spectrum of the XXX Hamiltonian with the solutions of Bethe
Ansatz Equations,

ˆ

uk ` i{2
uk ´ i{2

˙L

`
M
ź

j“1

uk ´ uj ` i

uk ´ uj ´ i
“ 0, pk “ 1, 2, . . . ,Mq. (B.6)

We look for regular solutions, meaning that all u’s are distinct. Some u’s may be infinite,
which corresponds to sup2q descendants.39 In N “ 4 SYM we should impose the periodicity
condition,

řL
k“1 pk P 2π Z to guarantee the trace cyclicity in (6.20). The energy of an M -

magnon state is given by

E “
M
ÿ

j“1

8

4u2j ` 1
. (B.7)

In[64]:= eqBAE[L_,M_]:=Table[(
u[k]+I/2
u[k]-I/2

)
L
+Product[

u[k]-u[j]+I
u[k]-u[j]-I

,{j,M}],{k,M}];

enBAE[M_]:=Sum[
8

4u[j]2+1
,{j,M}];

39The solution whose Bethe roots are all finite corresponds to a sup2q highest weight state.
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We take a closer look at the L “ 4 states. For M “ 1,

In[65]:= Solve[eqBAE[4,1]==0,Table[u[i],{i,1}]]//FS
enBAE[1]/.%//FS

Out[65]= {{u[1] Ñ -
1
2
},{u[1] Ñ 0},{u[1] Ñ 1

2
}}

{4,8,4}

which is consistent with (B.5) up to degeneracy. For M “ 2,

In[66]:= MM=2;
Solve[eqBAE[4,MM]==0,Table[u[i],{i,MM}]]//FS;
Table[u[i],{i,MM}]/.%
enBAE[MM]/.%%//FS

Out[66]= {{-
1

2
?
3
,

1
2

?
3
},{

1
2

?
3
,-

1
2

?
3
},{-

1
2
-

1?
2
,-

1
2
-

1?
2
},{

1
2
-

1?
2
,
1
2
-

1?
2
},

{-
1
2
+

1?
2
,-

1
2
+

1?
2
},{

1
2
+

1?
2
,
1
2
+

1?
2
}}

{12,12,8-4
?
2,4 (2+

?
2),4 (2+

?
2),8-4

?
2}

We find the solutions with irrational energies that are not found in (B.5). However, the
irrational-energy solutions have coincident roots, and are irregular. The classification of the
physical solutions in the XXX1{2 model has been studied in [41, 42].

B.5 Compute higher conserved charges

As an integrable spin chain, the XXX model has higher conserved charges besides the
Hamiltonian Q2 “ HXXX . The next conserved charge is given by

Q3 “ i
L

ÿ

j“1

rHj,j`1 , Hj`1,j`2s (B.8)

which commutes with Hamiltonian. Equivalently, Q3 is generated by applying the boost
operator

Q3 “ ´irBQ2 , Q2s ` (boundary term), BQ2 “
L

ÿ

j“1

j Hj,j`1 . (B.9)

See [87–90] for further references about higher conserved charges.
We implement (B.8) explicitly,

In[67]:= Qsr[3,L_]:=Qsr[3,L]=
I(Sum[comm[generateTensors[i,i+1,L],generateTensors[i+1,i+2,L]],{i,L-2}]+
comm[generateTensors[L-1,L,L],generateTensors[L,1,L]+
comm[generateTensors[L,1,L],generateTensors[1,2,L]])/.a1ÑÑÑ1/.ai_:Ñ:Ñ:Ñ-1;

We also implement the boost operator (B.9),
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In[68]:= (* boost operator *)
BXXX[L_]:=BXXX[L]=Sum[i generateTensors[i,i+1,L],{i,L-1}]+
L generateTensors[L,1,L]/.a1ÑÑÑ1/.ai_:Ñ:Ñ:Ñ-1;

(* for periodic spin chains, we need to subtract the boundary term *)
Qbd[3,L_]:=Qbd[3,L]=
comm[generateTensors[L,1,L],generateTensors[1,2,L]]/.a1ÑÑÑ1/.ai_:Ñ:Ñ:Ñ-1;
QXXX[3,L_]:=QXXX[3,L]=-I(comm[BXXX[L],HXXX[L]]-L Qbd[3,L]);

We can check that the two results agree, and they commute with the XXX Hamiltonian,

In[69]:= Table[QXXX[3,L]==Qsr[3,L],{L,2,5}]
Table[comm[Qsr[3,L],HXXX[L]]==0*IdentityMatrix[2L],{L,2,5}]

Out[69]= {True,True,True,True}
{True,True,True,True}

Let us evaluate Q3 in the basis where HXXX is diagonal.

In[70]:= Do[
{eval[ll],evec[ll]}=FS@Eigensystem[HXXX[ll]];
QsrDiag[3,ll]=Inverse[Transpose@evec[ll]].Qsr[3,ll].Transpose[evec[ll]]//FS;
,{ll,2,5}]

Actually this does not work, and Q3 is not diagonal yet.

In[71]:= MF/@FS[{Inverse[Transpose@evec[4]].HXXX[4].Transpose[evec[4]],QsrDiag[3,4]}]

#

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 16i 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ´16i 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 8i 0 ´8i 0 0 0 0 0 0

0 0 0 0 0 0 ´16i ´8i 0 ´8i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ´16i 0 0 0 0 0

0 0 0 0 0 0 16i 8i 0 8i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 16i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

+

This is because we need to resolve the ambiguity among degenerate eigenvectors, particu-
larly those corresponding to the eigenvalue 4; Q2 ψ “ 4ψ,

In[72]:= Position[eval[4],4]//Flatten

Out[72]= {5,6,7,8,9,10,11}
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Let us directly diagonalize Q3 in the degenerate eigenspace,

In[73]:= {oval[4],ovec[4]}=Eigensystem[QsrDiag[3,4][[5;;11,5;;11]]];
rot[4]=ArrayFlatten[{{IdentityMatrix[4],0,0},{0,ovec[4],0},
{0,0,IdentityMatrix[5]}}];

Now Q2 and Q3 at L “ 4 are both diagonal,

In[74]:= MF/@FS[{Inverse[Transpose@rot[4]].Inverse[Transpose@evec[4]].HXXX[4].
Transpose[evec[4]].Transpose[rot[4]],
Inverse[Transpose@rot[4]].Inverse[Transpose@evec[4]].Qsr[3,4].
Transpose[evec[4]].Transpose[rot[4]]}]

#

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ´16 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ´16 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ´16 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

+
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