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4D N=4 Super Yang-Mills (‘N=4 SYM) with U(Nc) or SU(Nc) gauge group

in the planar limit is (expected to be) integrable

Ne— Ncg%ﬂvI (N, — 00)

Integrability helps compute the (connected, planar) n-point functions

Single-trace operator = Bethe Ansatz eigenstate

O(z) =tr (ZXZ...)+tr(ZZX...)+...
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4D N=4 Super Yang-Mills (N=4 SYM) with U(Nc) or SU(Nc) gauge group
in the planar limit is (expected to be) integrable

— Ncg%M (N, — 00)

Integrability helps compute the (connected, planar) n-point functions
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Single-trace operator = Bethe Ansatz eigenstate

O(z) =tr (ZXZ...)+tr(ZZX...)+...

2-point: (O(x)O(0)) = |x| 24 =Bethe Ansatz + corrections

n-point: = Hexagon bootstrap

[Basso, Komatsu, Vieira] (2015) [Fleury, Komatsu] (2016) [Bargheer, Caetano, Fleury, Komatsu, Vieira] (2017)
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otivation (cont'd)

3-point: “ « BB (.)2 + corrections
4-point: ' «BRER (.)4 + corrections




Motivation (cont'd)

3-point: ( )2 + corrections
t'
|
4-point: ( )4 + corrections |

Wrapping corrections ~ A?% (XA < 1)

¢;; = # of Wick contractions between O;, O;

Corrections may be singular for extremal n-point (£;; = 0)




Motivation (cont'd)

3-point: ( )2 + corrections

4-point: ( )4 + corrections

Wrapping corrections ~ A?% (XA < 1)

¢;; = # of Wick contractions between O;, O;

Corrections may be singular for extremal n-point (£;; = 0)

Why?
» Mixing between single- and multi-trace states

» Connected n-pt ~ O (1/Nc 2) ~ knows non-planar effects




To study non-planar effects, needs two-parameter (g,n) space

e.g. X4-1,n-2 degenerates to 24-0,n in the moduli space Mgy

Study 2 |/N. expansion = g >0
W% \\/
l O\ \\\\ \\\\
Study ‘Mg, Boundary of moduli space = n > 2
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Find formulae of the non-planar multi-trace n-point

Clarify the relation between the single-trace n-point and

the moduli space of Riemann surfaces from gauge theory
(AdS/CFT)




Old ideas

Relate Permutations and Riemann surfaces! g

[BPS correlators] E
Permutations ~ ¢ = 1 Matrix Models

(— 2d Yang-Mills = TQFT ) = Riemann surfaces

Gopakumar, Pius (1212.1236)
[Belyi map]

(00,01,00) € S (L - 00) — CP; with 3 punctures

Around each puncture, o permutes the L sheets of complex plane

Relevant in arithmetic geometry,
but unclear if this idea is useful for physics

de Mello Koch, Ramgoolam (1002.1634)
From Matrix Models and Quantum Fields to Hurwitz Space and the absolute Galois Group




Tree-level
Multi-trace
Correlators




Notation

Define permutation basis for general scalar multi-trace operators

of N=4 SYM (or any gauge theory with adjoint matters)

Take a € S;, = Symmetric group of order L

R P S I O TG T N

O Az AL — tr (a @M1 @42 ... @4r)

Ne

A4 A2 AL
Z ((I) )a'a(l)( )a'a(2) ( )a'a(L)

ai,az...,ar, =1

Multi-trace structure of O = Cycle type of permutation

e.g. Double-trace <~ a=(1,2,...,J)(J+1,J+2,...,L) €EZj X Z1_gj
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Tree-level 2-point in permutation basis:

A B = gAa_l(p)Bp Cr(aoc™1'B0)
(OL@)050) = > (]] N,

2
O'ESL p:l |aj|

CrL(A) = # of cycles in A € S, Cr(id) = C’L((l)(Z)(3) e (L)) =L




Sum over Wick contractions = Permutation

Tree-level 2-point in permutation basis: é

A B = gAa_l(p)Bp Cr(ac™'8B0) E
(OL@050) =) |]] N,

2
O'ESL p:l |aj|

CrL(A) = # of cycles in A € S, Cr(id) = C’L((l)(Z)(3) e (L)) =L

» Straightforward to compute extremal n-point (Z?’:_ll b ="l




Sum over Wick contractions = Permutation

Tree-level 2-point in permutation basis: é

A B = gAa_l(p)Bp Cr(ac™'8B0) E
(OL@050) =) |]] N,

2
O'ESL p:l |aj|

CrL(A) = # of cycles in A € S, Cr(id) = C’L((l)(Z)(3) e (L)) =L

n

> Straightforward to compute extremal n-point (Zz:_ll L, =L%

» General non-extremal n-point has never been computed

Main Problem

Sum over {ﬁij = Zzo‘ ZE,,;j — L,,;} (for n > 4)
JF1




Sum over Wick contractions = Permutation |

Tree-level 2-point in permutation basis: |

A B = gAa_l(p)Bp Cr(ac™'8B0) E
©Z@)0B0) = 3 (]I N

2
O'ESL p:l |aj|

CrL(A) = # of cycles in A € S, Cr(id) = C’L((l)(Z)(3) e (L)) =L

n

> Straightforward to compute extremal n-point (Zz:_ll L, =L%

» General non-extremal n-point has never been computed

Main Problem

Sum over {ﬁij = Zzo‘ ZE,,;j — L,,;} (for n > 4)
JF1




Several formulae are derived in different ways. Here is one:
1) Define the extended operator (L = L)
Oi = Oq, x tr (1)E-Li = [, (84)% (& € SL)

Qs ; (p)

L=:%", L, = Total # of Wick

-
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Several formulae are derived in different ways. Here is one:

1) Define the extended operator (Li — L)

O; = Oq, x tr (1)E71i = H (@4 b o (@i € SL)

L=:%", L, = Total # of Wick

2) Introduce n-tuple Wick contraction

I
(<I>A1)b1 (<I>A2) (<I>A3) o (G0 el PR ERS S 1

Equal to g#i%i|x; — x;| 2 if A, =1 (k #£1,7)
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Several formulae are derived in different ways. Here is one:
1) Define the extended operator (L = L)
Oi = Oq, x tr (1)E-Li = [, (84)% (& € SL)

Qs ; (p)

L=:%", L, = Total # of Wick

2) Introduce n-tuple Wick contraction

I | | I
(@AYo (@A2)02 (@A0)ls .. (@An)on = pArAzAn gba gta L gl

Equal to g#i%i|x; — o e A, =1 (k #£1,7)

3) Take all n-tuple Wick contractions, individually specified by
(Wiz,Wag,... ,Wpy1) € S%im, Wia Was ... Wy =

i T S AP0




Tree-level n-point in permutation basis:

[10i) ) = & 1. (L — L,)! D HnNgHEaa-e) g
1=1 i 1=1 LY/ {Uz}esgn

Flavor factor:
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orrelators and
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Difficult to construct & integrate over ‘Mgy,» of Riemann surface 24

M. . o] (g = 0)

locall N
Mg ~CP 3439 My~ 20,0, 2.} U{r} (g =1)
\{21,...,27,,} U{“17°'°7H39—3} (922)




T (g=0) |

locall -
Mg ~CP 3439 My~ 20,0, 2.} U{r} (g =1)
\{zlwﬂazn} U{“17°'°7H3g—3} (g e 2)

» Consider the decorated moduli space (extra n parameters)

» We can specify the complex structure of 24, uniquely by the
Jenkins-Strebel quadratic differential

Ibg
472 (z — z;)

Zl— > - O(lz — z;|7%), (i=1,2,...,n)

(~ classical stress-energy tensor on worldsheet)

[Jenkins, Strebel, Harer, Mumford, Thurston, ...]




Decorated Moduli Space

T (9=0) |

locall N
Mg ~CP 3439 My~ 20,0, 2.} U{r} (g =1)
\{leﬂazn} U{“17°'°7H3g—3} (g e 2)

» Consider the decorated moduli space (extra n parameters)

» We can specify the complex structure of 24, uniquely by the
Jenkins-Strebel quadratic differential

Ibg
472 (z — z;)

Zl— > - O(lz — z;|7%), (i=1,2,...,n)

(~ classical stress-energy tensor on worldsheet)

/ V¢ <> Dual length between punctures

[Jenkins, Strebel, Harer, Mumford, Thurston, ...]
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Moduli space from Gauge theorq

= Discretized moduli space of Riemann surfaces Mgy

[Gopakumar, Aharony, Komargodski, Razamat, David, Charbonnier, Eynard, ...] E




Moduli space from Gauge theortﬁ

= Discretized moduli space of Riemann surfaces Mgy

[Gopakumar, Aharony, Komargodski, Razamat, David, Charbonnier, Eynard, ...]

Apply a skeleton reduction to Feynman graphs (not unique),
and count the number of consecutive Wick contractions

— (connected) metric ribbon graph




Correlator as Moduli space

® JS length < Decorated moduli space 24

@® Sum over the number of Wick contractions {4}

« Decorated moduli space in gauge theory via 1/Nc expansion
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Correlator as Moduli space

® JS length < Decorated moduli space 24

@® Sum over the number of Wick contractions {4}

« Decorated moduli space in gauge theory via 1/Nc expansion

» The dimensions of both moduli spaces agree:

Mg ~ CP3739, 0 MEBES({Li}) ~ Z"7T5 (€5 > 1)
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Correlator as Moduli space

® JS length < Decorated moduli space 24
@® Sum over the number of Wick contractions {4}

« Decorated moduli space in gauge theory via 1/Nc expansion

» The dimensions of both moduli spaces agree: l

Mg,n ~ Cn—3—|—39’ Mgauge({L }) ~ T 3+4+3g (E’LJ > 1) ’

» The“gauge” moduli is a proper subset of the “string” moduli

MR ({Li}) &

Self-contractions are forbidden in gauge theory, unlike matrix models
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Correlator as Moduli space

® JS length < Decorated moduli space 24

@® Sum over the number of Wick contractions {4}

« Decorated moduli space in gauge theory via 1/Nc expansion

» The dimensions of both moduli spaces agree:

Mg ~ CP3739, 0 MEBES({Li}) ~ Z"7T5 (€5 > 1)
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» The“gauge” moduli is a proper subset of the “string” moduli

MR ({Li}) &

Self-contractions are forbidden in gauge theory, unlike matrix models

Flavor data decouple from color data in the correlators
AdS/CFT: Differential = Stress-energy tensor?
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0%(2) = Y x"(a)trp(a Z®")

aEST
representation basis permutation basis
SL : symmetric group l
X R:character in the representation R (Eorle e ekite s manaamY 200l ]




Non-planar BPS states are not single-traces, but a sum of multi-traces

0%(z)= > x"(a)trp(az®")
aESy

representation basis permutation basis

SL : symmetric group

X R:character in the representation R Gl W IR et =l 200 1)

T T T ’

General scalar multi-trace operators of N=4 SYM in permutation basis

N¢
OAr1AzAL _ ) (o @A P42, ., §AL) = e (b N (sl SIS (P e
al,az...,aLzl
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Non-planar BPS states are not single-traces, but a sum of multi-traces

0%(z)= > x"(a)trp(az®")
aESy

representation basis permutation basis

SL: symmetric group ;

X R:character in the representation R Gl W IR et =l 200 1)

i S AP0

General scalar multi-trace operators of N=4 SYM in permutation basis

Ne¢
OélAz...AL = trL(a @Al @Az o @AL) == Z (@Al)al ((I)Az)az B (@AL)GL

Aa (1) An(2) Qa(L)
al,az...,aLzl

o Why the representation basis is good?

e How to define general scalar scalar multi-trace operators
in the representation basis?




Tree-level 2-revisited

O, € Hilb = aec Sy

Element of abstract group (quantum)

7

8 function or(a) = {

1 ifa=1d

0 otherwise
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Character decomposition

Ve

Df}(a) Matrix elements of an irreducible representation R (classical)
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Tree-level

o i
el oy

revisited

O, € Hilb = aec Sy

Element of abstract group (quantum)

7

O function

Character decomposition

Ve

5L(C¥) — {

1 ifa=1d ;

0 otherwise

. D,f}(a) Matrix elements of an irreducible representation R (classical)

= Evaluate two-point functions for any Nc

(OR(2)0%(Z)) ~ NE§RS




[de Mello Koch, Smolic, Smolic] (hep-th/0701066) [Paskounis, Ramgoolam] (1301.1980), [Mattioli, Ramgoolam] (1601.06086)

General operators = General “restricted” characters

Permutation basis for “simplest” non-BPS operators
O™ = tr 1 (« W®mZ®'"’)

a € S+ mod conjugacy class of v € S, X Sp,




[de Mello Koch, Smolic, Smolic] (hep-th/0701066) [Paskounis, Ramgoolam] (1301.1980), [Mattioli, Ramgoolam] (1601.06086)

General operators = General “restricted” characters

Permutation basis for “simplest” non-BPS operators Eg
O™" = tr (a« WO™Z®™)
a € S+ mod conjugacy class of v € S, X Sp,

Computation using quivers

Introduce “quiver diagrams” for the representation matrices

DEle) = &) = |ajh DF(o7)
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Quiver calculus

[de Mello Koch, Smolic, Smolic] (hep-th/0701066) [Paskounis, Ramgoolam] (1301.1980), [Mattioli, Ramgoolam] (1601.06086)
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Introduce branching coefficients to the irreps of Sm X S,

I t J

R = @ (r1 ®@T2)0 ij(gjl)’”)” = =
[ 74

Characters and restricted characters

o) =Xy = | o] o) = § o] ) =

V_ a




1. Representation basis solves finite Nc constraints

in1]

Cut-off for the height of irreps (not more than N¢)

2. Quiver calculus generalizable to non-extremal n-pt

(work in progress)

3. Non-diagonalizable observables in complex multi-matrix model




Conclusion

and
Outlook




Studied n-point functions of gauge theory

Obtained the edge-based formula (like closed string)

Obtained the discretized moduli space Mgy, (like open string)

& - ‘ . open-closed duality

Application to AdS/CFT?

1/Nc or finite Nc effects of n-point
Simplest four-point correlator at tree-level (Octagon frame)

Coronado (1811.00467)







Tree-level 2-point in permutation basis:

A B = gAa_l(p)Bp Cr(aoc™1'B0o)
(0L@)050)= > (]] N,

2
O'ESL p:l |aj|

y 5 —®L
Choose half-BPS ops  OF = tr (aZ®"), OF =tr L(BZ5)
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Tree-level 2-pt revisited

Tree-level 2-point in permutation basis:

A B = gAa_l(p)Bp Cr (o™ 1'B0o)
(OL@oz0) = > | ]I N+

2
ceSr \p=1 |z]

y : —®L
Choose half-BPS ops  OF = tr (aZ®"), OF =tr L(BZ5)

In the large Nc limit,

(0a03) ~ Z Nlér(Bo taog), 6r(o)=1 ifo=1
oEST

Any class function is a linear combination of irreducible characters

d
or(o) = Z L—I—;{ x'(o), dr = dim(Sy irrep R)




d
Thus (0a05) ~ Z NI Z —ITXR(ﬁa_laa)
ocESt RFHL L

Apply the grand orthogonality theorem

> DE@)DE(e™) = - dudns™
oEST R

Dﬁ(a') : matrix elements (¢, 7) of o in irrep R




Thus (0a03) ~ Z N Z —RXR(,BO'_laa)
ocESt RFHL

Apply the grand orthogonality theorem

P ‘
2%
= /"
' [:.tg

L!
Y D[ (o)Dy (0'_1)—— 04101075
oEST R

D,ﬁ(a') : matrix elements (¢, 7) of o in irrep R

to get (0a03) ~ Z N x™(a) x™(8)
R-L

The character orthogonality says that 2-pt in rep. basis is orthogonal

(OR(2)0%(Z)) =~ NE§BS




