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Abstract

Motivated by the open-closed duality in string theory, the AdS/CFT correspondence has

been thoroughly investigated for more than a decade. A great advancement was made, among

others, concerning the correspondence between N = 4 super Yang-Mills theory and superstring

theory on AdS5 × S5 with precision, after the discovery of integrability. The methods of inte-

grability, like Bethe Ansatz and finite-gap solutions, allow us to find matching of the spectrum

of both theories, by comparing their formulation as well as concrete examples. Remarkably,

so-called asymptotic Bethe Ansatz equations have recently been proposed to all orders in the

’t Hooft coupling, which reproduce a certain class of the spectrum of both gauge and string

theories correctly.

In this thesis, we aim to comprehend this correspondence taking general examples of the

spectrum, mainly focusing on its strong coupling region. To this aim, we construct a family of

classical string solutions on Rt× S3 subspace of AdS5 × S5 background, which are related to

Complex sine-Gordon solitons via the Pohlmeyer-Lund-Regge reduction. We obtain analytical

expressions subject to periodic boundary conditions, which are shown to interpolate various

classical spinning or oscillating string solutions known so far.

It is known that the asymptotic Bethe Ansatz equations have limited application for systems

of finite size; they do not account for wrapping interactions in the weak coupling, nor they

reproduce the exponential-type finite-size corrections in the strong coupling. To clarify the

latter, we compute finite-size corrections to dyonic giant magnons, or magnon boundstates, in

two ways. One is by examining the asymptotics of our general solutions in the limit where

an angular momentum goes to infinity, and the other is by applying the generalized Lüscher

formula to the situation in which incoming particles are boundstates. We find agreement of

the two results, which makes possible to predict the (leading) finite-size correction for dyonic

giant magnons to all orders in the ’t Hooft coupling.



Contents

Introduction 1

Organization of the thesis 8

1 The AdS/CFT correspondence 10

1.1 N = 4 super Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Conformal field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 N = 4 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Large N limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Supergravity and AdS5 × S5 spacetime . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Black 3-brane solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 AdS spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Maldacena conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Integrability in N = 4 theory 21

2.1 Diagonalization of anomalous dimension matrix . . . . . . . . . . . . . . . . . . 21

2.2 Diagonalization by Bethe Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Algebraic Bethe Ansatz for XXX1/2 spin chain . . . . . . . . . . . . . . . . . . . 29

2.4 Thermodynamic limit of XXX1/2 spin chain . . . . . . . . . . . . . . . . . . . . . 32

2.5 All-loop Bethe Ansatz conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Towards the all-loop proposal . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 All-loop Bethe Ansatz in su(2) sector . . . . . . . . . . . . . . . . . . . . 39

2.5.3 All-loop Bethe Ansatz in the full sector . . . . . . . . . . . . . . . . . . . 41

3 Classical string and integrability 45

3.1 Integrability of classical string on AdS5 × S5 . . . . . . . . . . . . . . . . . . . . 45

3.2 Polyakov action on AdS5 × S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Finite-gap formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Lax pair and monodromy matrix . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Asymptotic behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 The spectral curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 Comparison with gauge theory . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



4 Solutions of the integral equations 61

4.1 Symmetric two-cut solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Pulsating and rotating strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 The profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Finite-gap representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 On the gauge theory dual . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Correspondence for the systems of infinite size 69

5.1 Asymptotic spin chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 The spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 The S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Giant magnons and their scattering . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 The dressing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 The dressing phase in gauge theory . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 The BHL/BES proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.4 Breakdown of perturbative BMN scaling . . . . . . . . . . . . . . . . . . 86

6 Large spin strings 87

6.1 Classical strings as complex sine-Gordon solitons . . . . . . . . . . . . . . . . . . 87

6.2 Helical string solutions with a single spin . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Type (i) helical strings with a single spin . . . . . . . . . . . . . . . . . . 90

6.2.2 Type (ii) helical strings with a single spin . . . . . . . . . . . . . . . . . 93

6.3 Helical string solutions with two spins . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Type (i) helical strings with two spins . . . . . . . . . . . . . . . . . . . 96

6.3.2 Type (ii) helical strings with two spins . . . . . . . . . . . . . . . . . . . 98

6.4 Taking various limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Stationary limit : Frolov-Tseytlin strings . . . . . . . . . . . . . . . . . . 99

6.4.2 Infinite spin limit : dyonic giant magnons . . . . . . . . . . . . . . . . . 100

6.4.3 Uniform charge-density limit . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 On the moduli space of helical solutions . . . . . . . . . . . . . . . . . . . . . . 102

6.5.1 Number of independent parameters . . . . . . . . . . . . . . . . . . . . . 102

6.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 General 2-cut finite-gap solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Large winding strings 107

7.1 2D-transforming classical strings on Rt× S3 . . . . . . . . . . . . . . . . . . . . 107

7.2 Helical oscillating strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Type (i)′ helical strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

iii



7.2.2 Type (ii)′ helical strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Finite-gap interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 AdS helical strings 123

8.1 Classical strings on AdS3 × S1 and Complex sinh-Gordon model . . . . . . . . . 123

8.2 Helical strings on AdS3 × S1 with two spins . . . . . . . . . . . . . . . . . . . . 126

8.2.1 Type (iii) helical strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2.2 Type (iv) helical strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Finite-size effects for dyonic giant magnons 134

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2 Finite -J correction to dyonic giant magnons . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Dyonic giant magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.2 Helical strings with two spins near k = 1 . . . . . . . . . . . . . . . . . . 138

9.2.3 Finite-gap interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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Introduction

Superstring theory is a consistent description of gravity and gauge theory at the Planck scale,

free from ultraviolet divergence inherent in the quantum field theory of particles. This descrip-

tion necessitates extended objects called branes as well as fundamental strings. Interactions

among them reduce to ordinary gravity and gauge interactions at the low energy scale. In

particular, closed strings cause gravitational interaction, while open strings cause gauge inter-

action.

Huge symmetry resides in string theory, and part of which demonstrating surprising equiv-

alence between apparently unrelated physical phenomena is referred to as duality. Open-closed

duality, namely the one between open strings and closed strings, is one of the most promi-

nent discoveries of dualities in string theory. The open-closed duality suggests a possibility

that, in certain situations, gravity theory and gauge theory are dual descriptions of the same

phenomenon.

AdS/CFT correspondence, first conjectured by Juan Maldacena in 1997 [1], is one realization

of this open-closed duality. It dictates N = 4 super Yang-Mills theory with SU(N) gauge group

is equivalent to superstring theory on AdS5 × S5 background with N units of RR flux, at least

in large N limit. The Maldacena conjecture can be extended to the correspondence between a

wide class of superconformal field theories and superstring on AdS5 ×M background, with M

a five-dimensional manifold. Succeedingly, Gubser, Klebanov, Polyakov and Witten proposed

the correspondence between correlation functions of both gauge and gravity theories in more

detail [2, 3].

We expect that study of the AdS/CFT correspondence will eventually elucidate the dual

description of superstring theory with D-branes. However, soon it turned out that it is very

hard to prove AdS/CFT correspondence. In large N limit, interactions in super Yang-Mills

theory is governed by the ’t Hooft coupling constant λ ≡ Ng2
YM while superstring theory

contains the coupling λ = R4/α′2, where R is the curvature scale of the spacetime and (α′)1/2

is the length scale of strings. Under the AdS/CFT correspondence the perturbative region of

super Yang-Mills, λ� 1, is mapped to the strong coupling region of superstring, 1/λ� 1, and

vice versa. In this way, one cannot predict the strong coupling behavior of either side, unless

quantum corrections are tamed down by, for example, the use of supersymmetry. Fairly said,

the AdS/CFT correspondence is still a well-tested conjecture.
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One remarkable feature of N = 4 super Yang-Mills is in that, besides the fact that this is

maximally supersymmetric gauge field theory in four dimensions, it sits on the superconformal

fixed point at tree level. It gives us a hope of uncovering its strong coupling dynamics and

checking the validity of AdS/CFT correspondence in a qualitative manner.

Like many conformal field theories, conformal dimension of gauge-invariant local operators

is an important physical quantity in N = 4 super Yang-Mills. In general, the conformal

dimension, or the eigenvalue of dilatation operator, receives quantum corrections to all orders in

coupling constant. Furthermore, quantum effects can mix local operators of the same quantum

number, giving different eigenvalues of dilatation operator to each eigenstate.

Solving the problem of operator mixing was considered as a formidable task without the aid

of supersymmetry. Berenstein, Maldacena, and Nastase (BMN) considered dilatation eigenval-

ues for operators in near BPS sector, which are obtained by inserting a few elementary fields

of N = 4 theory to the half-BPS operator with sufficiently large length L [4]. The limit of

large L reduces coupling constant λ to λ̃ ≡ λ/L2 , and suppresses quantum corrections in a

tractable manner. They found that these operators are dual to closed string modes on pp-wave

background, which can be quantized to all orders of α′.

While trying to solve a general problem of operator mixing, Minahan and Zarembo found

that the dilatation operator at one-loop in λ has the same form of an integrable spin chain

[5]. It is known that for an integrable Hamiltonian, one can compute its general eigenstates

by using methods of integrability like Bethe Ansatz equation. Through mapping from a super

Yang-Mills operator to a spin chain, from the dilatation operator to the integrable Hamiltonian,

one is able to study the spectrum even in non-BPS sectors of N = 4 theory.

The Bethe Ansatz approach was generalized to higher orders of su(2) sector (a set of gauge-

invariant local operators made up of Z and W , two holomorphic scalars in N = 4 theory) in

[6]. However, in contrast to one-loop cases, this Bethe Ansatz is applicable only to long-range

spin chains.

Long-range Bethe Ansatz equations are proposed to all orders of λ in su(2) sector [7],

in all three rank-one sectors [8], and in the full psu(2, 2|4) sector [9], by assuming all-order

integrability as well as making use of some sophisticated guesses. Note that the all-loop Bethe

Ansatz equations of [9] contained so-called dressing phase, which had been introduced in [10]

to reconcile mismatch between the strong coupling limit of all-loop Bethe Ansatz equation

[7] without dressing phase, and the integral equation derived from classical string theory [11].

Later it was also shown that the all-loop Bethe Ansatz equations of [9] are consistent with the

su(2|2)2-invariant S-matrix on which global symmetry imposes severe constraints [12].

There have been an increasing number of evidences and positive supports also for the dress-

ing phase. At strong coupling, the dressing phase was generalized to incorporate one-loop

results in 1/
√
λ [13]. On the analogy of S-matrix in relativistic quantum field theories, Janik

argued the dressing phase should be crossing symmetric [14], which was later confirmed in [15].
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By solving the requirement derived from the crossing symmetry, several all-order expressions

for the dressing phase were proposed in [16]. In sl(2) sector which is generated by a complex

scalar Z and light-cone covariant derivative D+ , close relation between the dressing phase and

the universal scaling function, also known as cusp anomalous dimension, is pointed out in [17].

Assuming further so-called transcendentality principle [18, 19, 20], the unique all-order expres-

sion of the dressing phase was presented in [21]. In summary, significant progress has been

achieved in formulating the exact AdS/CFT Bethe Ansatz equation valid for all regions of λ .

One should keep it in mind that the Bethe Ansatz description is believed to be exact only when

the length of spin chain is infinite.

Perhaps for the moment we should explain our knowledge on the gravity side of AdS/CFT

correspondence, which also exhibits integrability at least in the classical level.

Metsaev and Tseytlin constructed closed superstring action on AdS5 × S5 , in the Green-

Schwarz formalism with coset target space SU(2, 2|4)/[SO(1, 4) × SO(5)] [22] (see also [23]).

Classical integrability of Metsaev-Tseytlin action was found by Bena, Polchinski, and Roiban,

where they explicitly constructed one-parameter family of flat conserved currents [24].

Classical integrability enables us to study classical string solutions from an algebro-geometric

approach called finite-gap formulation. This line of study started from the work on Rt× S3

subspace [11] (see also [25]), extended to other subspaces of AdS5 × S5 [26, 27], and to the

whole spacetime in [28, 29]. In this formulation, every string solution is characterized by a

spectral curve endowed with an Abelian integral called quasimomentum. We only have to

choose suitable algebro-geometric data (called a finite-gap solution) such that they reproduce

the conserved charges and the mode numbers of classical string solutions of our concern; this is

called Riemann-Hilbert problem. As discussed in [11], the finite-gap approach turned out quite

useful for direct comparison of the spectrum at the level of algebraic curves.

In principle, one can reconstruct classical string solutions from given algebro-geometric data.

The reconstruction of analytic profile of general finite-gap solutions on Rt× S3 has been done

in [30, 31].

One is also able to compute one-loop quantum correction to classical string theory using

finite-gap formulation, as is thoroughly studied in [32, 33, 34].

We are now ready for introducing explicit examples of AdS/CFT correspondence. One

of the prominent predictions of the AdS/CFT is the exact matching of the spectra on both

sides, namely conformal dimension of individual super Yang-Mills operator and energy of the

corresponding string state. Due to the strong/weak nature of this correspondence, one has to

invent sophisticated ways of comparison, two of which we will briefly review on in what follows.

BMN scaling limit:

The essence of BMN scaling limit is to rescale the ’t Hooft coupling constant by length of

a spin chain L, which is total R-charge of the operator in su(2) sector, or by total angular
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momenta of a classical string J . The effective coupling becomes λ̃ ≡ λ/L2 or λ̃ ≡ λ/J2, which

can be taken arbitrarily small irrespective of the value of λ. We also scale momentum of an

operator/worldsheet momentum as p ∼ 1/L or 1/J to keep anomalous dimension/classical

energy finite.

We assume that string energy E(J, λ) and conformal dimension ∆(J, λ) can be expanded

in powers of λ̃ in both near-BPS (BMN) and far-from-BPS sectors, as

E = J + c1(J) λ̃+ c2(J) λ̃2 + . . . and ∆ = L+ a1(L) λ̃+ a2(L) λ̃2 + . . . , (0.0.1)

which is called BMN scaling hypothesis. Under this assumption we are able to test a proposal

of the AdS/CFT quantitatively, that is, to check ak
?
= ck (k = 1, 2, . . . ).

Concrete examples of such correspondence have been found. For instance, it was shown

that certain long composite operators of N = 4 theory, expressed as solutions to Bethe Ansatz

equation in thermodynamic limit, are dual to semiclassical spinning/rotating string solutions

[35, 36, 37, 38, 39, 40] or pulsating string solutions [41, 42, 43]. Much nontrivial examples of

correspondence are found between (elliptic) folded strings and “double contour” configurations

of Bethe roots; between (elliptic) circular string and “imaginary root” configurations of Bethe

roots [44, 45].

By perturbatively expanding the energy of elliptic strings, they found remarkable agreement

with the super Yang-Mills counterpart up to two-loop in λ̃ . At the three-loop level, however,

the coefficients start to disagree, i.e. a3 6= c3, which is known as the “three-loop discrepancy”

[46, 47]. The origin of this mismatch can be attributed to the breakdown of BMN scaling

hypothesis at higher orders of λ̃ [17, 21] (see also [48]).

Hofman-Maldacena limit:

Beisert considered central extension of the N = 4 superconformal symmetry algebra for

spin chains of infinite length, also known as asymptotic spin chain [8], and derived a nontrivial

dispersion relation valid to all orders in λ [12]. The corresponding limit on string theory side

is invented by Hofman and Maldacena (HM), where J is again taken to infinity with λ and p

kept fixed [49].

The ground state of asymptotic spin chain is ‘ferromagnetic’ vacuum of Z’s, and excitations

over it are called magnons. Magnons are classified according to representations of the su(2|2)2

algebra. For example, the fundamental representation of su(2|2)2 algebra is composed of sixteen

‘impurity’ fields of N = 4 theory, and there are also BPS boundstates of elementary magnons

[50].

Let Q(≥ 1) be the number of constituent magnons for BPS boundstates, then they obey

the dispersion relation

∆− J1 =

√
Q2 + f(λ) sin2

(p
2

)
(∆ , J1 →∞) , (0.0.2)
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where p is the momentum of the magnon bound state along the spin-chain. The function

f(λ) is left undetermined from the BPS relation alone. In view of gauge theory, it should be

f(λ) = λ/π2 +O(λ4). The dispersion relation (0.0.2) matches with the energy-spin relation of

classical string solutions called (dyonic) giant magnons [49, 51, 52, 53, 54], if we set f(λ) = λ/π2

and identify Q with the second angular momentum J2 .

There is close connection between (dyonic) giant magnons and (complex) sine-Gordon soli-

tons. Under the reduction procedure found by Pohlmeyer, Lund, and Regge [55, 56, 57], giant

magnon is mapped to the kink solution of sine-Gordon model, and dyonic giant magnon is to

that of complex sine-Gordon model. The sine-Gordon point of view directs our attention to

scattering of (dyonic) giant magnons taking place on worldsheet rather than in spacetime, and

to compare S-matrix of worldsheet scattering with the S-matrix appearing in Bethe Ansatz

equation discussed above [49, 58, 59].

It should be noted that one can compute S-matrix of worldsheet scattering from gauge-

fixed sigma model on the whole AdS5 × S5 , and inspect symmetry governing the S-matrix of

string theory such as factorization. In particular, Arutyunov, Frolov, and Zamaklar proposed

string S-matrix which satisfies the standard Yang-Baxter equation [60], while gauge S-matrix

of [12, 61] satisfies the twisted Yang-Baxter equation.

We have so far seen interesting examples in testing the correspondence between spin chains

and classical strings, one is in BMN scaling limit and the other in Hofman-Maldacena limit. It

would be then interesting to seek for more generic two-spin string solution interpolating both

the BMN and the HM cases, which would give us further playground to test the AdS/CFT.

With this in mind, in Chapter 6 we construct a family of classical string solutions with

large spins, by exploiting the relation between classical string action on Rt× S3 and complex

sine-Gordon system. Starting from general elliptic solutions of complex sine-Gordon model,

called helical-wave solutions, we construct analytical expression of the corresponding classical

string solutions, which are shown to interpolate between two-spin folded/circular strings [38]

and dyonic giant magnons [51].

Our solutions, which we will refer to as helical spinning strings, are written in terms of

elliptic theta functions. From this fact one can foresee that they have clear interpretation from

finite-gap point of view. Later helical strings are indeed reconstructed as finite-gap solutions,

and it is shown that they are included in general two-cut finite-gap solutions in mathematical

language [62]. In particular, it teaches us clearly how folded/circular strings and dyonic giant

magnons are interpolated from the standpoint of algebraic curves.

Helical spinning strings are expected to cover a large part of strings dual to long composite

operators in su(2) sector, where the latter is characterized by large R-charges. Recall that in

N = 4 theory there are also operators of far smaller R-charges compared to its length. The

string dual of such non-holomorphic operators are expected to have pulsating nature, as is

5



understood from matching of the global charges or from an explicit example [42].

In Section 7, we investigate classical strings on Rt× S3 with large winding numbers, rather

than large spins. They are obtained by performing a transformation τ ↔ σ, i.e. interchanging

temporal and spatial coordinates of worldsheet, of helical spinning strings. We will refer to this

transformation as the τ ↔ σ transformation, or just 2D transformation. As consequences of

this τ ↔ σ map,

• Large spin states become large winding states.

• Rotating/spinning states become oscillating states.

Note that the first feature can be understood as analogue of T-duality, which exchanges (angu-

lar) momenta with winding numbers. We refer to the 2D-transformed helical spinning strings

as helical oscillating strings, so as to remind us of the second feature. It turns out that helical

oscillating strings also interpolate various classical string states of pulsating/oscillating nature

known so far, such as pulsating strings [41, 42, 43] and single-spike solutions [63, 64].

Helical oscillating strings admit a finite-gap interpretation similar to helical spinning ones.

The τ ↔ σ operation in conformal gauge corresponds to rearranging the configuration of cuts

with respect to two singular points of the spectral parameter plane. An alternative description

of τ ↔ σ operation is to swap the definition of quasi-momentum and so-called quasi-energy.

Both helical spinning and oscillating strings thus exhaust all possible two-cut finite-gap solutions

on Rt× S3.

In Chapter 8, we also construct helical string solutions on AdS3 × S1 by means of analytic

continuation.

The current framework of all-loop Bethe Ansatz equations equipped with the dressing phase

is not the full answer towards validation of AdS/CFT correspondence. A major limitation

we face is that it correctly reproduce the super Yang-Mills result only when the length of

spin chain L is large enough. For spin chains with finite size, the Bethe Ansatz equations

do not account for wrapping interactions [7], which possibly arise from the order of λL as

higher-genus diagrams [65]. In fact, the Bethe Ansatz prediction is found to disagree with the

BFKL prediction [66, 67, 68] in [69]. Recently, it is found that the wrapping effects for the

four-loop anomalous dimensions of certain short operators induce terms of higher degrees of

transcendentality [70, 71]. At strong coupling, the Bethe Ansatz also fails to reproduce the

exact expression for one-loop correction to energy-spin relation in string theory; when angular

momenta are finite; there is deviation from the exact answer which is exponentially suppressed

in angular momentum [72]. Note also that exponential correction to the energy-spin relation has

already appeared at classical level, as finite-size correction to giant magnon solutions [52, 73].1

1In conformal gauge, the “size” can be interpreted also as the circumference of worldsheet.
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It was argued in [74] that the exponential finite-size correction at strong coupling is related

to the wrapping interaction at weak coupling, by using Thermodynamic Bethe Ansatz approach

[75] or by the Lüscher formula [76, 77, 78]. Janik and  Lukowski have elaborated this argument,

assuming that Lüscher’s argument can be applied to the non-relativistic dispersion relation

ε(p) =

√
1 +

λ

π2
sin2

(p
2

)
. (0.0.3)

They find that the generalized Lüscher formula reproduces the leading finite- J1 correction to

the dispersion relation of giant magnons correctly, after careful computation of the contribution

from the dressing phase [79].

In Chapter 9, we extend their analysis and study the leading finite-size correction to magnon

boundstates and dyonic giant magnons, using the dispersion relation (0.0.2) rather than (0.0.3).

Firstly we analyze the asymptotic behavior of helical spinning strings in the limit when they

approach an array of dyonic giant magnons, and determined the leading finite- J1 correction to

the energy-spin relation. Secondly, we apply the generalized Lüscher formula to the situation

in which the incoming particle is magnon boundstate. Because the Lüscher formula applied to

the all-loop S-matrix is valid at arbitrary value of λ, it will also reproduce quantum corrections

to the ‘finite-J dyonic giant magnons’.

The finite-size correction predicted by the Lüscher formula consists of what are called F -

term and µ-term, and the latter is sensitive to the pole structure of the S-matrix in infinite-size

theory. The study of pole structure of the BHL/BES dressing phase has started in [80, 81], but

the analyticity of the dressing phase on the whole rapidity torus is not yet completely known.

To determine the poles relevant to computation of µ-term, we use heuristic reasoning based on

the argument similar to [81, 82]. Since our prescription reproduces those of classical strings,

it provides rigid information on the location of poles of the conjectured S-matrix, albeit only

around the nearest from the real axis.

Since there is a vast amount of literature around this subject, it would be helpful for readers

to introduce several review articles. The AdS/CFT correspondence in general is reviewed, for

example, in [83, 84, 85]. Application of integrability methods to AdS/CFT correspondence is

summarized e.g. in [86, 87, 88, 89, 90, 91, 92, 93, 94, 95].
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Organization of the thesis

This thesis is composed of three parts. The first part, Chapter 1 to 5, is a review on develop-

ments of AdS/CFT correspondence, discovery of integrability and application of it. The second

part, Chapter 6 to 8, deals with construction of classical string solutions and its finite-gap in-

terpretation. The third part, Chapter 9, discusses finite-size effects for dyonic giant magnons

or magnon boundstates. Content of each Chapter is summarized as follows:

1. Notion of the AdS/CFT correspondence, also called Maldacena conjecture, is introduced.

We explain how we arrive at such conjecture from a string theoretical point of view.

2. We discuss the integrability in N = 4 super Yang-Mills theory, which arises when we

diagonalize anomalous dimension matrix of gauge-invariant local operators.

3. We discuss the integrability in classical superstring theory on AdS5 × S5 background.

Construction of finite-gap solutions is also reviewed.

4. Examples of finite-gap solutions are given. They can be regarded both as particular

classical string solutions and as solutions of Bethe Ansatz equation in the thermodynamic

limit.

5. Correspondence for the systems of infinite size is summarized. It is believed that S-matrix

conjectured to all orders of the ’t Hooft coupling can explain both sides exactly.

6. We study a family of classical string solutions (with large spins) on Rt× S3 subspace of

AdS5 × S5 background, which we call helical strings, from perspective of Complex sine-

Gordon model. We show they interpolate various known rigid configuration of strings

with two spins.

7. We study a family of classical string solutions on Rt× S3 subspace of AdS5 × S5 back-

ground which have oscillating nature. They are obtained from helical (spinning) strings

by interchanging worldsheet time and space coordinates.

8. We perform analytic continuation to make helical strings on AdS3 × S1.

9. We compute finite-size corrections to dyonic giant magnons in two ways. One is to ex-

amine the asymptotic behavior of helical (spinning) strings and the other is to apply
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generalized Lüscher formula of [79] to the case in which incoming particles are bound-

states.

We then summarize our results, refer to some topics we do not incorporate in this thesis,

and discuss open questions.

Appendix A is devoted to explanation of our notation for elliptic functions and elliptic

integrals. Appendix B deals with the reduction between classical string on Rt× S3 and com-

plex sine-Gordon theory. In Appendix C, details for computation of finite-size correction are

discussed.

Chapter 6 is based on the author’s paper [96] done in collaboration with Keisuke Okamura.

Chapter 7 is partially based on the paper [97], done in collaboration with Hirotaka Hayashi,

Keisuke Okamura and Benôıt Vicedo. Chapter 8 is based on appendix A of the paper [97].

Chapter 9 is based on the paper [98], done in collaboration with Yasuyuki Hatsuda. The

review part is taken from various literature.
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Chapter 1

The AdS/CFT correspondence

The idea of AdS/CFT correspondence was first proposed in the Maldacena’s paper [1]. Among

various works to check his proposal, one of the best studied version is about the one between

N = 4 super Yang-Mills theory and superstring on AdS5 × S5 in the large N limit. In this

chapter we briefly review these two theories in turn, and draw a rough sketch of Maldacena’s

proposal.

1.1 N = 4 super Yang-Mills theory

The N = 4 super Yang-Mills theory has the largest possible supersymmetry among supersym-

metric gauge field theories in four dimensions. This theory is also an important example of

superconformal field theory in four dimensions. We will summarize these features below.

1.1.1 Conformal field theory

As a preliminary, we review basic properties of conformal field theories [99, 100].

Let us start from Poincaré invariant field theories in d spacetime dimensions. Poincaré

algebra contains two types of generators called momentum Pµ and angular momentum Mµν .

They obey the following commutation relations of so(1, d− 1) algebra

[Pµ , Pν ] = 0 , (1.1.1)

[Mµν , Pρ] = −i (ηµρPν − ηνρPµ) , (1.1.2)

[Mµν ,Mρσ] = −i {ηµρMνσ + ηνσMµρ − (µ↔ ν)} . (1.1.3)

When they act on a field φ(x), they can be realized as derivative operation

P̂µ φ(x) = i∂µφ(x) , M̂µν φ(x) = [i (xµ∂ν − xν∂µ) + Σµν ]φ(x) . (1.1.4)

Note that the first relation implies φ(x) = e−iP̂ xφ(0)eiP̂ x.
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Conformal transformation is defined as the coordinate transformation that leaves the metric

invariant up to overall scale,

xµ 7→ yµ(x) , ds2 7→ ds′
2

= Ω(x)2ds2 . (1.1.5)

Such transformation is generated by infinitesimal transformation δxµ = ξµ which satisfies con-

formal Killing equation

∂µξν + ∂νξµ =
2

d
ηµν (∂ · ξ) . (1.1.6)

If d 6= 2 the solution of conformal Killing equation includes, besides (1.1.4),

D = ix · ∂ , Kµ = i
{

2xµ (x · ∂)− x2∂µ
}
, (1.1.7)

where D is called dilatation and Kµ is special conformal transformation (or conformal boost).

They act on a field φ(x) as

D̂ φ(x) = {ix · ∂ + ∆}φ(x) , (1.1.8)

K̂µ φ(x) = i
{

2xµ (x · ∂)− x2∂µ
}
φ(x) + eiP̂ x

(
K̂µ φ(0)

)
e−iP̂ x . (1.1.9)

The commutation relations among D,Pµ , Kµ ,Mµν are computed from derivative representation

(1.1.4) and (1.1.9). The d dimensional conformal symmetry is isomorphic to so(2, d) algebra

through identification

D = Md+1,d , Pµ = Md,µ +Md+1,µ , Kµ = Md,µ −Md+1,µ . (1.1.10)

Spectrum of conformal field theory is classified with regard to the representation of conformal

algebra, and unitary representations are labeled by their spin and conformal dimension ∆ of

the highest weight state. In general, unitary representation of conformal algebra so(d, 2) is

infinite dimensional. If we regard the superconformal generator Kµ as a raising operator and

the momentum Pµ as a lowering operator, the highest state (or conformal primary) is defined

by the condition

K̂µO(0) = 0. (1.1.11)

Descendants are obtained by acting Pµ on the primary state.

The invariance under the full conformal group severely restricts the form of correlation

functions. Two point function of an operator of conformal dimension ∆ is given by

〈O†(x)O(y)〉 =
1

|x− y|2∆
, (1.1.12)

and three point function is given by

〈O†1(x)O2(y)O3(z)〉 =
C1

23

|y − z|∆2+∆3−∆1 |z − x|−∆2+∆3+∆1 |x− y|∆2−∆3+∆1
, (1.1.13)
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where C1
23 is the leading OPE coefficient

O2(y)O3(z) =
∑
k

Ck
23

|y − z|∆2+∆3−∆k
Ok(z) + . . . . (1.1.14)

In conformal field theories, we also have the state-operator correspondence

|O〉 ≡ lim
x→0
O(x) |0〉 . (1.1.15)

1.1.2 N = 4 Lagrangian

The N = 4 super Yang-Mills theory has the unique Lagrangian, including matter content and

coupling. All elementary fields are in adjoint representation of the gauge group (which we take

as SU(N)) and the coupling is proportional to the structure constant.1

The N = 4 Lagrangian reads [85]

S = − 1

2g2
YM

∫
d4x tr

{1

2
FµνF

µν +Dµφ
iDµφi +

1

2
[φi, φj][φi, φj]

+ i
(
λ̄A σ̄

µDµλ
A + λAσµDµλ̄A

)
+ [φ̄AB, λ

A]λB − [φAB, λ̄A]λ̄B

}
, (1.1.16)

where Aµ are gauge fields, φi are real scalars and λA are Weyl spinors. The fields φ̄AB and φAB

are introduced via

φi =
1

2
(τ̄ i)AB φ

AB =
1

2
(τ i)AB φ̄AB (i = 1, . . . , 6 , A,B = 1, . . . , 4) (1.1.17)

where (τ̄ i)AB and (τ i)AB are the γ matrices of so(6), antisymmetric with respect to A,B. The

Lagrangian (1.1.16) also follows from trivial dimensional reduction of d = 10,N = 1 free super

Yang-Mills Lagrangian, through identification of

A(10)
µ = A(4)

µ , A
(10)
3+i = φ

(4)
i . (1.1.18)

The Lagrangian (1.1.16) can be rewritten using N = 1 superfield formalism as

S =
1

2g2
YM

∫
d4x tr

{1

4

∫
d2θ d2θ̄

3∑
a=1

tr
(
Φ̄ae−2V Φa

)
+

1

8

∫
d2θ tr

(
W 2
A

)
+ h.c.

+
i

2

∫
d2θ tr

(
Φ1
[
Φ2,Φ3

])
+ h.c.

}
, (1.1.19)

with Φa are chiral superfields, V is a gauge superfield, and WA ≡ i
4
D̄2(e−VDA e

V ) [102, 103].

The above Lagrangian is invariant under supersymmetry transformation

δφi = (τ̄ i)AB λ
αAηα

β + (τ i)AB η̄α̇Aλ̄
α̇
B (1.1.20)

δλα
A = −1

2
F−µν(σ

µν)α
β ηβ

B + i /Dαα̇ φ
AB η̄α̇B +

1

2
[φi, φj] (τij)

A
B ηα

B (1.1.21)

δAµ = −iλαA(σµ)αα̇ η̄
α̇
A − iηαA(σµ)αα̇ λ̄

α̇
A . (1.1.22)

1Some arguments on generalization of the N = 4 Lagrangian are found in [101].
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Furthermore, this theory has vanishing one-loop β function, and thus lives exactly on the

superconformal fixed point. It is believed that the theory is exactly conformal invariant as long

as 〈φi〉 = 0. 2

The superconformal symmetry of N = 4 theory form psu(2, 2|4) Lie superalgebra, which is

the global symmetry of this theory. The bosonic subgroup of psu(2, 2|4) is su(2, 2) × su(4)R ,

and su(4)R ' so(6)R is the R-symmetry. Under this R-symmetry, scalars transform in 6

representation, Weyl fermions in 4 representation, and gauge bosons in trivial representation.

The N = 4 superconformal algebra is generated by supercharges QA , Q̄
A, superconformal

generators SA , S̄A , and R-symmetry generators TAB , in addition to the generators of bosonic

conformal algebra {D,Pµ , Kµ ,Mµν}. Commutation relations are summarized as follows : The

fermionic generators satisfy

{
QA , Q̄

B
}

= δBA σ
µPµ ,

{
SA , S̄B

}
= δAB σ

µKµ , (1.1.23){
SA , QB

}
= δAB

(
1

2
σµνMµν +D

)
+ TAB , (1.1.24)

{QA , QB} =
{
SA , SB

}
=
{
SA , Q̄B

}
= 0. (1.1.25)

The su(4)R rotation TAB commutes with all generators of bosonic conformal algebra, and the

commutation between TAB and fermionic generators are

[
TAB , QC

]
= δAC QB −

1

4
δAB QC ,

[
TAB , S

C
]

= δCB S
A − 1

4
δAB S

C . (1.1.26)

Finally, commutation between bosonic and fermionic generators satisfy

[Mµν , QA] =
1

2
σµνQA , [Kµ , QA] = σµS̄A , [D ,QA] =

1

2
QA , (1.1.27)[

Mµν , S
A
]

=
1

2
σµνS

A ,
[
Pµ , S

A
]

= σµQ̄A ,
[
D ,SA

]
= −1

2
SA . (1.1.28)

If one decomposes the N = 4 multiplet in terms of N = 1, it breaks up to three chiral

multiplets and one gauge multiplets. Let us denote them by

(Z, λZ) , (W, λW ) , (Y, λY ) , (Aµ , λA) ,

with Z ≡ φ1 + iφ2 , W ≡ φ3 + iφ4 , Y ≡ φ5 + iφ6 . (1.1.29)

Let H1 , H2 , H3 be Cartan generators of so(6)R and let J1 , J2 , J3 be their eigenvalues. By

looking upon the action of the Cartan generators onto su(4) spinors, we can appropriately

assign R-charge to the above fields in the following manner:

2See recent papers [104, 105], for vanishing of β functions at all orders of perturbation theory.
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Fields Z W Y λZ λW λY Aµ λA

J1 1 0 0 1/2 -1/2 -1/2 0 -1/2

J2 0 1 0 -1/2 1/2 -1/2 0 -1/2

J3 0 0 1 -1/2 -1/2 1/2 0 -1/2

Table 1.1: R-charges of N = 4 elementary fields.

1.1.3 Large N limit

In [106], ’t Hooft made an observation that SU(N) Yang-Mills theory exhibits stringy behavior

in the limit

N →∞ , with λ ≡ Ng2
YM fixed. (1.1.30)

Planar diagrams give the dominant contribution in this limit, which is quite analogous to

perturbation of string theory in terms of string coupling constant gs . For this reason, the work

of ’t Hooft is considered as a remarkable precursor of the AdS/CFT correspondence.

In the N = 4 case, it is easy to compute the topology of Feynman diagrams. Recall that

N = 4 theory has 3-point vertex of order gYM , and 4-point vertex of order gYM
2 . Also,

keep it in mind that all elementary fields of N = 4 are in adjoint representation, which is

approximately regarded as product of fundamental and anti-fundamental representations at

large N . If one draws a single line for propagation of fields with an (anti-)fundamental index,

each propagator of adjoint field is drawn as a double line. Each loop of a single line indicates

trace over fundamental representations, giving contribution of order N .

Suppose a diagram consists of V3 3-point vertices, V4 4-point vertices and L loops. From

the above argument, this diagram is of order NLgYM
V3+2V4 . If we analyze this diagram from

graphical point of view, we see that

V3 + 2V4 =
4∑

n=3

nVn − 2
4∑

n=3

Vn = 2E − 2P , L = F ≡ χ− P + E , (1.1.31)

where P,E, F are the number of points, edges, faces, respectively; and χ is Euler number of

the diagram. Now we can estimate the contribution of this diagram as

NLgYM
V3+2V4 = Nχ−P+EgYM

2E−2P = NχλE−P , (1.1.32)

and therefore planar diagrams, χ = 2, contributes the most in the ’t Hooft limit (1.1.30).

1.2 Supergravity and AdS5 × S5 spacetime

We turn our attention to the other side of AdS/CFT correspondence. As we see in later sections,

it is conjectured that N = 4 super Yang-Mills theory is a dual description of superstring on
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P=4 , L=6 , F=4 P=4 , L=6, F=2

Figure 1.1: Left: An example of planar diagram of order N4g4
YM = N2λ2. Right: An example

of nonplanar diagram of order N2g4
YM = λ2.

AdS5 × S5. Both descriptions can be understood as a particular limit of string theoretical

description of D-branes. To support this way of understanding, in this section we look into how

AdS5 × S5 spacetime arises as supergravity description of D3-branes.

1.2.1 Black 3-brane solution

Supergravity is an effective description of string theory when length scale of the system is much

larger than string length `s ≡
√
α′. D-branes are identified as extended black (having horizon)

objects in supergravity description, and in many cases, BPS D-branes correspond to extremal

black solutions.

We study so-called black 3-brane solution of type IIB supergravity in ten dimensions. Since

we study the solution only classically, we can neglect fermions in the action. We also assume

the solution does not have NS-NS 3-form flux, R-R 1-form and 3-form fluxes. Thus, the action

we are going to extremize is, in string frame,

S =
1

`8
s

∫
d10x
√
−g e−2φ

{
R + 4 (∇φ)2

}
−
∫

Fp+2 ∧ ∗Fp+2. (1.2.1)

with p = 3. In addition, self-duality condition should be imposed on 5-form flux F5 . As

discussed in [107], this system has the following extremal black 3-brane solutions :

ds2 = f(ρ)1/2
(
− dt2 +

3∑
i=1

dx2
i

)
+

dρ2

f(ρ)2
+ ρ2dΩ2

5 , f(ρ) = 1−
(
rH
ρ

)4

(1.2.2)

F5 = Q (ε5 + ∗ε5) , Q =
2r4

H

gs`4
s

, (1.2.3)

φ = φ0 (constant) , eφ0 ≡ gs , (1.2.4)

where ε5 is the volume element on the unit 5-sphere, normalized as∫
S5

ε5 =
2π3

Γ(3)
=
(
volume of S5

)
. (1.2.5)
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Normalization of Q follows from the Einstein equation with constant dilaton

1

gs2`s8
RMN ∼ FML1L2L3L4FN

L1L2L3L4 , (1.2.6)

We have to impose the Dirac quantization condition on RR 5-form flux∫
S5

∗F5 =

∫
S5

F5 = N , 3 (1.2.7)

which determines the location of horizon as, up to some numerical constant,

r4
H ∝ Ngs`

4
s ⇔ Ngs ∝

r4
H

`4
s

=
r4
H

α′2
. (1.2.8)

By the change of coordinates r4 ≡ ρ4 − r4
H , the metric (1.2.2) turns into

ds2 = H(r)−1/2
(
− dt2 +

3∑
i=1

dx2
i

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
, H(r) = 1 +

(rH
r

)4

. (1.2.9)

Let us consider near-horizon limit of this metric. Since the horizon is at r = 0, this limit is

achieved by rH � r, or by replacing H(r) with (rH/r)
4. The metric (1.2.9) then becomes

ds2 =
r2

r2
H

(
− dt2 +

3∑
i=1

dx2
i

)
+ r2

H

(dr2

r2
+ dΩ2

5

)
,

= r2
H

[
U2
(
− dt2 +

3∑
i=1

dx2
i

)
+
dU2

U2
+ dΩ2

5

]
, U ≡ r

r2
H

. (1.2.10)

As one finds below, this is the metric of AdS5 × S5 spacetime with the radius of AdS5 and S5

equal to rH .

1.2.2 AdS spacetime

Here we summarize basic facts about AdS spacetime.

The simplest definition of AdS spacetime is by embedding AdSd ⊂ R2,d−1 :

− (Y 0)2 +
d−1∑
i=1

(Y i)2 − (Y d)2 = −R2. (1.2.11)

The parameter R is called radius of AdSd , and this parametrization is called global coordinates.

The metric has so(2, d) isometry, and is given by

ds2 = −(dY 0)2 +
d−1∑
i=1

(dY i)2 − (dY d)2 . (1.2.12)

3 The integral
∫
∂V
∗F =

∫
V
d ∗ F =

∫
V
j is often called electric charge by analogy with electrodynamics.

16



It is convenient to rewrite (1.2.12) in terms of polar coordinates which we define as

Y 0 + iY d = R cosh ρ eit , Y i = R sinh ρΩi , (1.2.13)

where Ωi parametrizes Sd−1 . The metric becomes

ds2 = R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

)
. (1.2.14)

The boundary of AdS is located at ρ→∞.

The coordinate t ∈ R is called AdS time. If one regarded the parametrization (1.2.13) as

imposing periodicity on t, one would encounter closed timelike curve. To maintain the causality

of spacetime, we define the AdS time t by taking the universal covering in (1.2.13), so that two

points t and t+ 2π refer to different points of spacetime.

Poincaré coordinates are useful for relating bulk theory with boundary theory. In Poincaré

coordinates, the AdS metric is written as

ds2 = R2

(
dz2 + ηµνdx

µdxν

z2

)
, ηµν = diag (−1,+1, . . . ,+1) . (1.2.15)

The region z = 0 is the boundary of AdS space and z = ∞ is called horizon. By change of

coordinate u = 1/z, it becomes

ds2 = R2

(
du2

u2
+ u2 ηµνdx

µdxν
)
. (1.2.16)

This is the metric we encountered in the last subsection (1.2.10).

The relation between global and Poincaré coordinates (1.2.16) is given as follows:

Y 0 =
1

2u

{
1 + u2

(
R2 + ηµνx

µxν
)}

,

Y i = Ruxi (i = 1, . . . d− 2) ,

Y d−1 =
1

2u

{
1− u2

(
R2 − ηµνxµxν

)}
,

Y d = Rut ,

(1.2.17)

Note that the two points u and −u are indistinguishable in Poincaré coordinates, while they

are different in global coordinates as is clear from the relation u = (Y 0 − Y d−1)/R2. Thus,

Poincaré coordinates only covers one half of the hyperboloid (1.2.11).

1.3 Maldacena conjecture

In [108], Polchinski showed that D-branes, defined as extended objects at which open strings

can end, carry RR charges. As we saw in Section 1.2.1, the black 3-brane solution has the

background RR flux. It is natural to think of it as sourced by N -sheets of D3-branes.
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This situation is quite interesting from purely closed string point of view. Because closed

strings cannot distinguish D-branes with curved backgrounds (or gravitational potential) sourced

by D-branes, they feel as if D-branes are dissolved into curved background with RR-flux. On

the other hand, open strings are not so sensitive to the spacetime curvature, for no massless

mode of open strings couple to gravity. Along this reasoning, one will be able to promote the

above observation to the following (rather surprising) statement:

D-branes on flat space

(open-like description)
=

Strings on curved spacetime

(closed-like description)

This relation can also be considered as realization of open/closed duality in string theory, or as

two complementary points of view on physics of D-branes. In general, U(N) gauge field theory

is realized as massless open string excitations on N coincident D-branes. Hence, the above

statement suggests the duality between gauge theory on flat spacetime and string theory on

curved spacetime.

It is interesting to try taking α′ → 0 limit in both ways of description. Pure gauge field

theory can be realized on the D-brane side, because gravitational (or bulk-boundary) interaction

decouples from 4-dimensional theory on D-branes in this limit. As a concrete example, in

[1] Maldacena claimed that type IIB superstring on AdS5 × S5 spacetime is dual to N =

4 super Yang-Mills theory in the large N limit, which is now referred to as the AdS/CFT

correspondence.

Let us explain the decoupling limit of Maldacena in detail. On gauge theory side, we

consider the limit

α′ → 0 〈φi〉 : fixed. (1.3.1)

D-brane tension become infinite in this limit, and no massive closed string modes can be

excited on the branes. In (1.3.1), we kept the vacuum expectation value of scalar fields finite.

It corresponds to keeping finite the mass of open string modes stretched between branes, which

is inversely proportional to separation between branes. Note that the N = 4 theory is in

superconformal phase when 〈φi〉 = 0.

On supergravity side, we take the corresponding limit

α′ → 0 U ≡ r

α′
: fixed. (1.3.2)

The parameter U has dimension of (mass)1, in agreement with the dimension of φi. Actually,

this is the near-horizon limit of black 3-brane solution we took in (1.2.10). Note that there is

a factor of α′2 in the right hand side of (1.2.10), but this factor cancels out with the factor

1/α′4 appearing in the action (1.2.1). Stringy excitations do not decouple in this limit ; it just

modifies the background spacetime to AdS5 × S5.

Next let us compare the parameters of both theories. Recall that both string coupling

and four dimensional Yang-Mills coupling are dimensionless constants. Since gauge bosons are
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equivalent to massless open string modes, we must have

gs = g2
YM . (1.3.3)

If we introduce the ’t Hooft coupling by (1.1.30), it follows that

λ ≡ Ng2
YM = Ngs =

R4

α′2
R = (radius of AdS5) =

(
radius of S5

)
, (1.3.4)

where we used the relation (1.2.8). Now it is clear that the AdS/CFT correspondence is

strong/weak duality with respect to the ’t Hooft coupling constant. Perturbative computation

on gauge side is valid for λ = Ng2
YM � 1, whereas on gravity side classical approximation is

valid for λ = R4/α′2 � 1.

Since the above explanation of the AdS/CFT correspondence is quite intuitive, we can

also give critical opinions. For instance, one cannot neglect backreaction of D-branes to the

geometry when the number of D-branes N becomes large. Under such situation, it is not clear

whether U(N) gauge theory on flat space is realized on D-branes. It is also argued, taking into

account the backreaction issue, that the dual gauge theory will live in the boundary of AdS5 ,

giving holographic description of bulk physics. From this point of view, relation to D-branes

and open/closed duality cannot clearly be seen. Nonetheless, lots of evidences for Maldacena

conjecture have been reported.

An important support for Maldacena conjecture is the correspondence of global symmetry.

Both N = 4 super Yang-Mills and superstring on AdS5 × S5 have PSU(2, 2|4) superconformal

symmetry, whose bosonic subgroup is SO(2, 4)× SO(6).

As we have already seen, Maldacena conjecture sounds very plausible. However, it is very dif-

ficulty to give a rigorous proof of Maldacena conjecture. One difficulty is that it is strong/weak

duality, and other difficulties lie in:

• Quantizing superstring on AdS5 × S5 exact in α′, due to the background RR flux.

• Studying the property of N = 4 theory beyond a few orders of perturbation.

• Predicting how the two theories correspond with each other in a precise manner.

An answer to the last problem is proposed by Gubser, Klebanov, Polyakov and Witten

[2, 3]. They interpreted AdS/CFT as the correspondence between bulk supergravity theory

and CFT living on the boundary, and argued that correlation functions of both theories should

obey certain relation.

To explain the GKP-Witten relation, let us consider a bulk supergravity field φ whose

boundary value is fixed at φ = φ0. We assume φ0 couples to some operator O of boundary

CFT, as
∫
φ0O. In the boundary theory, the quantity exp

(∫
φ0O

)
is regarded as generating
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functional for correlation functions of O’s. In the bulk theory, such quantity can be regarded

as a source term of φ in the effective action. Thus, we arrive at their proposal〈
exp

(∫
CFT

d4x φ0O
)〉

= Zbulk (φ) , (1.3.5)

where the right hand side is the partition function of bulk supergravity. In the classical ap-

proximation, it becomes

Zbulk (φ) = exp (−I(φ)) φ
∣∣∣
boundary

= φ0 , (1.3.6)

where I(φ) is classical supergravity action evaluated at its minimum. In superstring theory, the

quantity Zbulk should be considered as the partition function of target space (not of worldsheet).

The relation (1.3.5) sheds light on how to test Maldacena conjecture. However, there still

remains a problem on how one can find the correspondence between φ and O. It is true that

one can compare the spectra based on representation theoretical arguments, but it is generally

difficult to compare their physical quantity in both sides, unless they are BPS.

In later sections, we will try to give a partial answer to this problem. In particular, there

has been a great progress on understanding the spectrum of both N = 4 and AdS5×S5 theories

based on integrability methods. Nontrivial examples of the correspondence have been found,

which are now regarded as concrete and powerful evidences for the AdS/CFT correspondence.
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Chapter 2

Integrability in N = 4 theory

The AdS/CFT correspondence predicts individual string states are in one-to-one correspon-

dence with gauge-invariant local operators of gauge theory. Comparison of global symmetry

suggests that energy of a string state is equal to conformal dimension of the dual operator.

The N = 4 super Yang-Mills theory is believed to sit on the superconformal fixed point to

all orders of perturbation. Still, the conformal dimension (or anomalous dimension) of gauge-

invariant local operators is not easy to compute. This is partly because operators with the same

quantum numbers can mix through quantum effects. So only an appropriate linear combination

of local operators becomes an eigenstate of the anomalous dimension matrix.

Studying diagonalization of anomalous dimension matrix has led to the discovery of inte-

grability in N = 4 theory by Minahan and Zarembo [5]. It enables us to compute anomalous

dimension of local operators which are not necessarily BPS. Below we will review the discovery

of integrability and succeeding development in N = 4 super Yang-Mills theory.

2.1 Diagonalization of anomalous dimension matrix

Minahan and Zarembo considered action of dilatation operator of N = 4 theory on general

operators composed of scalar fields at one loop in λ, and discovered that the dilatation operator

is of the same form as Hamiltonian of integrable spin chain [5]. In this section we follow their

argument more in detail.

We are going to study renormalization of operators having the following form:

O(x) = Ci1i2...iL
◦
◦ tr
[
φi1(x)φi2(x) · · ·φiL(x)

]
◦
◦ , (2.1.1)

where ◦◦
◦
◦ denotes the normal ordering, and φi are scalars of the N = 4 theory. If O is an

eigenstate of dilatation operator, its two point function becomes

〈O†(y)O(x)〉 =
const

|x− y|2∆O
≡ const

|x− y|2(L+ γO)
. (2.1.2)
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The eigenvalue of dilatation ∆O(λ) is a function of the ’t Hooft coupling. The quantity ∆O(0) =

L is called bare dimension and γO(λ) is called anomalous dimension.

Before we proceed, let us recall how we compute anomalous dimensions from wavefunction

renormalization in (super) Yang-Mills [109]. We neglect operator mixing for the moment.

Define an n point function of scalar fields φ evaluated at the scale µ, as

G(n) ({pk};µ, λ) ≡ 〈φ̃i1(p1)φ̃i2(p2) · · · φ̃in(pn)〉 , (2.1.3)

where φ̃(p) is Fourier transform of φ(x). We introduce Z-factor for φ by

φ (p, µ) = Zφ (µ)−1/2 φbare (p, µ0) . (2.1.4)

The shift of the renormalization scale µ causes

µ 7→ µ+ δµ, φ̃ 7→ φ̃+
1

2
δ (lnZφ) · φ , G(n) 7→ G(n) +

n

2
δ (lnZφ) ·G(n) . (2.1.5)

The ’t Hooft coupling λ is not renormalized in super Yang-Mills because it is protected by

supersymmetry. The relation (2.1.5) implies that as a function of µ, G(n) obeys the equation

∂G(n)

∂µ
δµ =

n

2
δ (lnZφ) ·G(n) . (2.1.6)

Suppose further that G(2) is of the form

G(2) (p, µ) =
1

p2
f

(
µ

p

)
for p1 = −p2 = p. (2.1.7)

It then follows

0 =

[
∂

∂ lnµ
− ∂ lnZφ

∂ lnµ

]
f

(
µ

p

)
≡
[

∂

∂ lnµ
− 2γ

]
f

(
µ

p

)
. (2.1.8)

When γ is constant, the last equation can be solved by

G(2) (p, µ) ∼ µ2γ

p2+2γ
. (2.1.9)

Thus we find that anomalous dimension γ is related to wavefunction renormalization Z via

γ =
1

2

∂ lnZ

∂ lnµ
, for Z ≡ Z2

φ . (2.1.10)

If we take into account the effect of operator mixing, this formula is slightly modified to

ΓAB =
∂ZA

C

∂ lnµ
· (Z−1)CB for OAren = ZA

B OB . (2.1.11)

where we defined the renormalized operator OAren so that the following quantity remains finite:〈
O†ren,A(x) OAren(y)

〉
. (2.1.12)
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In this way, the anomalous dimension γO in (2.1.2) is identified as an eigenvalue of anomalous

dimension matrix Γ.

What kind of gauge-invariant local operators may mix with O of (2.1.1)? First of all,

such operators should carry the same quantum numbers (including bare dimension) as O.

In addition, there should be nonzero amplitude of mixing when computed from the N = 4

Lagrangian (1.1.16). It turns out that O can only mix with operators made up of scalars at

one loop in λ. In other words, a set of gauge-invariant local operators made up of scalars form

so-called so(6) subsector of N = 4 theory, which is closed at one loop in λ.

We can view this so(6) sector from another angle. The operator O given in (2.1.1) can be

thought of as the L-th order tensor product of so(6) vectors. These states span a vector space

of 6L dimensions

H = V1 ⊗ V2 ⊗ · · · ⊗ VL . (2.1.13)

It is convenient to think of this space as finite-dimensional Hilbert space for a spin chain of

length L. Direction of the spin sitting at site k is interpreted as the so(6) flavor φik , and the

anomalous dimension matrix is identified as Hamiltonian of this spin chain. Note that one must

impose a condition corresponding to the trace cyclicity. That is, the spin chain state should be

invariant under the translation of index

|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iL〉 7→ |iL〉 ⊗ |i1〉 ⊗ · · · ⊗ |iL−1〉 . (2.1.14)

Let us now compute the so(6) anomalous dimension matrix at one loop. The calculation

becomes simpler in the momentum space, so we consider the two point function of

O(x) = Ci1i2...iL
◦
◦ tr
[ ∫ ( L∏

k=1

d4pk

(2π)4 e
ipkx φ̃ik(pk)

)]
◦
◦ , (2.1.15)

instead of (2.1.1). The tree contribution is evaluated as

〈
O†(y)O(x)

〉
= (Ci1i2...iL)2

∫ L∏
k=1

d4pk

(2π)4

eipk(x−y)

p2
k

. (2.1.16)

Since we take large N limit, the interaction takes place in the nearest neighbor at one-loop.

There are three kinds of Feynman diagrams which contribute to one-loop anomalous dimension

matrix; gluon exchange, scalar 4 point interaction, and the self-energy of scalars.

The gluon exchange comes from the interaction

L 3 1

2
trDµφ

iDµφi −→ gYM (pµ − qµ) tr Ãµ(p− q)φ̃i(p)φ̃i(q) , (2.1.17)
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Figure 2.1: Left: The tree diagram. Right: Diagram of gluon exchange.

so this is flavor blind. The right figure of 2.1 yields

∼ −Ng
2
YM

16π2
ln Λ

(∫ ∏
k=1,2

d4pk

(2π)4

eipk(x−y)

p2
k

)
. (2.1.18)

Factor inside the parentheses is contribution of external propagators, and hence is neglected.

The scalar 4-point function comes from the interaction

L 3 1

4
tr [φi, φj][φi, φj] −→ g2

YM

4
tr
(

2φ̃iφ̃jφ̃iφ̃j − φ̃iφ̃jφ̃jφ̃i − φ̃iφ̃iφ̃jφ̃j
)
, (2.1.19)

and the diagram on the left of Figure 2.2 yields

∼ −Ng
2
YM

16π2
ln Λ

(
2δj2i1 δ

j1
i2
− δj1i1 δ

j2
i2
− δi1,i2δj1,j2

)
, (2.1.20)

neglecting contribution from external propagators.

Lastly, the scalar self-energy consists of the loops for gauge bosons and fermions. This

diagram is computed in the paper [110], which reads

Z
1/2
φ ∼ 1 +

Ng2
YM

8π2
ln Λ. (2.1.21)

To sum up, the Z factor of wavefunction renormalization for the whole O is evaluated as

Z =
L∏
k=1

[
I +

λ

16π2
ln Λ

(
2δjkik δ

jk+1

ik+1
− 2δ

jk+1

ik
δjkik+1

+ δik,ik+1
δjk,jk+1

)]
. (2.1.22)

The Z factor is regularized by replacing UV cutoff Λ by the renormalization scale µ. Using

(2.1.11), the anomalous dimension matrix is obtained as

Γ =
λ

16π2

L∑
k=1

(2I − 2Pk,k+1 +Kk,k+1) , (2.1.23)

where we defined permutation operator P and trace operator K by

Pk,k+1 = δ
jk+1

ik
δjkik+1

, Kk,k+1 = δik,ik+1
δjk,jk+1 . (2.1.24)
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Figure 2.2: Left: Diagram of scalar 4 point interaction. Right: Self-energy of scalars.

As discussed in [5], this matrix Γ is equivalent to Hamiltonian of an integrable so(6) spin chain.

We may also consider anomalous dimension matrix in the su(2) sector. The su(2) sector is

composed of two holomorphic scalars Z = φ1 + iφ2 and W = φ3 + iφ4, and remains closed to

all orders in λ. The su(2) anomalous dimension matrix at one-loop is given by

Γ =
λ

8π2

L∑
k=1

(Ik,k+1 − Pk,k+1) , (2.1.25)

because the trace operator Kk,k+1 vanishes on a holomorphic subsector of SO(6). With the aid

of the formula

Pk,k+1 =
1

2
(Ik ⊗ Ik+1 + ~σk ⊗ ~σk+1) , (2.1.26)

where Pauli matrices are defined by

σxk =

(
0 1

1 0

)
k

, σyk =

(
0 −i
i 0

)
k

, σzk =

(
1 0

0 −1

)
k

, σ±k =
1

2
(σxk ± iσ

y
k) , (2.1.27)

one finds that the su(2) anomalous dimension matrix (2.1.25) is identical to the Hamiltonian

of XXX1/2 spin chain (also known as XXX Heisenberg spin chain):

Γ =
λ

16π2

L∑
k=1

(Ik ⊗ Ik+1 − ~σk ⊗ ~σk+1) ≡ λ

8π2
HXXX1/2

. (2.1.28)

With this interpretation, the operators Z and W are mapped to spin chain states |↑〉 and |↓〉,
respectively.

Higher-loop dilatation operator in su(2) sector takes much more complicated form than

(2.1.25), as given in [111, 112]. The one-loop dilatation operator in the full psu(2, 2|4) sector

is obtained in [113], which is claimed to be the Hamiltonian of an integrable super spin chain

at large N [114].
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Since we are interested in comparison of the spectrum between gauge and string theory, it

is often convenient to focus on closed subsectors of N = 4 theory. There are three rank-one

closed subsectors in this theory. The first one is the su(2) sector whose operators are of the

form

trZJ1W J2 + · · · . (2.1.29)

The second is the sl(2) sector

trDS
+Z

J + · · · , (D+ : covariant derivative in the lightcone direction) , (2.1.30)

and the third is the su(1|1) sector

trψMZJ−M/2 + · · · . (2.1.31)

where ψ = λA is an adjoint gaugino in N = 1 notation of Table 1.1. In particular, the fermionic

su(1|1) sector as well as the relationship among rank-one sectors are extensively studied in [8].

2.2 Diagonalization by Bethe Ansatz

In the last section, we identified the one-loop anomalous dimension matrix as Hamiltonian of

integrable spin chains. This means that various mathematical techniques are applicable to the

study of energy eigenstates of the system.

Among them, Bethe Ansatz is widely used to study the spectrum of exactly solvable models

[115]. One famous example is Hubbard model in 1+1 dimensions, whose ground state energy

and wavefunctions were determined from Bethe Ansatz approach [116, 117]. In this section we

diagonalize the Hamiltonian of XXX1/2 spin chain using so-called coordinate Bethe Ansatz.

Let HXXX1/2
be the Hamiltonian of XXX1/2 spin chain given by

HXXX1/2
≡

L∑
k=1

(Ik,k+1 − Pk,k+1) =
1

2

L∑
k=1

(Ik ⊗ Ik+1 − ~σk ⊗ ~σk+1) . (2.2.1)

We consider a periodic spin chain, so the positions x = 1 and x = L + 1 are identical. The

ground state of this Hamiltonian is ferromagnetic, and is given by

|0〉L = |↑〉1 ⊗ |↑〉2 ⊗ · · · ⊗ |↑〉L . (2.2.2)

In the N = 4 language, the ground state corresponds to half-BPS state

|0〉L ≡ tr [ZZ . . . Z] , (2.2.3)

which obeys the BPS relation ∆− L = 0.1

1For the classification of 1/2, 1/4, and 1/8-BPS operators, see e.g. [84].
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Impurities above the ferromagnetic vacuum are often called magnons. To describe spin

chain states with magnons, we introduce the notation

|x1 , x2 , · · · , xM〉 ≡ |↑〉1 ⊗ · · · |↓〉x1 ⊗ · · · |↓〉xM ⊗ · · · |↑〉L , (2.2.4)

where the spins turn downward at the positions x = x1 , . . . , xM , and upward otherwise. In

the N = 4 language, an up-spin corresponds to an operator Z and a down-spin to an operator

W . One magnon state is constructed as superposition of plane waves:

|p〉 ≡
L∑
x=1

eipx |x〉 . (2.2.5)

The energy of one magnon is easily computed from

(Ik,k+1 − Pk,k+1) |p〉 =


(1− eip) |p〉 for k = x

(1− e−ip) |p〉 for k + 1 = x

0 otherwise

, (2.2.6)

which gives

HXXX1/2
|p〉 = 4 sin2

(p
2

)
|p〉 ≡ E(p) |p〉 . (2.2.7)

Recall that we have to impose cyclicity condition (2.1.14) in N = 4 theory. This requires

p = 0 for one magnon state. The one magnon state (2.2.5) then describes a half-BPS operator

tr [WZZ . . . Z].

Let us proceed to two magnon state. We make the following ansatz:

|p1 , p2〉 =
∑

1≤x1<x2≤L

ψ(x1 , x2) |x1 , x2〉 , (2.2.8)

ψ(x1 , x2) = eip1x1+ip2x2 + S(p2 , p1) eip2x1+ip1x2 , (2.2.9)

where S(p1 , p2) is called S-matrix which describes scattering of two particles of momentum

(also called quasi-momentum) p1 and p2 , respectively. For x2 > x1 +1, the Hamiltonian (2.2.1)

returns the eigenvalue

E(p1 , p2) =
2∑

k=1

E(pk) =
2∑

k=1

4 sin2
(pk

2

)
. (2.2.10)

The S-matrix follows from the condition that the wavefunction (2.2.9) is an eigenstate with the

eigenvalue (2.2.10) for x2 = x1 + 1. The result is

S(p1 , p2) = −e
−ip2 (eip2 + e−ip1 − 2)

e−ip1 (eip1 + e−ip2 − 2)
=
u1 − u2 + i

u1 − u2 − i
, (2.2.11)

where we introduced a rapidity variable

uj ≡
1

2
cot

pj
2

or eipj =
uj + i/2

uj − i/2
. (2.2.12)
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We also require periodic boundary conditions on the wavefunction (2.2.9):

ψ(x1 , x2) = ψ(x2 , x1 + L) , (2.2.13)

which gives

eip2L = S(p2 , p1) and eip1L =
1

S(p2 , p1)
= S(p1 , p2) . (2.2.14)

These two relations together imply that the quasi-momenta are constrained as

2∑
k=1

pkL ≡ 0 (mod 2π) . (2.2.15)

Actually, from the cyclicity of trace (2.1.14) we must have∑
j

pj ≡ 0 (mod 2π) . (2.2.16)

An essential feature of integrable models is factorization of S-matrix. By factorization we

mean that scattering of a particle a and particles b1 , b2 , . . . takes place elastically, so that the

whole S-matrix is given by the product of two-body S-matrices

Swhole(a, {bk}) =
∏
k=1

S(a, bk). (2.2.17)

The XXX1/2 spin chain also has this property, from which one can generalize the above procedure

to general M magnon states. Let {xk} be the lattice coordinates satisfying

1 ≤ x1 < x2 < . . . < xM ≤ L , (2.2.18)

and suppose the wavefunction takes the form

|{pk}〉 =
∑
π∈SM

a({pπ(k)}) exp

(
M∑
k=1

ipπ(k)xk

)
, (2.2.19)

where π is permutation and SM is symmetric group of order M . The coefficients a({pπ(k)}) are

described by S-matrix up to normalization, as

a(· · · , pi , pj , · · · )
a(· · · , pj , pi , · · · )

= S(pi , pj) , (2.2.20)

where the two-body S-matrix is given by (2.2.11). When M (≤ L/2) magnons are all separated,

the XXX1/2 Hamiltonian gives the eigenvalue

Etotal =
M∑
k=1

E(pk) , E(pk) = 4 sin2
(pk

2

)
=

1
1
4

+ u2
k

. (2.2.21)
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The periodic boundary conditions impose the nonlinear constraint among quasi-momenta:

eipjL =

(
uj + i/2

uj − i/2

)L
=

M∏
k 6=j

S (pj , pk) =
M∏
k 6=j

uj − uk + i

uj − uk − i
. (2.2.22)

This is the Bethe Ansatz equation. Note that the trace cyclicity requires an additional condition

(2.2.16).

One can solve the Bethe Ansatz equation (2.2.22) for the simplest two magnon case. How-

ever, it is in general very difficult to find its solutions when the number of magnons becomes

large. Even in such cases, the problem can be simplified if one considers thermodynamic limit.

This is what we are going to discuss in Section 2.4.

2.3 Algebraic Bethe Ansatz for XXX1/2 spin chain

As though the coordinate Bethe Ansatz is intuitive and easy to understand, it is difficult to apply

it to higher-loop anomalous dimension matrix, because non nearest-neighborhood interactions

distort the wavefunction [8]. This difficulty can be overcome by using more abstract formulation

called algebraic Bethe Ansatz. Below we explain main ideas of algebraic Bethe Ansatz applied

to XXX1/2 spin chain. For rigorous argument, please consult various reviews or textbooks, for

example [118, 119, 120, 121].

The starting point of algebraic Bethe Ansatz is R-matrix and L-operator satisfying Yang-

Baxter relation. For XXX1/2 model, the R-matrix is given by

R(u) ≡


1 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 1

 , b(u) =
η

u+ η
, c(u) =

u

u+ η
, (2.3.1)

with η ∈ C an arbitrary constant, and the L-operator is given by

L0k(u) ≡ (2u)I0 ⊗ Ik + η
3∑

a=1

σa0 ⊗ σak , (k = 1, 2, . . . , L) , (2.3.2)

where ‘0’ denotes a fictitious site for reference. By choosing appropriate basis of vector space

at the site 0, we can express L0k(u) = [Lk(u)]ab as a matrix

L0k(u) =

(
[Lk(u)]11 [Lk(u)]12

[Lk(u)]21 [Lk(u)]22

)
=

(
(2u)Ik + ησzk 2ησ−k

2ησ+
k (2u)Ik − ησzk

)
. (2.3.3)

These operators satisfy the Yang-Baxter relation:

R(u− v)
[
L0k(u)⊗

0
L0k(v)

]
=
[
L0k(v)⊗

0
L0k(u)

]
R(u− v) , (2.3.4)
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where ⊗0 stands for tensor product over the referential vector space at 0. If we write indices

of the vector space at 0 explicitly, (2.3.4) becomes

R(u− v)a1,a2c1,c2
Lk(u)c1b1Lk(v)c2b2 = Lk(v)a1c1Lk(u)a2c2R(u− v)c1,c2b1,b2

. (2.3.5)

u

v

u -v

u

v

u -v

a
1

a
2

b
1

b
2

a
1

a
2

b
1

b
2

c
2

c
1

c
2

c
1

=

Figure 2.3: Graphical representation of Yang-Baxter relation for L-operator

From the Yang-Baxter relation we can deduce the existence of an infinite number of com-

muting charges, which is one of the important characterizations of integrable systems. To see

it, let us define monodromy matrix by

Ω(u) ≡ L0L(u) · · ·L02(u)L01(u) =

(
A(u) B(u)

C(u) D(u)

)
, (2.3.6)

where we take the product of L-operators in the sense of (2.3.3). The trace of monodromy

matrix is called transfer matrix:

T (u) = trΩ(u) = A(u) +D(u) . (2.3.7)

By using (2.3.4) repeatedly, one can show the Yang-Baxter relation for monodromy matrix:

R(u− v)
[
Ω(u)⊗

0
Ω(v)

]
=
[
Ω(v)⊗

0
Ω(u)

]
R(u− v) . (2.3.8)

After multiplying R(u− v)−1 from the left and taking the trace over the vector space at site 0,

one finds

[T (u), T (v)] = 0 . (2.3.9)

Thus, if we expand T (u) in powers of u as T (u) =
∑
n=1

Qnu
n−1 , this relation shows

[Qm, Qn] = 0 , (∀ m,n) , (2.3.10)
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as expected. The quantity Qn is called the n-th conserved charge. From the Yang-Baxter

relation (2.3.8), it also follows that

[B(u), B(v)] = 0 , (2.3.11)

where B(u) is introduced in (2.3.6).

One advantage of algebraic Bethe Ansatz is that one can construct eigenvector of Bethe

Ansatz equation (called Bethe vector) straightforwardly. In this formulation, the operator

B(u) plays the rôle of a creation operator, as is inferred from (2.3.3).

The M magnon state is given by

|M〉 = B(u1)B(u2) . . . B(uM) |0〉 , (2.3.12)

where |0〉 is the ground state appeared in (2.2.2). From the expression of L-operator (2.3.3),

one easily finds that the M magnon state is the eigenstate of total spin operator

Sz |M〉 ≡
L∑
k=1

1

2
σzk |M〉 =

(
L− 2M

2

)
|M〉 . (2.3.13)

It can be shown that M magnon state is an eigenstate of transfer matrix with the eigenvalue

T (u; {uj}) = (2u+ η)L
M∏
j=1

u− uj − η
u− uj

+ (2u− η)L
M∏
j=1

u− uj + η

u− uj
. (2.3.14)

From the definition of transfer matrix (2.3.7), one sees that T (u) is a polynomial of u of degree

L, and therefore residues at the apparent poles at u = uj should vanish in (2.3.14). This

consistency condition leads to the following equations(
uj + η/2

uj − η/2

)L
=

M∏
k 6=j

uj − uk + η

uj − uk − η
, (2.3.15)

which is exactly same as the Bethe Ansatz equations (2.2.22) on setting η = i.

Before closing this section, let us make a few comments on the conserved charges. The

transfer matrix T (u) and the Hamiltonian of XXX1/2 spin chain (2.2.1) are related as

d

du
log T (u)

∣∣∣∣
u=η/2

=
1

2η

L∑
j=1

(
Ij ⊗ Ij+1 +

3∑
a=1

σaj ⊗ σaj+1

)
=

1

η

(
L · 1−HXXX1/2

)
. (2.3.16)

To show the first equality, the following equality is useful:

L0k

(
u =

η

2

)
= η
(
I0 ⊗ Ik + ~σ0 ⊗ ~σk

)
. (2.3.17)

Furthermore, it can also be shown that the transfer matrix is related to the total quasi-

momentum as

exp (iP ) =
1

(2η)L
T
(
u =

η

2

)
. (2.3.18)
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Looking carefully at the results (2.3.16) and (2.3.18), we notice that it is much convenient to

redefine an infinite number of mutually commuting charges by

T (u) = (2u+ η)L eiP exp

(
η

∞∑
n=1

(u− η/2)n

n
Qn+1

)
, (2.3.19)

where Q2 = HXXX1/2
.

2.4 Thermodynamic limit of XXX1/2 spin chain

We look for solutions of the Bethe Ansatz equation (2.2.22) when there are a large number of

magnons (or Bethe roots). To simplify the problem, we take thermodynamic limit of XXX1/2

spin chain, that is, to send L→∞. Specifically, we consider the situation in which the number

of magnons M and the length of spin chain L become very large keeping the ratio M/L fixed,

in order to compare with the spectrum of classical string theory in later chapters. Moreover,

the rapidity u of individual magnons should run away to infinity in order to keep the energy

(2.2.21) finite. To sum up, the limit we will take can be specified as

L→∞, with α ≡ M

L
, x ≡ u

L
kept fixed. (2.4.1)

Let us apply the limit (2.4.1) to the Bethe Ansatz equation (2.2.22) following [11]. By

taking the logarithm of both sides, we get

L log

(
uj + i/2

uj − i/2

)
=

M∑
k 6=j

log

(
uj − uk + i

uj − uk − i

)
− 2πinj , nj ∈ Z , (2.4.2)

where mode number nj specifies a branch of the logarithm. By taking the above limit (2.4.1),

we find

1

xj
=

2

L

M∑
k 6=j

1

xk − xj
− 2πnj . (2.4.3)

The first term in the right hand side represents repulsive potential among Bethe roots.

For the moment, let us consider what happens if the first term is absent. One soon finds

the solution in which Bethe roots are aligned along the real axis as xj = 1/ (2πnj). Now recall

that the rapidity u is related to the quasi-momentum p by (2.2.12), then it follows

xjL = uj =
1

2
cot

pj
2

−→
limit

1

pj
, ∴ pj =

2πnj
L

, (2.4.4)

which is a usual quantization condition of momentum. Here, any number of Bethe roots can

occupy the same mode number.

Next, we turn on the first term with nj fixed. The Bethe roots concentrated at xj =

1/ (2πnj) grow into the complex plane, symmetrically with respect to the real axis. Since we
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have taken the L → ∞ limit, we can approximate a set of Bethe roots {xj} by a continuous

segment ξ ∈ C. In general, there can be several non-overlapping segments ∪k Ck .

These segments can be regarded as emergence of branch cuts on the complex rapidity plane.

To describe them, we introduce the density of Bethe roots by

ρ(x) ≡ 1

L

∑
j

δ(x− xj) . (2.4.5)

As the definition of δ -function is a bit ambiguous for x ∈ C (or x ∈ CP1), we may redefine it

through the resolvent

G(x) ≡ 1

L

∑
j

1

x− xj
≡
∮
C
dξ

ρ(ξ)

x− ξ
, (2.4.6)

where C is a contour encircling all branch cuts ∪k Ck . By construction, the resolvent is an

analytic function of x over the region CP1 \ {∪k Ck}. Asymptotically, it behaves as

G(x) =
α

x
+O

( 1

x2

)
, α ≡

∑
k

αk ≡
∑
k

∮
Ck
dξ ρ(ξ) . (2.4.7)

From the definition (2.4.5), one can identify α as the ratio M/L. The quantity αk is called

filling fractions.

The Bethe Ansatz equation (2.4.3) is rewritten using the resolvent as

1

x
+ 2πnj = 2 −

∫
C
dξ

ρ(ξ)

x− ξ
= G (x+ iε) +G (x− iε) for x ∈ Cj , (2.4.8)

where we take the principal part to subtract the contribution from k = j. We can also rewrite

other conditions in terms of resolvent. The trace cyclicity condition

P ≡
∑
j

pj =
∑
j

1

xjL
≡ −2πm , m ∈ Z , (2.4.9)

is translated to

− 1

L

∑
j

1

xj
= G(0) = −

∑
k

∮
Ck
dξ
ρ(ξ)

ξ
=
∑
j

2πnj

∮
Cj
dx ρ(x) = 2πm , (2.4.10)

where we used (2.4.3) and
∮
C −
∫
C dξdξ

′ · · · = 0. The last equality can be expressed in terms of

filling fractions: ∑
j

njαj = m. (2.4.11)

Similarly, the anomalous dimension is expressed by

γ =
λ

8π2

M∑
j=1

1
1
4

+ u2
j

−→
limit

γ =
λ

8π2L

M∑
j=1

1

x2
j

=
λ

8π2L

∮
C
dx

ρ(x)

x2
. (2.4.12)

There is an additional comment on what is called condensate. If several Bethe roots are

situated at the positions uk − uk+1 = i , we have to take the thermodynamic limit of (2.4.2)
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carefully. Such configuration of Bethe roots is called condensate, and survives under the ther-

modynamic limit because

log (uj − uk+1 − i) = log (uj − uk) = logL+ log (xj − xk) . (2.4.13)

Thus, the condensate can be interpreted as an extra logarithmic cut with flat distribution

ρ(x) = 1 (one root per the distance 1/L). When the contour around a branch cut Ck passes

condensate, there occurs a jump of mode number by 2π.

We want to rephrase the above formulation in the algebro-geometric language. We introduce

two sheets of complex plane CP1
± connected by a certain number of branch cuts ∪k Ck , and

choose a - and b -periods as in Figure 2.4.

Figure 2.4: Choice of a - and b -cycles.

Let us define the function

p(x) ≡ G(x)− 1

2x
, (2.4.14)

which is called quasi-momentum in [11]. This should not be confused with the original momen-

tum pj appeared in (2.4.9). The Bethe Ansatz equation (2.4.8) is rewritten as

p (x+ iε) + p (x− iε) = 2πnj for x ∈ Cj . (2.4.15)

The new variable p(x) shall define an Abelian integral (
∫ x

dp) over the Riemann surface Σ '
CP1

+∪CP1
− modulo 2π× (integer). The differential dp(x) is nonsingular except for the location

of double pole x = 0 (and for the location of condensate). Generally, Riemann surfaces of genus

g have K ≡ g+ 1 cuts and 2g independent cycles which we denote by {a1 , b1 , . . . , ag , bg}. Let

b′1 , . . . , b
′
K be open paths with the endpoints at ∞±, and define a number n′∞ by

p
(
∞+

)
− p

(
∞−

)
=

∫ ∞+

∞−
dp ≡ 2πn′∞ , (2.4.16)

34



then the equation (2.4.15) can be interpreted as quantization of b -periods:∮
bj

dp ≡
∮
b′j

dp−
∮
b′K

dp = 2π (nj − nK) , (j = 1, 2, . . . , g) . (2.4.17)

Without condensate, a -periods of the Abelian integral (
∫ x

dp) can be normalized to zero:∮
Aj

dp = 0, (2.4.18)

and if condensate is present, we should modify this condition to∮
Aj

dp = 2πmj . (2.4.19)

Condensate

Figure 2.5: Modification of a -periods by condensate.

From the formula (2.4.7), we finds the function p(x) having asymptotics

Res
x=∞

(x dp) = α− 1

2
. (2.4.20)

In this terminology, filling fractions are given by

αk =

∮
Ck
dx ρ(x) =

1

2πi

∮
Ck
dx p(x) ,

∑
k

αk = α . (2.4.21)

The trace cyclicity (2.4.10) is expressed as

G(0) = Res
x=0

(
p(x)dx

x

)
= 2πm . (2.4.22)

2.5 All-loop Bethe Ansatz conjecture

2.5.1 Towards the all-loop proposal

We would like to write now a short review on the study of spectrum in su(2) sector at higher

loops. We mainly focus our attention onto the work of Beisert, Dippel and Staudacher [7] and

around.
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Extension of one-loop anomalous dimension matrix (2.1.25) to two loops was first studied

in [111]. They decided the form of dilatation operator without working on Feynman diagrams.

Instead, they inspected all possible forms of Feynman diagrams which could contribute to

two loop dilatation operator in su(2) sector, and fixed coefficients by gauge invariance, non-

renormalization theorem and consistency with the BMN limit [4].2

They also showed planar integrability of su(2) sector at two loops. It was done by noting

that the parity operation

P T aP = (T a)T = (T a)∗ , P tr (φ1φ2 · · ·φL)P = tr (φL · · ·φ2φ1) , (2.5.1)

is an exact symmetry of SU(N) gauge theory, where T a is the generator of SU(N) gauge

group. The parity-even sector is unrelated with parity-odd sector in general, but they observed

that they have the same eigenvalue of dilatation operator if N = ∞, up to two loops. If

the underlying theory is integrable, the second commuting conserved charge Q2 (Q1 being

Hamiltonian as in (2.3.19)) is a parity-odd operator giving rise to degeneracy

Q2O± ∼ O∓ . (2.5.2)

As it seems almost impossible to construct systems with [Q1 , Q2] = 0 which are not integrable,

they concluded that the complete degeneracy signals the first sign of integrability beyond one

loop.

They further conjectured three-loop planar dilatation generator in su(2) sector assuming

higher-loop integrability. Let us introduce the notation

{n1 , n2 , · · · } =
∑
`

P`+n1−1 ,`+n1P`+n2−1 ,`+n2 · · · , (2.5.3)

where Pk,k+1 is the permutation operator introduced in (2.1.24), then their result reads

H =
∞∑
k=0

(
λ

16π2

)k
H2k , (2.5.4)

where

H0 = + {} ,

H2 = +2 {} − 2 {1} ,

H4 = −8 {}+ 12 {1} − 2 ({1, 2}+ {2, 1}) ,

H6 = +60 {} − 104 {1}+ 4 {1, 3}+ 24 ({1, 2}+ {2, 1})

− 4iε2 {1, 3, 2}+ 4iε2 {2, 1, 3} − 4 ({1, 2, 3}+ {3, 2, 1}) , (2.5.5)

with ε2 , which does not alter the spectrum, set to zero.

2The BMN limit differs from the thermodynamic limit (2.4.1) in that M is kept finite as we take L→∞.
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Applying this dilatation operator to length-four Konishi descendant [122]

OK = tr(ZZWW )− tr(ZWZW ), (2.5.6)

they found its anomalous dimension as

∆K = 4 + 12

(
λ

16π2

)
− 48

(
λ

16π2

)2

+ 336

(
λ

16π2

)3

+ · · · . (2.5.7)

In [123], Beisert confirmed the conjectured Hamiltonian (2.5.5) based on symmetry algebra

and the BMN limit. He also proved the Hamiltonian and its integrability at three loops in

su(2|3) sector, which is the maximally compact closed subsector of psu(2, 2|4), along this line

of study.

The anomalous dimension (2.5.7) agrees with field theoretical computation of [124]. More-

over, this result was shown to coincide with the anomalous dimension of twist-j operator (j = 2)

up to three loops in [20] by applying BFKL method to N = 4 theory.

Beyond one loop, Hamiltonian starts to acquire quite complicated structure. To obtain

general spectrum of such Hamiltonian, we have to look for a systematic (or sophisticated) way

of diagonalizing it. For this purpose, Serban and Staudacher studied a long range spin chain of

Inozemtsev type, and found that it reproduces su(2) dilatation operator up to three loops [6].

The Inozemtsev spin chain has the Hamiltonian

HInozemtsev =
L∑
j=1

L−1∑
n=1

℘L,π/κ(n) (1− Pj,j+n) , (2.5.8)

where L is the length of spin chain, κ is coupling constant, and Pi,j is permutation of site i and

j. Recall that the Weierstrass ℘ -function has the following series expansion:

℘L,π/κ(z) =
1

z2
+

∑
(m,n)∈Z2

′
{

1

(z −mL− inπ/κ)2 −
1

(mL+ inπ/κ)2

}
, (2.5.9)

where the prime over the sum means that we omit (m,n) = (0, 0). In [6], they considered

long-range limit L→∞, in which elliptic functions reduce to hyperbolic ones:

lim
L→∞

℘L,π/κ(z) = κ2

(
1

sinh2 κz
+

1

3

)
. (2.5.10)

As the authors already noticed [6], Inozemtsev spin chain has a limited range of validity in

the following sense:

1) The Inozemtsev Hamiltonian (2.5.8) contains two-spin interactions alone. How-

ever there can be more complicated interactions in the higher-loop dilatation oper-

ator.
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2) They take the limit L → ∞. When one wants to check if the agreement

continues for finite L, one must solve the Bethe Ansatz equation expressed in terms

of elliptic functions.

3) From four loops, thermodynamic limit of the Inozemtsev spin chain is not

consistent with the perturbative BMN scaling [125]:

∆− J =
M∑
k=1

√
1 +

λ

J2
n2
k +O

(
1

J

)
,

M∑
k=1

nk = 0. (2.5.11)

At this stage, there was still possibility that the Inozemtsev spin chain ceased to agree

with N = 4 theory, and the perturbative BMN scaling was valid beyond three loops. Beisert,

Dippel and Staudacher pursued this matter, and proposed so-called BDS Bethe Ansatz which

diagonalizes the Hamiltonian, and is compatible with the perturbative BMN scaling to all orders

[7].

The precise form of the BDS Ansatz will be given in Section 2.5.2. Here we present several

features of their proposal:

• The BDS Ansatz is a conjecture for all orders of λ.

• In contrast to the approach of [6], it is not clear how all-loop Hamiltonian operator looks

like the BDS Ansatz is diagonalizing.

• Just like [6], the BDS Ansatz is supposed to be asymptotic. Namely, it is exact only when

the length of spin chain L is infinite, and will breakdown at the loop order ∼ λL when L

is finite [8].

• It diagonalizes five-loop Hamiltonian in su(2) sector, that is, six-loop correction to con-

formal dimension.

• It also reproduces with the leading 1/J correction to BMN energy (2.5.11). However, it

disagrees with the pp-wave limit of string theory.

• In the thermodynamic limit, it does not match again with classical string theory.

Concerning the last two problems, they speculated that these may be due to the ‘order

of limits‘ problem [7]. In gauge theory side, we first assume L � 1, 1 � λ and then expand

conserved charges in λ. In classical string side, we firstly take λ� 1 and then expand conserved

charges in 1/J . If there are terms like

f(λ, L) =
λL

(1 + λ)L
, (2.5.12)

then these two limiting procedures return different values.
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Although there is potentially such an order-of-limits problem, the ‘discrepancy’ between

gauge and string theories is now understood in a different way. Much more convincing expla-

nation is that neither the perturbative BMN scaling (2.5.11) nor the BMN scaling hypothesis

∆− L = L

{∑
j≥1

∑
k≥1

aj,k

(
λ

L2

)j (
1

L

)k}
, (2.5.13)

remains valid from four loops in gauge theory. This is because the two-body S-matrix of gauge

theory acquires a nontrivial phase factor starting at four loops. This factor, called dressing

phase, induces terms with k < 0 in (2.5.13), and therefore completely destroys the BMN

scaling.3

The existence of such phase at weak coupling was first found in the computation in the sl(2)

sector [127]. Later it has been confirmed by the field theory calculation of dilatation operator in

su(2) sector at four loops [112]. We postpone the discussion on the dressing phase until Section

5.3. For now, let us summarize the Bethe Ansatz approach in su(2) sector more qualitatively.

2.5.2 All-loop Bethe Ansatz in su(2) sector

We will explain the Bethe Ansatz equation which is believed to reproduce the spectrum of su(2)

sector up to the order ∼ λL+1 where the wrapping interaction begins to take place.

It is convenient to introduce new rapidity parameters x and x± by [7, 128]

u = x+
λ

16π2

1

x
, u± i

2
= x± +

λ

16π2

1

x±
. (2.5.14)

The first equation can be easily inverted as

x(u) =
1

2

(
u+ u

√
1− λ

4π2

1

u2

)
, (2.5.15)

Note that x is an odd function of u. The second equation tells us that the variables x± are not

independent, and constrained as

x+ +
λ

16π2

1

x+
− x− − λ

16π2

1

x−
= i . (2.5.16)

An alternative definition of x± is

u =
1

2

(
x+ +

λ

16π2

1

x+
+ x− +

λ

16π2

1

x−

)
, (2.5.17)

with the constraint (2.5.16). We relate the x± variables to the magnon momentum p by

eip ≡ x+

x−
. (2.5.18)

3Breakdown of BMN scaling was also observed earlier in the plane-wave matrix theory, which is a truncation

of Kaluza-Klein modes in N = 4 super Yang-Mills on Rt× S3 [126].
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This allows us to express u and x± as functions of p:

u(p) =
1

2
cot
(p

2

)√
1 +

λ

π2
sin2

(p
2

)
, x± = e±ip/2

1 +

√
1 +

λ

π2
sin2

(p
2

)
4 sin

(p
2

)
 . (2.5.19)

The following identities are also useful in converting u to x± :

uj − uk = (xj − xk)
(

1− g2
B

2xjxk

)
=
(
x±j − x±k

)(
1− g2

B

2x±j x
±
k

)
, (2.5.20)

uj − uk ±
i

2
=
(
x±j − xk

)(
1− g2

B

2x±j xk

)
=
(
xj − x∓k

)(
1− g2

B

2xjx
∓
k

)
, (2.5.21)

uj − uk ± i =
(
x±j − x∓k

)(
1− g2

B

2x±j x
∓
k

)
, (2.5.22)

where we defined

g2
B ≡

λ

8π2
. (2.5.23)

The all-loop Bethe Ansatz in su(2) sector is given by

eipjL =
M∏
k 6=j

S (pj , pk) , S (pj , pk) ≡
uk − uj + i

uk − uj − i
σ2 (pj , pk ;λ) . (2.5.24)

The factor σ2 (pj , pk ;λ) is called dressing phase, which equals to the identity up to O(λ3).

Without this factor, the two-body S-matrix written in terms of u variable is same as the one-

loop result (2.2.11). The su(2) Bethe Ansatz without dressing phase was proposed in [7] and

called BDS Ansatz.

The above equation can be reexpressed in terms of x± variables alone, as(
x+
j

x−j

)L

=
M∏
k 6=j

x+
j − x−k
x−j − x+

k

1− g2
B/
(
2x+

j x
−
k

)
1− g2

B/
(
2x−j x

+
k

) σ2
(
x±j , x

±
k

)
. (2.5.25)

An infinite number of commuting charges are proposed as follows [7]:

Qr =
M∑
k=1

i

r − 1

{
1

(x+
k )r−1

− 1

(x−k )r−1

}
, (2.5.26)

E ≡ g2
BQ2 =

M∑
k=1

ig2
B

{
1

x+
k

− 1

x−k

}
=

M∑
k=1

√
1 +

λ

π2
sin2 pk

2
− 1 , (2.5.27)

with E = ∆−∆0 . The motivation for defining charges as in (2.5.26), is to identify them with

integral equation arising from finite-gap formulation of classical string theory. As discussed in
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the previous subsection, there are also various evidences for the expression for spin chain energy

(2.5.27).

Let us make connection with the above formula with one-loop results. This can be done by

the following reduction

u = x+
λ

16π2

1

x
=

1

2
cot
(p

2

)√
1 +

λ

π2
sin2 p

2
−→

one−loop
u = x =

1

2
cot
(p

2

)
, (2.5.28)

and

∆ =

√
1 +

λ

π2
sin2 p

2
−→

one−loop
∆ = 1 +

λ

2π2
sin2 p

2
, (2.5.29)

which agree with (2.2.12), (2.2.21) and (2.1.28). It is important to notice that the distinction

between u and x starts from two loops in λ.

2.5.3 All-loop Bethe Ansatz in the full sector

The all-loop Bethe Ansatz in su(2) sector (2.5.25) is part of all-loop Bethe Ansatz in the full

psu(2, 2|4) sector [9]. Historically speaking, this is generalization of one-loop Bethe Ansatz in

the full psu(2, 2|4) sector constructed in [114] based on earlier works on integrable aspects of

QCD [129, 130, 131, 132, 133] and dilatation operator in the full sector [113]. In [9], Beisert

and Staudacher proposed the expressions of Bethe Ansatz such that in thermodynamic limit

they agree with the finite-gap formulation of superstring on AdS5 × S5 [28, 29], which will be

the issue of Chapter 3. We just cite their results in this section, so please consult the paper [9]

for details and more justification.

We have several remarks on the all-loop Bethe Ansatz in the full sector:

• We need several species of Bethe roots when the rank of gauge group is greater than one.

This means we have to use the nested Bethe Ansatz.

• It is convenient to work with su(2, 2|4) algebra with u(1) constraint rather than psu(2, 2|4).

Since the rank of su(2, 2|4) is 7, we need seven species of Bethe roots which are all inde-

pendent.

• Cartan matrix of su(2, 2|4) superalgebra is not unique. We have to specify a particular

expression of Cartan matrix.

• We denote the momentum-carrying roots by x±4,j . Other roots (x1 , x2 , x3 , x5 , x6 , x7)

change the flavor of impurity. We also denote the number of the a-th roots by Ka . One

can also construct Bethe vectors by analogy with (2.3.12). They are eigenstates of the

Cartan subalgebra of su(2, 2|4), as they were in the su(2) case (2.3.13).4

4Note that eigenstates of the Cartan subalgebra do not always belong to a single irreducible representation

in general.
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Figure 2.6: Dynkin diagrams of su(2, 2|4) for the gradings η1, η2 = ±1. Each node indicates

that the corresponding diagonal element of the Cartan matrix is ±2 or zero.

• If we set η1 = η2 and K1 = K2 = K3 = K5 = K6 = K7 = 0 in the following results, they

reduce to the Bethe Ansatz equation in su(2) sector.

We specify a Cartan matrix of su(2, 2|4) as

M =



+η1

+η1 −2η1 +η1

+η1 −η1

−η1 +η1 + η2 −η2

−η2 +η2

+η2 −2η2 +η2

+η2


, (2.5.30)

and the corresponding Dynkin diagrams are shown in 2.6. The variables η1 , η2 take values ±1.

Different choices of signs η1,2 = ±1 are related by duality transformations [114, 28, 9].
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The all-loop Bethe Ansatz equations in the full su(2, 2|4) sector is given as follows:

1 =

K4∏
j=1

x+
4,j

x−4,j
, (2.5.31)

1 =

K2∏
j=1

u1,k − u2,j + i
2
η1

u1,k − u2,j − i
2
η1

K4∏
j=1

1− g2
B/2x1,k(x

+
4,j)

η1

1− g2
B/2x1,k(x

−
4,j)

η1
, (2.5.32)

1 =

K2∏
j=1
j 6=k

u2,k − u2,j − iη1

u2,k − u2,j + iη1

K3∏
j=1

u2,k − u3,j + i
2
η1

u2,k − u3,j − i
2
η1

K1∏
j=1

u2,k − u1,j + i
2
η1

u2,k − u1,j − i
2
η1

, (2.5.33)

1 =

K2∏
j=1

u3,k − u2,j + i
2
η1

u3,k − u2,j − i
2
η1

K4∏
j=1

x3,k − (x+
4,j)

η1

x3,k − (x−4,j)
η1
, (2.5.34)

(
x+

4,k

x−4,k

)L

=

K4∏
j=1
j 6=k

(
(x+

4,k)
η1 − (x−4,j)

η1

(x−4,k)
η2 − (x+

4,j)
η2

1− g2
B/2x

+
4,kx

−
4,j

1− g2
B/2x

−
4,kx

+
4,j

σ2(x4,k, x4,j)

)

×
K1∏
j=1

1− g2
B/2(x−4,k)

η1x1,j

1− g2
B/2(x+

4,k)
η1x1,j

K3∏
j=1

(x−4,k)
η1 − x3,j

(x+
4,k)

η1 − x3,j

K5∏
j=1

(x−4,k)
η2 − x5,j

(x+
4,k)

η2 − x5,j

K7∏
j=1

1− g2
B/2(x−4,k)

η2x7,j

1− g2
B/2(x+

4,k)
η2x7,j

,

(2.5.35)

1 =

K6∏
j=1

u5,k − u6,j + i
2
η2

u5,k − u6,j − i
2
η2

K4∏
j=1

x5,k − (x+
4,j)

η2

x5,k − (x−4,j)
η2
, (2.5.36)

1 =

K6∏
j=1
j 6=k

u6,k − u6,j − iη2

u6,k − u6,j + iη2

K5∏
j=1

u6,k − u5,j + i
2
η2

u6,k − u5,j − i
2
η2

K7∏
j=1

u6,k − u7,j + i
2
η2

u6,k − u7,j − i
2
η2

, (2.5.37)

1 =

K6∏
j=1

u7,k − u6,j + i
2
η2

u7,k − u6,j − i
2
η2

K4∏
j=1

1− g2
B/2x7,k(x

+
4,j)

η2

1− g2
B/2x7,k(x

−
4,j)

η2
, (2.5.38)

and higher charges are given by

Qr =
i

r − 1

K4∑
j=1

(
1

(x+
4,j)

r−1
− 1

(x−4,j)
r−1

)
, (2.5.39)

E = g2
BQ2 = ig2

B

K4∑
j=1

(
1

x+
4,j

− 1

x−4,j

)
, (2.5.40)

with E = ∆−∆0 .

As usual, Dynkin index is defined as the coefficient of weight vectors ~µ expanded in terms
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of fundamental weights ~µ(a),

~µ =
7∑

a=1

ra~µ
(a) , Hb |~µ〉 = µb |~µ〉 , (2.5.41)

where {Hb} form Cartan subalgebra of su(2, 2|4). One can read off the Dynkin labels of a state

by expanding the Bethe Ansatz equations around ua,j ∼ xa,j ∼ ∞, which reads:

r1 = −η1K2 −
1

2
η1E ,

r2 = −η1K3 + 2η1K2 − η1K1 ,

r3 = +η1K4 − η1K2 +
1

2
η1E ,

r4 = +L− (η1 + η2)K4 + η1K3 + η2K5 +
1

4
(2− η1 − η2)E , (2.5.42)

r5 = +η2K4 − η2K6 +
1

2
η2E ,

r6 = −η2K5 + 2η2K6 − η2K7 ,

r7 = −η2K6 −
1

2
η2E .

To reduce su(2, 2|4) into psu(2, 2|4), we need to impose the following constraint among central

elements:

η1r1 − η1r3 + η2r5 − η2r7 = 0. (2.5.43)
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Chapter 3

Classical string and integrability

We discuss superstring theory on AdS5 × S5 background under the classical approximation

λ � 1. This theory is known to be integrable in the sense that their equations of motion

can be rewritten in terms of a Lax pair [24]. This fact allows us to construct classical string

solutions in an abstract manner known as finite-gap method. Remarkably, Kazakov, Marshakov,

Minahan and Zarembo found that the finite-gap formulation is quite useful in comparing the

spectrum of string and gauge theories [11], which is the main topic of this chapter.

3.1 Integrability of classical string on AdS5 × S5

The AdS5 × S5 space supported by RR flux is hard to quantize in the Neveu-Schwarz-Ramond

formalism, due to the problem of defining RR vertex operator in curved backgrounds. Direct

application of the Green-Schwarz formalism to this background is neither practical for the

purpose of writing down the action in superspace coordinates (x, θ) and identifying supergravity

fields.

To circumvent the problem, Metsaev and Tseytlin constructed the Green-Schwarz (κ-

symmetric) superstring action on the coset superspace

SU(2, 2|4)

SO(1, 4)× SO(5)
∼

[
AdS5 × S5 background

]
× U(1) , (3.1.1)

up to O (θ4) [22]. This was subsequently generalized to the full order of θ in [23]. The action

of Metsaev and Tseytlin was further refined in [134] by performing Wick rotation

PSU(2, 2|4)

SO(1, 4)× SO(5)
−→ PSL(4|4;R)

Sp(4;R)× Sp(4;R)
, (3.1.2)

such that the superconformal symmetry is manifest.

The classical integrability of the Metsaev-Tseytlin action on AdS5 × S5 was discovered in

[24]. Below we follow the discussion of [28] where they employed the strategy of [134]. The

difference of signs between (3.1.1) and (3.1.2) is unimportant for showing the integrability.
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We begin with a brief introduction of supermatrices. For details, see [28, 135] and references

therein. Let η be the grading operator,

η ≡

(
+1d

−1d

)
, (3.1.3)

where 1d is the identity matrix in d dimensions. Define supertrace as

strA = tr (ηA) = tr (Aη) , (3.1.4)

where the right hand side is a regular trace. The superdeterminant is defined by

sdet

(
A B

C D

)
≡ det (A−BD−1C)

detD
=

detA

det (D − CA−1B)
. (3.1.5)

There are several identities on superdeterminant, like

sdet (AB) = sdet (A) sdet (B) , sdet exp (A) = exp str (A) . (3.1.6)

Note also

str (12d) = 0, sdet (ξ 12d) = 1 (ξ : constant) . (3.1.7)

The supertranspose is defined as(
A B

C D

)ST

=

(
AT CT

−BT DT

)
. (3.1.8)

The supertranspose is an operation of Z4 grading:

(AST)ST = ηAη, (ηAη)2 = A. (3.1.9)

The supergroup SL(4|4;R) is parametrized by supermatrices of the form

g =

(
A B

C D

)
, sdet g = 1. (3.1.10)

If we impose reality conditions, the matrices A and D are real while Grassmann matrices B

and C are related by B = C†. The matrices in PSL(4|4;R) is a quotient of (3.1.10) by matrices

proportional to 18 .

It is useful to introduce Z4 grading operator ω by

ω · g =

(
EATE −ECTE

EBTE EDTE

)
, E =


0 −1

+1 0

0 −1

+1 0

 . (3.1.11)

46



It then follows E2 = −1, ω4 = 1, and ω · [g1 , g2] = [ω · g1 , ω · g2]. Since ω is an automorphism,

elements of PSL(4|4;R) can be classified with respect to its action, as

g = g(0) + g(1) + g(2) + g(3) , ω · g(k) ≡ (−1)k/2 g(k) . (3.1.12)

By construction, E is invariant under the map E 7→ hEhST for h ∈ Sp(4;R) × Sp(4;R). It

shows the denominator group of the coset is spanned by g(0)) .

To write down the action, let us introduce a supermatrix-valued function on the worldsheet

g(τ, σ) ∈ PSL(4|4;R), with the periodicity

g(τ, σ + 2π) = g(τ, σ)h(τ, σ), h(τ, σ) ∈ Sp(4;R)× Sp(4;R) . (3.1.13)

We also introduce current of g by

J = −g−1dg , (3.1.14)

which is invariant under the left multiplication g 7→ Gg for G ∈ PSL(4|4;R). One easily finds

that this current obeys

dJ − J ∧ J = 0, str J = 0. (3.1.15)

The Z4 grading ω decomposes this current as

J = J (0) + J (1) + J (2) + J (3) ≡ H +Q1 + P +Q2 . (3.1.16)

The flatness condition (or Bianchi identity) (3.1.15) can be decomposed similarly. This decom-

position (3.1.16) as well as the condition str g = 1 imply

strH = strQ1 = strP = strQ2 = 0. (3.1.17)

The superstring action is given by [134, 28]

S =

√
λ

4π

∫
str (P ∧ ∗P −Q1 ∧ ∗Q2) + Λ ∧ strP , (3.1.18)

where Λ is a Lagrange multiplier to guarantee the supertraceness of g ∈ PSL(4|4;R). From

infinitesimal variance g 7→ (1 + δG)g, one can derive its equations of motion as

0 = P ∧Q2 − ∗P ∧Q2 +Q2 ∧ P −Q2 ∧ ∗P , (3.1.19)

d∗P = H ∧ ∗P +Q1 ∧Q1 + ∗P ∧H −Q2 ∧Q2 + dΛ, (3.1.20)

0 = P ∧Q1 + ∗P ∧Q1 +Q1 ∧ P +Q1 ∧ ∗P . (3.1.21)

The above equations are concisely summarized as

d∗K − J ∧ ∗K − ∗K ∧ J = 0, K ≡ P +
1

2
∗Q1 −

1

2
∗Q2 − ∗Λ. (3.1.22)
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If we introduce the left invariant current k ≡ gKg−1 ,1 the equation of motion (3.1.22) becomes

d ∗ k = 0. (3.1.23)

In search of classical integrability, Bena, Polchinski and Roiban tried an Ansatz for Lax

connection [24]. In our language, it takes the form

a(z) ≡ α(z)p+ β(z) (∗p− Λ) + γ(z) (q1 + q2) + δ(z) (q1 − q2) , (3.1.24)

where we defined left invariant currents by p ≡ gPg−1 and q1,2 ≡ gQ1,2g
−1. The condition

da + a ∧ a = 0 results in six equations for four functions with certain amount of redundancy.

They found there exists one-parameter family of solutions given by

α(z) = 1− 1

2

(
z2 +

1

z2

)
, β(z) =

1

2

(
z2 − 1

z2

)
, (3.1.25)

γ(z) = 1− 1

2

(
z +

1

z

)
, δ(z) =

1

2

(
z − 1

z

)
. (3.1.26)

We can reexpress the connection (3.1.24) in terms of the right invariant currents, as

A(x) = H +
1

2

(
z2 +

1

z2

)
P − 1

2

(
z2 − 1

z2

)
(∗P − Λ) +

1

z
Q1 + z Q2 . (3.1.27)

This connection is generalization of J in (3.1.15), and satisfy

dA(z)− A(z) ∧ A(z) = 0, strA(z) = 0, (3.1.28)

as well as A(z = 1) = J .

From Lax connection, one can construct an infinite number of conserved charges. To see it,

let us define the Wilson loop around Lax connection

Ω0(z) ≡ P̄ exp

(∮ 2π

0

dσ Aσ (τ, σ ; z)

)
, (3.1.29)

where P̄ stands for the anti-path-ordering where larger values of σ stands to the left. Written

explicitly, (3.1.29) is,

P̄ exp

(∮ b

a

dσAσ (σ)

)
≡ 1−

∮ b

a

dσ1Aσ (σ1) +

∮ b

a

dσ1

∮ σ1

a

dσ2Aσ (σ1)Aσ (σ2) + · · · . (3.1.30)

The monodromy matrix is then defined as

Ω(z) ≡ Ω0(1)−1Ω0(z). (3.1.31)

1Note that the element K also transforms covariantly under Sp(4;R)× Sp(4;R) [24].

48



Owing to the vanishing curvature condition (3.1.28), the monodromy matrix is independent of

τ [136]. It tells us, in particular, that if we expand it around some point z = z0

Ω(z) ≡
∑
n

Qn(z − z0)n , (3.1.32)

all coefficients Qn are independent of worldsheet time, and hence conserved.

For later use, we introduce x variable as

x ≡ 1 + z2

1− z2
or z ≡

√
x− 1

x+ 1
, (3.1.33)

which satisfy
dx

1− 1/x2
=
dz

z
. (3.1.34)

This parameter x will be shown to correspond to x given in (2.5.14).

3.2 Polyakov action on AdS5 × S5

Let us make a few remarks on the truncation of classical string action. In classical theory,

we can freeze out the degrees of freedom in any particular directions and consider only string

solutions which move in remaining directions. This amounts to truncation of classical string

action on AdS5 × S5 to its subspaces, like bosonic part of AdS5 × S5 , Rt× S3 ⊂ AdS5 × S5 or

AdS3×S1 ⊂ AdS5×S5 . By such truncation, the Lax pair formulation becomes much simplified.

Note that it does not work at all in quantum theory, because loop integrals must involve all

virtual particles of the theory.

The truncation is also useful in making comparison of the spectrum of gauge theory op-

erators. In particular, from the correspondence of global charges, one may guess that some

operators in su(2) sector (2.1.29) would correspond to classical strings on Rt× S3 , and some

operators in sl(2) sector (2.1.30) to strings on AdS3 × S1 .

Now we fix our notation for classical string theory on the bosonic part of AdS5×S5 spacetime.

We define bosonic AdS5 × S5 spacetime by embedding into C1,2 × C3 whose coordinates are

denoted by η0, η1, η2 and ξ1, ξ2, ξ3. We set the radius of AdS5 and S5 to unity, then

~η ∗ · ~η ≡ − |η0|2 + |η1|2 + |η2|2 = −1, ~ξ∗ · ~ξ ≡ |ξ1|2 + |ξ2|2 + |ξ3|2 = 1. (3.2.1)

Expressed in polar coordinates,

η0 = cosh ρ eit, η1 = sinh ρ cos θ eiφ1 , η2 = sinh ρ sin θ eiφ2 ,

ξ1 = cos γ eiϕ1 , ξ2 = sin γ cosψ eiϕ2 , ξ3 = sin γ sinψ eiϕ3 . (3.2.2)
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Polyakov action (bosonic classical string action) on AdS5 × S5 is2

S =

√
λ

4π

∫
dτdσ

[
γab
(
∂a~η

∗ · ∂b~η + ∂a~ξ
∗ · ∂b~ξ

)
+ Λ̃

(
~η ∗ · ~η + 1

)
+ Λ

(
~ξ∗ · ~ξ − 1

)]
. (3.2.3)

where Λ̃ and Λ are Lagrange multipliers. The string equations of motion follow as

∂a∂
a~η − Λ̃ ~η = 0, Λ̃ = + ∂a~η

∗ · ∂ a~η , (3.2.4)

∂a∂
a~ξ − Λ ~ξ = 0, Λ = − ∂a~ξ ∗ · ∂ a~ξ . (3.2.5)

We take conformal gauge γττ = −1, γσσ = +1 and γστ = γτσ = 0. Then Virasoro constraints

read

0 = Tσσ = Tττ =
δab

2

(
∂a~η

∗ · ∂b~η + ∂a~ξ
∗ · ∂b~ξ

)
,

0 = Tτσ = Tστ = Re
(
∂τ~η

∗ · ∂σ~η + ∂τ~ξ · ∂σ~ξ∗
)
.

(3.2.6)

We define conserved charges by

E ≡
√
λ

π
E =

√
λ

2π

∮ 2π

0

dσ Im (η∗0 ∂τη0) , (3.2.7)

Sj ≡
√
λ

π
Sj =

√
λ

2π

∮ 2π

0

dσ Im
(
η∗j ∂τηj

)
(j = 1, 2) , (3.2.8)

Jk ≡
√
λ

π
Jk =

√
λ

2π

∮ 2π

0

dσ Im (ξ∗k ∂τξk) (k = 1, 2, 3) , (3.2.9)

and winding numbers by

Nt ≡
1

2π

{
t(τ, σ + 2π)− t(τ, σ)

}
, (3.2.10)

Nφj ≡
1

2π

{
φj(τ, σ + 2π)− φj(τ, σ)

}
, (3.2.11)

Nϕk ≡
1

2π

{
ϕk(τ, σ + 2π)− ϕk(τ, σ)

}
. (3.2.12)

The angular momenta Sj and Jk are semiclassically quantized to integer values. For strings to

be closed, the winding numbers Nφj and Nϕk must be integers. The timelike winding Nt must

vanish, namely t (τ, σ + 2π) = t (τ, σ) (not mod 2π), because t and t + 2π are not the same

point of the AdS spacetime, as mentioned in Section 1.2.2.

In later sections, we will mainly discuss its subspaces Rt× S3 and AdS3× S1 . Their metrics

are given by

ds2
Rt×S3 = −dt2 + dγ2 + cos2γ dϕ2

1 + sin2γ dϕ2
2 , (3.2.13)

ds̃ 2
AdS3×S1 = − cosh2ρ̃ dt̃2 + dρ̃2 + sinh2ρ̃ dφ̃2

1 + dϕ̃2
1 . (3.2.14)

The two metrics are related by an analytic continuation:

ρ̃ = iγ, t̃ = ϕ1, φ̃1 = ϕ2, ϕ̃1 = t =⇒ ds̃ 2
AdS3×S1 = −ds2

Rt×S3 . (3.2.15)
2This action also has an infinite number of conserved charges [137].
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3.3 Finite-gap formulation

We are going to review a method called finite-gap formulation, which makes full use of integra-

bility of the theory. This helps to construct general classical string solutions in the language of

algebraic geometry.

Originally, the term ‘finite-gap’ signifies the band structure in energy eigenvalues that often

appears in the Schrödinger equation with periodic potential [138]. The (continuous part of)

energy spectrum typically consists of a sequence of segments

· · · , [E2k+1 , E2k] , · · · , [E3 , E2] , [E1 ,+∞] . (3.3.1)

The length of the k-th segment tends to shrink as k increases. When the number of segments

with nonzero width is finite, the periodic potential is called finite-gap potential.

For a wide class of integrable models including classical string theory on Rt×S3, the equation

of motion is nonlinear. In such cases, one can separate the equation of motion into the kinetic

term and the potential term, such that the potential itself depends on a particular choice of

solution. For instance, the equation (3.2.5) can be regarded as

∂a∂
a~ξ +

(
∂a~ξ

∗ · ∂ a~ξ
)
~ξ = 0 ⇔

 ∂a∂
a ~ψ + V ~ψ = 0

∂a~ξ
∗ · ∂ a~ξ ≡ V

. (3.3.2)

To solve these equations, one can firstly make an Ansatz for the potential V , and secondly

solve the ‘linear’ Schrödinger equation. Of course, one must check if the solution is actually

consistent with the defining equation of the potential.

It is known that integrable models usually have solutions which can be expressed by Riemann

theta functions of genus g ∈ Z≥0 . Roughly speaking the number of genus corresponds to the

number of cuts (3.3.1), so one can classify these Ansätze with regard to the number of gaps the

corresponding potential will produce. In this context, the term ‘finite-gap solution’ is used as

algebro-geometric representation of ‘Riemann theta’ solutions for finite genus.

3.3.1 Lax pair and monodromy matrix

We review finite-gap formulation of classical string theory on Rt× S3 [11, 31]. Polyakov action

for a string staying at the center of AdS5 reads, from (3.2.3),

S =

√
λ

4π

∫
d2σ

[
− (∂at)

2 + ∂a~ξ
∗ · ∂ a~ξ

]
, (3.3.3)

where we omit the term including the Lagrange multiplier. This action can be rewritten in

an SU(2)-covariant manner. We introduce a group element g ∈ SU(2) and Maurer-Cartan

one-forms by

g =

(
ξ1 −ξ∗2
ξ2 ξ∗1

)
, ja ≡ g−1∂ag =

(
Aa −B̄a

Ba Āa

)
, `a ≡ ∂ag g

−1 =

(
Aa −C̄a
Ca Āa

)
. (3.3.4)
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where

Aa = ξ∗1 ∂aξ1 + ξ∗2 ∂aξ2 , Ba = ξ1∂aξ2 − ξ2∂aξ1 , Ca = ξ∗1 ∂aξ2 − ξ2∂aξ
∗
1 . (3.3.5)

The action is rewritten as

S = −
√
λ

4π

∫
d2σ

[
(∂at)

2 +
1

2
tr
(
j2
a

)]
= −
√
λ

4π

∫ [
dt ∧ ∗dt+

1

2
tr (dj ∧ ∗dj)

]
. (3.3.6)

In differential forms, the equation of motion and Bianchi identity are written as

d ∗ t = 0 , d ∗ j = 0 , dj + j ∧ j = 0 . (3.3.7)

Written in components, they become

∂+∂−t = 0, 0 = ∂+j− + ∂−j+ = 0, (3.3.8)

∂+j− − ∂−j+ + [j+ , j−] = 0 , with j± ≡ jτ ± jσ . (3.3.9)

The equation of motion for t is solved as t = κτ + κ′σ . The condition of zero timelike winding

(3.2.10) requires κ′ = 0. Taking conformal gauge, Virasoro constraints read

1

2
tr
(
j2
±
)

= −κ2 . (3.3.10)

One can rewrite the action (3.3.6) in terms of `a , the right invariant current. It gives

S = −
√
λ

4π

∫
d2σ

[
(∂at)

2 +
1

2
tr
(
`2
a

)]
= −
√
λ

4π

∫ [
dt ∧ ∗dt+

1

2
tr (d` ∧ ∗d`)

]
. (3.3.11)

The actions (3.3.6) or (3.3.11) are invariant under a global SU(2)L × SU(2)R symmetry,

g 7→ ULg UR . (3.3.12)

The corresponding Nöther charges are

Qj ≡
√
λ

4π

∮
dσ ∗ j = −

√
λ

4π

∮
dσ jτ for SU(2)R , (3.3.13)

Q` ≡
√
λ

4π

∮
dσ ∗ ` = −

√
λ

4π

∮
dσ `τ for SU(2)L , (3.3.14)

which are indeed conserved because d ∗ j = 0 and d ∗ ` = 0. From the parametrization (3.3.4),

we see that the pair (ξ1 ,−ξ∗2) form a doublet under the right shift g 7→ g (1 + εσ3), while the

pair (ξ1 , ξ2) form a doublet under the left shift g 7→ (1 + εσ3) g. Thus, if the solutions are the

highest weight states of SU(2), we have

Qj = −iσ
3

2
(J1 − J2) , Q` = −iσ

3

2
(J1 + J2) , σ3 ≡

(
1 0

0 −1

)
. (3.3.15)
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It should be noted that we can also regard Polyakov action on Rt× S3 as O(4) sigma model

[27]. We introduce a group element h ∈ O(4) by

hij = δij − 2XiXj , where
4∑
i=1

X2
i = 1, (3.3.16)

which obeys the relations h = hT = h−1 and the eigenvalues of h are (−1, 1, 1, 1). One advantage

of this parametrization is that two Maurer-Cartan one-forms defined by j = h−1dh and ` =

dh h−1 coincide:

(ja)ij = 2 (Xi ∂aXj −Xj ∂aXi) = −(`a)ij . (3.3.17)

Following discussion similar to that of Section 3.1, the equation (3.3.7) can be extended to

the flatness condition for one-parameter family of conserved currents

J(x) ≡ j − x ∗ j
1− x2

or J±(x) ≡ j±
1∓ x

,

dJ(x)− J(x) ∧ J(x) = 0. (3.3.18)

Alternatively, we may introduce a pair of Lax connections (L,M) which satisfy the following

auxiliary linear equations:

∂σψ − Lψ =

[
∂σ −

1

2

(
j−

1 + x
− j+

1− x

)]
ψ = 0, (3.3.19)

∂τψ −Mψ =

[
∂τ +

1

2

(
j−

1 + x
+

j+

1− x

)]
ψ = 0. (3.3.20)

Then, one can show that the zero-curvature condition (3.3.18) is equivalent to the compatibility

condition of these two equations

[∂σ − L , ∂τ −M ] = 0. (3.3.21)

As in (3.1.29), the Wilson loop operator (or monodromy matrix),

Ω(x) ≡ P̄ exp

(∫ 2π

0

dσ L (τ, σ ;x)

)
, (3.3.22)

is independent of τ , because of the zero-curvature condition, or equivalently

[d− J(x),Ω(x)] = 0. (3.3.23)

In the right hand side of (3.3.22), L (τ, σ ;x) is a traceless 2× 2 matrix for the parametrization

(3.3.4) and a traceless 4 × 4 matrix for the parametrization (3.3.16). By construction, Ω(x)

is holomorphic in x except at x = ±1. From tr j± = 0, Ω(x) is unimodular, i.e. det Ω = 1.

Suppose L(τ, σ) can be diagonalized at all values of σ by a gauge transformation

L(τ, σ) 7→ Ldiag(τ, σ) ≡ U(τ, σ)L(τ, σ)U−1(τ, σ) + ∂σU(τ, σ)U−1(τ, σ), (3.3.24)
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then Ω(x) is diagonalized as

Ω(x) ∼

{
diag (eip, e−ip) for SU(2),

diag (eipL , e−ipL , eipR , e−ipR) for O(4).
(3.3.25)

The eigenvalues p(x) or pL,R(x) are called quasi-momentum.

As discussed in [27], the symmetry (3.3.17) between the left and the right current relates

pL and pR in O(4) case, as

pL(x) + pR (1/x) = 2πm , (m ∈ Z) . (3.3.26)

Thus, any solution of classical strings on Rt×S3 can be represented by the corresponding expres-

sion of quasi-momentum p(x) = pL(x). Hereafter we only consider the SU(2) parametrization

of the classical string action on Rt× S3.

3.3.2 Asymptotic behaviors

From the definition of Lax connections (3.3.19), one can derive asymptotic behaviors of quasi-

momentum p(x). This allows us to compute the conserved charges of classical string solution

solely from the behavior of p(x).

Around x =∞, the monodromy matrix behaves as

Ω(x) = P̄ exp

[∮
dσ

1

x
∗ j +O

(
1

x2

)]
, (3.3.27)

= 1− 1

x

∮
dσ ∗ j +O

(
1

x2

)
, (3.3.28)

= 1 +
1

x

4πQj√
λ

+O
(

1

x2

)
, (3.3.29)

where we used (3.3.13). Assuming the solutions are the highest weight states of SU(2) as in

(3.3.15), we obtain

p(x) = −1

x

2π√
λ

(J1 − J2) +O
(

1

x2

)
as x→∞, (3.3.30)

where we used the freedom to choose the branch of logarithm such that the term of O(x0)

vanishes. The states other than the highest weight, can be obtained by SU(2)L × SU(2)R

transformation.

Around x = 0, the monodromy matrix behaves as

g(τ, σ)Ω(x) g−1(τ, σ) = P̄ exp

[∮
dσ − x ∗ `+O

(
x2
)]
, (3.3.31)

= 1 + x

∮
dσ ∗ `+O

(
x2
)
, (3.3.32)

= 1− x 4πQ`√
λ

+O
(
x2
)
, (3.3.33)
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where we used (3.3.14). For the highest states, we obtain

p(x) = 2πm+ x
2π√
λ

(J1 + J2) +O
(
x2
)

as x→ 0, (3.3.34)

where m ∈ Z is same as the one appeared in (3.3.26).

Note that the asymptotic behaviors of Ω(x) given in (3.3.30), and gΩ(x)g−1 in (3.3.34) are

already diagonal from the assumption of highest weight state.

We further investigate asymptotic behavior of p(x) around x = ±1. For this purpose, we

have to diagonalize Ω(x). This can be done by using the similarity transformation (3.3.24) at

the leading order of (x∓ 1)−1, as

Ω(x) = P̄ exp

[∮
dσ ± (jdiag)±

2 (1∓ x)
+O

(
(x∓ 1)0

)]
, (3.3.35)

= P̄ exp

[∮
dσ − iκσ3

1∓ x
+O

(
(x∓ 1)0

)]
, (3.3.36)

where the normalization of (jdiag)± is fixed by Virasoro constraints (3.3.10). At higher orders

the monodromy matrix is diagonalized recursively [27].

Actually there exists sign ambiguity when we derive (3.3.36), which reflects the freedom to

swap the first and the second eigenvalue of Ω(x) ∼ diag (eip , e−ip). We fix this ambiguity by

demanding the quasi-momentum to behave as3

p(x) = − πκ

x∓ 1
+O

(
(x∓ 1)0

)
as x→ ±1. (3.3.37)

To account for the other possibility, we introduce another Abelian differential called quasi-

energy, by

q(x) = ∓ πκ

x∓ 1
+O

(
(x∓ 1)0

)
as x→ ±1. (3.3.38)

3.3.3 The spectral curve

The quasi-momentum defined by (3.3.25) need not be real, nor it must be an analytic function

of x ∈ C \ {x = ±1}. General solutions can have singularities such as marked points or

branch cuts. To describe the singularity structure of p(x), while avoiding the complexity of

diagonalization of monodromy matrix, we are motivated to study the characteristic equation

for the monodromy matrix,

Γ : det (y12 − Ω(x)) = 0. (3.3.39)

The solution of this equation y = y(x) defines what is known as the spectral curve. Since the

characteristic equation (3.3.39) is quadratic in y, it defines the spectral curve as a 2-sheeted

3Strictly speaking, we have to specify a path on which x = +1 is connected with x = −1. We will return to

issue in Section 7.3.
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ramified cover of x-plane, Γ ' CP1
+ ∪CP1

− . There is a natural involution which swaps the two

sheets, which acts on the quasi-momentum as

σ̂ : p(x) 7→ −p(x), i .e. (y, x) 7→ (1/y, x) . (3.3.40)

However, as discussed in [27, 31], the curve Γ has an infinitely many singular points at

eip = e−ip = ±1. Thus a better definition of the spectral curve is to take ‘logarithm’ of (3.3.39),

as

Σ̂ : det (y12 − L(x)) = 0,

U L(x)U−1 ≡ −i ∂
∂x

log
(
UΩ(x)U−1

)
. (3.3.41)

One can further perform birational transformations and remove finitely many unphysical sin-

gularities from (3.3.41). Eventually the equation (3.3.41) is brought into the hyperelliptic form

Σ : y2 =
2K∏
I=1

(x− xI) . (3.3.42)

The number of cuts K is related to genus g of the hyperelliptic curve by K = g + 1.

Put it shortly, it is shown that the quasi-momentum p(x) is a function over the hyperelliptic

curve Σ expressed as 2-sheeted ramified cover of x-plane, Σ ' CP1
+ ∪ CP1

− . When a solution

can be described by an algebraic curve with finitely many branch cuts, it is called finite-gap

solution. In what follows we will always assume K to be finite.

Alternatively, one can start from a hyperelliptic curve Σ and Abelian differential dp defined

on it, together with the projection,

π : Σ → CP1 , (3.3.43)

∈ ∈

x± 7→ x . (3.3.44)

From this point of view, the spectral parameter x ∈ CP1 is identified as the one appeared in

the flatness condition (3.3.18).4

Note that there is huge redundancy in expressing a classical string solution in terms of

complex planes connected with branch cuts. In contrast to the thermodynamic limit of Bethe

Ansatz equations, we have the freedom to connect branch points of (3.3.42) arbitrarily, because

all of them define the same algebro-geometric data of a finite-gap solution.

Now we know that the quasi-momentum is a meromorphic function on Σ except at some

singularities, we can speak of quantization of period integrals of an Abelian differential dp . Let

{ai , bi} (i = 1, . . . , g) be a basis of one-cycles with the canonical intersection

ai ∩ aj = bi ∩ bj = 0, ai ∩ bj = δij . (3.3.45)

4The superscript ± in x± is used to distinguish two sheets of CP1
±. This is unrelated with x± defined in

(2.5.14).
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Let ωi be the holomorphic differentials on Σ, normalized such that∫
aj

ωi = δi
j ,

∫
bj

ωi = Πi
j . (3.3.46)

Since holomorphic differentials do not have any singularities, one may redefine dp(x) by sub-

tracting ωi’s to obtain normalized Abelian differential:∫
ai

dp = 0. (3.3.47)

As a consequence, the Abelian integral

p(P ) ≡
∫ P

∞+

dp, (3.3.48)

is single-valued on the upper sheet CP1
+ .

Next, consider discontinuity of p(x) across one of the cuts Ck . If p(x+ iε) (ε� 1) stands on

the upper sheet, then p(x− iε) stands on the lower sheet. When ε = 0, we can regard p(x± iε)
as two independent solutions of the spectral curve equation (3.3.39), related by the involution

σ̂ of (3.3.40). Since Ω(x) is unimodular, we must have eip(x+iε) eip(x−iε) = 1. This condition

demands the discontinuity across a cut to be multiple of 2π, as

p(x+ iε) + p(x− iε) = 2πnk for x ∈ Ck , (3.3.49)

which is shown to be quantization of b-periods, following the same discussion in Section 2.4

Let us comment on the uniqueness of Abelian differentials. The normalized Abelian differ-

entials (i.e. vanishing a-period (3.3.47)) are uniquely specified by their pole structure, as can be

shown by using the Riemann bilinear identity [139, 138, 140]. In the case of quasi-momentum,

its pole structure is described as

dp(x±) ∼ ∓d
(

πκ

x− 1

)
as x→ +1, (3.3.50)

dp(x±) ∼ ∓d
(

πκ

x+ 1

)
as x→ −1. (3.3.51)

The same applies to the quasi-energy, which can be uniquely defined as a normalized Abelian

differential (of the third kind) whose pole structure is given by (3.3.38).

Before closing, we explain a little on analytic profile (ξ1 , ξ2) of general finite-gap solution

on Rt× S3. We have considered so far how to construct an algebraic curve with an Abelian

differential (Σ, dp) when a consistent string solution is given. Conversely, one can consider

the Riemann Hilbert problem, that is to determine the pair (Σ, dp) such that they reproduce

mode numbers and conserved charges of a consistent classical string solution. Furthermore, one
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can also reconstruct analytic expression of classical string solution (ξ1 , ξ2) from the algebro-

geometric data, which has been done by [30, 31].

The idea of the construction in [31] is to solve the auxiliary linear problem

(d− J(x))ψ(x) = 0, (3.3.52)

which is equivalent to (3.3.19) and (3.3.20). Remarkably, the solution ψ(P ) (P ∈ Σ) is uniquely

specified by its analytic properties, and is expressed by so-called Baker-Akhiezer vector.

Given the solution of (3.3.52), one can immediately reconstruct the profile of classical string

solution (ξ1 , ξ2). Note that the equation (3.3.52) is formally solved by

J(x) = Ψ−1(x)dΨ(x), Ψ(x) ≡
(
ψ(x+),ψ(x−)

)
. (3.3.53)

Then, using J(0) = j = −gdg−1, one can obtain g−1 from ψ, as

g−1 =

(
ξ∗1 ξ∗2

−ξ2 ξ1

)
=

1√
Ψ(0)

Ψ(0), Ψ(0) =

(
ψ1(0+) ψ1(0−)

ψ2(0+) ψ2(0−)

)
. (3.3.54)

Explicit expression of the Baker-Akhiezer vector in terms of Riemann θ functions is found,

for example in [31], as

ψ1(P, σ, τ) = k−(P )
θ
(
A(P ) +

∫
b
dQ− ζγ(0,0)

)
θ
(
A(∞+)− ζγ(0,0)

)
θ
(
A(P )− ζγ(0,0)

)
θ
(
A(∞+) +

∫
b
dQ− ζγ(0,0)

) exp

(
i

∫ P

∞+

dQ
)
,

(3.3.55)

ψ2(P, σ, τ) = k+(P )
θ
(
A(P ) +

∫
b
dQ− ζγ′(0,0)

)
θ
(
A(∞−)− ζγ′(0,0)

)
θ
(
A(P )− ζγ′(0,0)

)
θ
(
A(∞−) +

∫
b
dQ− ζγ′(0,0)

) exp

(
i

∫ P

∞−
dQ
)
.

(3.3.56)

It is worth mentioning that the Baker-Akhiezer vector ψ (τ, σ;P ) depends on worldsheet coor-

dinates solely through the differential form

dQ :=
1

2π
(σdp+ τdq) . (3.3.57)

This expression infers that the quantities ‘quasi-momentum’ and ‘quasi-energy’ are nonlinear

(and sophisticated) analogue of the Fourier transformation on worldsheet [28, 141].

3.3.4 Comparison with gauge theory

In this subsection, we will summarize the results derived so far using resolvent. Then we

compare them with the thermodynamic limit of XXX1/2 spin chain discussed in Section 2.4 [11].

Just like gauge theory (2.4.14), we define resolvent G(x) by subtracting pole singularities

from the quasi-momentum, as

G(x) ≡ p(x) +
πκ

x− 1
+

πκ

x+ 1
. (3.3.58)
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Similarly, the density is defined as

G(x) ≡
∮
C
dξ

ρ(ξ)

x− ξ
, (3.3.59)

where C ≡ ∪k Ck surrounds all branch cuts.

From (3.3.30), the resolvent has an asymptotic behavior

G(x) ∼ 2π

x

(
κ− J1 − J2√

λ

)
as x→∞ , (3.3.60)

which translates into ∮
C
dx ρ(x) =

2π√
λ

(E − J + 2J2) , J ≡ J1 + J2 , (3.3.61)

where we used E =
√
λκ, which follows from t = κτ and (3.2.7). From (3.3.34) we obtain,

G(x) ∼ 2πm− 2πx

(
κ− J1 + J2√

λ

)
as x→ 0 . (3.3.62)

This gives

− 1

2πi

∮
c(0)

dx
G(x)

x
=

∮
C
dx

ρ(x)

x
= 2πm , (3.3.63)

− 1

2πi

∮
c(0)

dx
G(x)

x2
=

∮
C
dx

ρ(x)

x2
=

2π√
λ

(E − J) , (3.3.64)

where c(z) is a small circle around x = z. The condition for discontinuity (3.3.49) is rewritten

as

G(x+ iε) +G(x− iε) = 2 −
∫
dξ

ρ(ξ)

x− ξ
= 2πnk +

2πκ

x− 1
+

2πκ

x+ 1
for x ∈ Ck . (3.3.65)

The main differences between the finite-gap formulation of classical string theory and the

thermodynamic limit of Bethe Ansatz equation are:

• The quasi-momentum p(x) in string theory (3.3.58) has single poles at x = ±1, while

p(x) in the gauge theory (2.4.14) has a single pole at x = 0.

• The finite-gap formulation is valid under the classical approximation λ� 1, while in gauge

theory side we have to take weak coupling limit λ� 1 together with the thermodynamic

limit (2.4.1).

To compare both sides, we take a clever limit called BMN expansion [44, 45]. The idea is

to take the limit J →∞ such that

J →∞, α ≡ J2

J
, x̃ ≡

√
λx

4πJ
kept fixed, 5 (3.3.66)

5An extra factor of
√
λ/(4π) is needed to identify xgauge with xstring .
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together with the assumption of λ̃ ≡ λ/J2 being small. We further assume the energy is

expanded as

E − J = J

{∑
j≥1

∑
k≥1

cj,k

(
λ

J2

)j (
1

J

)k}
, (3.3.67)

by analogy with (2.5.13). This way of limiting procedure is, of course, motivated by thermo-

dynamic limit in gauge theory (2.4.1). Furthermore, as we will see later, one can find several

nontrivial examples of correspondence of the spectra between gauge and string theories in this

limit, at least to a few orders in λ̃.

Let us apply the limit (3.3.66) to what we obtained in this section. In terms of x̃, the

equations (3.3.61), (3.3.63), and (3.3.64) are rewritten as∮
C
dx̃ ρ(x̃) =

E − J + 2J2

2J
(3.3.68)∮

C
dx̃

ρ(x̃)

x̃
= 2πm , (3.3.69)

λ

8π2J

∮
C
dx̃

ρ(x̃)

x̃2
= E − J , (3.3.70)

These equations agree with the gauge theory results (2.4.7), (2.4.10), and (2.4.12), upon iden-

tification

(∆(λ), L,M) ↔ (E(λ), J, J2) . (3.3.71)

Moreover, the equation for discontinuity (3.3.65) becomes

2 −
∫
dξ̃

ρ(ξ̃)

x̃− ξ̃
=
E

J

x

x2 − λ
16π2J2

+ 2πnk for x ∈ Ck . (3.3.72)

Since we compare our results with the one-loop results in gauge theory, the above equation can

be evaluated at the zeroth order in λ. With the assumption (3.3.67) in mind, we can replace

the first term in the right hand side with 1/x. The resultant equation turns out exactly same

as the Bethe Ansatz equation in gauge theory side (2.4.8).

We make a few remarks on further developments on the correspondence of algebraic curve.

One can further make such comparison at higher orders in λ̃, as already discussed in [11].

Later it turned out in [7, 10] that there is mismatch between integral equations of gauge and

string theories, which can be reconciled partly by introducing the dressing phase.

Another remarkable progress is the correspondence of algebraic curve for sectors other than

su(2). Generalization to sl(2) sector and so(6) sector, and the full psu(2, 2|4) sector are dis-

cussed in [26], [27], and [28, 29], respectively.
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Chapter 4

Solutions of the integral equations

We see several examples of solutions of the integral equations which arise as thermodynamic

limit of XXX1/2 Bethe Ansatz equation, or as finite-gap formulation of classical string one loop

in λ̃. As we saw in the previous chapter, the two formulation coincide after taking BMN scaling

limit (2.5.13) or (3.3.67) at one loop.

We will confirm the above statement with close inspection on concrete examples. They

also help us to understand how an algebraic curve with Abelian differential corresponds to a

classical string solution.

4.1 Symmetric two-cut solutions

We consider the solutions of XXX1/2 Bethe Ansatz equation in thermodynamic limit with two

cuts, each of which is located symmetrically with respect to imaginary axis [44, 45, 11]. We

will then identify them as finite-gap interpretation of so-called Frolov-Tseytlin string solutions

[38].

Let Σ be an elliptic curve defined by

Σ : y2 = (x2 − x2
1)(x2 − x2

2), (4.1.1)

where we assumed branch points are located on the real axis. Later we will make analytic

continuation of branch points to the complex plane. Recall that quasi-momentum dp given

in (2.4.14) has double poles at x = 0, and has no other singularity elsewhere. Then quasi-

momentum on the curve Σ will be given in general form

dp =
dx

y

(a−2

x2
+
a−1

x
+ a0

)
. (4.1.2)

Higher terms in x should vanish for it destroys asymptotics of p(x) as x→∞. The coefficients

a−2 , a−1 , a0 are determined from the conditions dp ∼ dx/(2x2) +O(1) and (2.4.20), as

dp =
−dx√

(x2
2 − x2)(x2 − x2

1)

(
1− 2α

2
− x1x2

2x2

)
. (4.1.3)
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We define period integrals by∮
A

dp = −2i

∫ x2

x1

dx√
(x2

2 − x2)(x2 − x2
1)

(
1− 2α

2
− x1x2

2x2

)
≡ 2πm, (4.1.4)∮

B

dp = 4

∫ ∞
x2

dx√
(x2 − x2

2)(x2 − x2
1)

(
1− 2α

2
− x1x2

2x2

)
≡ 4πn. (4.1.5)

These integrals can be expressed in terms of complete elliptic integrals (See Appendix A for

definitions). After short calculation we obtain

1− 2α =
1

k

nE′(k) + im (E(k)−K(k))

nK′(k)− imK(k)
, (4.1.6)

and

x1 =
1

4

1

nK′(k)− imK(k)
, x2 =

1

4 k

1

nK′(k)− imK(k)
, (4.1.7)

where E′(k) ≡ E(
√

1− k2) and K′(k) ≡ K(
√

1− k2).

The anomalous dimension at one loop in λ is given by

γ =
λ

16π2L

(
1− 2α

x1x2

− 1

2

(
1

x2
1

+
1

x2
2

))
, (4.1.8)

where L� 1 is the length of spin chain. The R-charges, or the angular momenta, are expressed

as J1 = (1 − α)L and J2 = αL . Reality constraints restrict possible sets of (m,n). We are

interested in the case either m or n is zero. It will turn out that the case m = 0 corresponds

to the folded string solution, while the case n = 0 corresponds to the elliptic circular string

solution.

Double Contour solution. We set m = 0 and analytically continue x1 and x2 into complex

values keeping x1 = x̄2 . This is called double contour solution [44].

With q ≡
√

1− k2, the anomalous dimension is written as

γ =
n2λ

π2L
K(q)

{
E(q)−

(
1− q2

2

)
K(q)

}
. (4.1.9)

The filling fraction and the R-charges are1

α =
1

2

(
1− E(q)

q′K(q)

)
, J1 =

L

2

q′K(q)− E(q)

q′K(q)
, J2 =

L

2

q′K(q) + E(q)

q′K(q)
. (4.1.10)

The double contour solution is dual to folded string solutions found by Frolov and Tseytlin

[38]. The conserved charges of folded string are given by

Ẽ =
n
√
λ

π

√
x2 + u2

2 K(x) , (4.1.11)

1Here we interchanged J1 and J2 , so that α = J1/L.
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and

J̃1 =
n
√
λ

π

√
1 + u2

2 (K(x)− E(x)) , J̃2 =
n
√
λ

π
u2 E(x), (4.1.12)

where n ∈ Z is the number of foldings, x and u2 are parameters. If we consider the limit

u2 � 1, these conserved charges reduce to

J̃1

J̃
≈ 1− E(x)

K(x)
, Ẽ =

n
√
λ

π
u2 K(x) +O

(
n
√
λ

u2

)
= J̃ +O

(
n
√
λ

u2

)
, (4.1.13)

with J̃ ≡ J̃1 + J̃2 . Now we assume the conserved charges are expanded in powers of λ̃ ≡ λ/J̃2

as (3.3.67), and try to compare the above results with (4.1.10). We may identify J̃1/J̃ with the

filling fraction of (4.1.10). The two elliptic moduli are then related as

x = ±i(1− k)

2
√
k

. (4.1.14)

In fact, by performing modular transformation we find

K(x) =
√
kK′(k) , E(x) =

1

2

(√
kK′(k) +

1√
k

E′(k)

)
,

J̃1

J̃
≈ 1

2

(
1− E(q)

q′K(q)

)
, (4.1.15)

where we used q =
√

1− k2 again. At the same time, we obtain relation

u2 ≈
1√

kK(k)

Lπ

n
√
λ
, (4.1.16)

which is indeed very large for λ̃� 1. Using (4.1.16) and (4.1.13), one finds that the correction

term Ẽ − J̃ has the same order of magnitude as the anomalous dimension (4.1.9).

To compute subleading terms, it is useful to erase u2 from (4.1.11) and (4.1.12) as(
Ẽ

K(x)

)2

−

(
J̃2

E(x)

)2

=
x2n2λ

π2
,

(
J̃1

K(x)− E(x)

)2

−

(
J̃2

E(x)

)2

=
n2λ

π2
. (4.1.17)

By expanding x in series of λ̃ as x = x0 + x1 λ̃+ · · · , one obtains the next correction term

Ẽ − J̃ ≈
(

2λ

π2J̃

)
K(x0)

{
E(x0)− (1− x0) K(x0)

}
,

J̃1

J̃
≈ 1− E(x0)

K(x0)
, (4.1.18)

By using the modular transformation (4.1.14), one can find that this expression equals to the

one-loop anomalous dimension (4.1.9).

Imaginary root solution. We set n = 0, and bring the four branch points onto the imaginary

axis keeping x1,2 = −x̄1,2 .

The anomalous dimension is

γ =
λm2

π2L
K(k)

(
E(k)− 1− k2

2
K(k)

)
. (4.1.19)
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The filling fraction and the R-charges are

α =
E(k)− (1− k) K(k)

2kK(k)
, J1 =

L

2

(1 + k)K(k)− E(k)

kK(k)
, J2 =

L

2

−(1− k)K(k) + E(k)

kK(k)
.

(4.1.20)

The imaginary root solutions are dual to circular string solutions of Frolov and Tseytlin,

whose conserved charges are given by

Ẽ =
m
√
λ

π

√
1 + u2

2 K(x) , (4.1.21)

and

J̃1 =
m
√
λ

π

√
x2 + u2

2

x2
(K(x)− E(x)) , J̃2 =

m
√
λ

π

u2

x2

(
E(x)− (1− x2)K

)
, (4.1.22)

where n ∈ Z is the number of winding. The comparison between γ and Ẽ − J̃ can be done in

a similar manner [45].

Comparison of higher conserved charges has been done in [142, 42].

4.2 Pulsating and rotating strings

In general, it is not easy to compute the quasi-momentum of a given classical string solution

explicitly in the manner described in Section 3.3. However, the pulsating string of [41], or the

pulsating and rotating string of [42] are interesting examples whose quasi-momentum can be

easily computed from the definition [11].

4.2.1 The profile

We follow [43] to obtain pulsating and rotating string solution.

We consider Polyakov action on Rt× S3 in conformal gauge,

S =

√
λ

4π

∫
d2σ

[
− (∂at)

2 + ∂a~ξ
∗ · ∂ a~ξ

]
, (4.2.1)

which is same as (3.3.3). Pulsating and rotating strings are obtained by an Ansatz

t = κτ, ξ1 = cos θ eim1σ , ξ2 = sin θ eiφ2 . where θ = θ(τ), φ2 = φ2(τ). (4.2.2)

Equations of motion and Virasoro conditions are solved by

J2 = sin2 θ φ̇2 , κ2 = θ̇2 +m2
1 cos θ2 +

(
J2

sin θ

)2

. (4.2.3)

where J2 ≡ J2/
√
λ is the angular momentum in φ2 direction, and the dot (˙) represents deriva-

tive with respect to τ . One can rewrite the second equation as

τ =

∫
dθ sin θ√

m2
1 cos4 θ − (m2

1 + κ2) cos2 θ + κ2 − J 2
2

(4.2.4)

64



and integrate it out as

cos θ = a− sn

(
m1a+τ,

a−
a+

)
, (4.2.5)

where

a2
± =

m2
1 + κ2 ±

√
(m2

1 + κ2)
2 − 4m2

1 (κ2 − J 2
2 )

2m2
1

. (4.2.6)

There is another solution obtained by interchanging a+ and a− . As is clear from (4.2.5),

interchange of a+ ↔ a− induces modular transformation of Jacobi elliptic functions. Thus

cos θ = a+ sn

(
m1a−τ,

a+

a−

)
, (4.2.7)

is also a solution.

The first equation of (4.2.3) can be rewritten as

dφ2

dθ
=

J2

sin θ
√
m2

1 cos4 θ − (m2
1 + κ2) cos2 θ + κ2 − J 2

2

(4.2.8)

and integrated out by

φ2 =
J2

m1a+

Π

(
sn

(
m1a+τ,

a−
a+

)
, a− ,

a−
a+

)
, (4.2.9)

where

Π (ϕ, ν, k) ≡
∫ ϕ

0

dt

(1− ν t2)
√

(1− t2) (1− k2t2)
(4.2.10)

is the incomplete elliptic integral of the third kind. Notice again that

φ2 =
J2

m1a−
Π

(
sn

(
m1a−τ,

a+

a−

)
, a+ ,

a+

a−

)
, (4.2.11)

is also a solution.

4.2.2 Finite-gap representation

Let us study the finite-gap representation of the pulsating and rotating string solution. Since

Ω(x) is independent of τ , we may set τ = 0 to evaluate the right hand side of

Ω(x) ≡ P̄ exp

(∫ 2π

0

dσ L (σ, τ ;x)

)
. (4.2.12)

By using (4.2.2) and assuming θ(0) = π/2, φ2(0) = 0, one obtains

L (σ, 0 ;x) =
x

x2 − 1

(
iJ2 θ̇ eim1σ

−θ̇ e−im1σ −iJ2

)
. (4.2.13)
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It is easy to see that one needs σ-dependent special unitary transformation U(σ) to diagonalize

L.2 Since the monodromy matrix (3.1.29) is gauge-invariant quantity, we perform an SU(2)

(or O(4)) gauge transformation on Lax connection L by

L 7→ L′ ≡ ULU−1 + ∂σU U
−1, U =

(
e−im1σ/2

eim1σ/2

)
. (4.2.14)

It turns out that L′ is independent of σ, as

L′ =
x

x2 − 1

(
iJ2 − iν θ̇

−θ̇ −iJ2 + iν

)
, ν ≡ x2 − 1

2x
m1 . (4.2.15)

so that the quasi-momentum p(x) equals to 2π times the eigenvalue of L′. Using θ̇2 = κ2 −J 2
2

at τ = 0, one finally gets

p(x) = − 2πx

x2 − 1

√(
m1

2

(
x2 − 1

x

)
− J2

)2

+ κ2 − J 2
2 + πm1 , (4.2.16)

which is the result derived in [11]. We added an extra term +πm1, which amounts to trivial

redefinition of quasimomentum p. This result can be reexpressed in terms of a± variables

defined in (4.2.6). By noting that

a2
+ + a2

− = 1 +
κ2

m2
1

, a2
+a

2
− =

κ2 − J 2
2

m2
1

,
(
a2

+ − 1
) (

1− a2
−
)

=

(
J2

m1

)2

, (4.2.17)

we obtain

p(x) = −2πm1x

x2 − 1

√(
x2 − 1

2x
−
√

(a2
+ − 1) (1− a2

−)

)2

+ a2
+a

2
− + πm1 , (4.2.18)

which is manifestly invariant under the interchange a+ ↔ a− .

The quasi-momentum (4.2.16) has the following asymptotic behaviors:

p(x) = − πκ

x∓ 1
+O(1), around x = ±1, (4.2.19)

p(x) = 2πm1 + 2πm1J2 x+O(x2), as x→ 0, x > 0, (4.2.20)

p(x) =
2πm1J2

x
+O

(
1

x2

)
, around x =∞. (4.2.21)

Under the inversion x 7→ 1/x, it transforms as

p(x) 7→ p(1/x) = p(−x) = −p(x) + 2πm1 . (4.2.22)

When we set J2 = 0, the algebraic curve is represented as symmetric 2-cut solutions. In

fact, the quasi-momentum (4.2.18) becomes

2“Special” is required to maintain the unimodularity of monodromy matrix.
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w± : imaginary

w+

w−

−w−

−w+

w± : complex

w+w−

−w−−w+

C1

C2

C4 C3

Figure 4.1: Choice of branch cuts. For k > 1, four branch points are connected as in Left

Figure. For 0 < k < 1, they are connected as in Right Figure.

p(x) = −2πm1x

x2 − 1

√(
x2 − 1

2x

)2

+ k2 + πm1 ,

= − πm1

x2 − 1

√
(x2 − 1 + 2ikx) (x2 − 1− 2ikx) + πm1 ,

= − πm1

x2 − 1

√
(x− w+) (x− w−) (x+ w+) (x+ w−) + πm1 , (4.2.23)

where

k = a− =
κ

m1

, w± = ik ±
√

1− k2. (4.2.24)

Thus, four branch points are located symmetrically with respect to the imaginary axis when

J2 = 0.

Let us specify how to connect four branch points. The cases k > 1 and 0 < k < 1 can

be discussed separately. For k > 1 case, w± become purely imaginary. Thus we connect

w+ with w−, and −w+ with −w−, and call it “imaginary cut” solution. The imaginary cut

solution is included in type (ii)′ helical strings of Section 7.2.2. For 0 < k < 1 case, we have

(w+)∗ = −w− . So we connect the complex conjugate pair of branch points, and call it “double

contour” solution. The double contour solution is included in type (i)′ helical strings of Section

7.2.1.

4.2.3 On the gauge theory dual

Let us comment on the gauge theory dual. In [42], it was shown that the pulsating and rotating

strings are dual to “singlet solutions” of so(6) Bethe Ansatz equations. The solution presented

in [42] was half-filled, i.e. n2 = n3 = n1/2, where n1 is the number of momentum-carrying
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Bethe roots and n2,3 are the number of auxiliary Bethe roots. Another expression of the so(6)

singlet solution is found in [27].

As explained in [11], we can recover the so(6) singlet solution by taking weak coupling

limit of the finite-gap solution. Firstly we rescale x by x = 4πκx̃ = (4πE/
√
λ) x̃,3 then the

quasi-momentum (4.2.16) becomes

p(x̃) = − 1

2κ
(
x̃2 − 1

16π2κ

)√(2πκm1

(
x̃2 − 1

16π2κ2

)
− J2 x̃

)2

+ (κ2 − J 2
2 ) x̃2 + πm1 ,

= − 1

2
(
x̃2 − 1

16π2κ

)√(2πm1

(
x̃2 − 1

16π2κ2

)
− J2

κ
x̃

)2

+

(
1− J

2
2

κ2

)
x̃2 + πm1 (4.2.25)

Secondly, recalling that J2 =
√
λJ2 and E =

√
λκ, we take the limit λ→ 0 and obtain

p±(x̃) = ∓ 1

2x̃

√
(2πm1x̃− (1− β))2 − β (β − 2) + πm1 , (4.2.26)

where β = 1− J2/κ = 1− J2/E. Then, the resolvent

G±(x̃) = ± 1

2x̃
+ p±(x̃) (4.2.27)

is exactly same as that of so(6) singlet solution of [42]. Notice that by taking the weak coupling

limit, the two-cut solution (4.2.25) shrinks to a pair of one-cut solutions (4.2.26). Hence, to

reproduce the finite-gap representation of pulsating and rotating strings, one has to consider

the sum of resolvents

G(x̃) = G+(x̃)−G+(−x̃) = −G−(x̃) +G−(−x̃) (4.2.28)

in the gauge theory side.

The sum of all filling fractions in the region x > 1 is called “length” of the string LBKS in

[27]. This length agrees with the length of so(6) spin chain at one-loop in λ̃, if there are no

branch cuts passing across the unit circle.

Their argument is not applicable for general pulsating and rotating strings because branch

cuts cross the unit circle. However, there is another quantity called “length” in strong coupling.

In [43], they claim that LKT = J + Iθ should correspond to the length of spin chain, where Iθ

is the action variable along theta direction

Iθ =

√
λ

2π

∮
dτ θ̇2 =

2κ
√
λ

π
E
(m1

κ

)
. (4.2.29)

They expanded the quantity E − LKT in series of λ/L2
KT , and around k = 0 they found

agreement with the gauge theory results [42, 143].

We do not understand well whether such nice agreement can be generalized to other exam-

ples in non-holomorphic sectors.

3This rescaling is almost same as what we did in (3.3.66).
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Chapter 5

Correspondence for the systems of

infinite size

It was Staudacher who pointed out that S-matrix is simpler object than Hamiltonian to study

matching of the spectrum in AdS/CFT correspondence [8]. In fact, in ordinary quantum field

theories in infinite volume the physical spectrum should appear as poles of the S-matrix. Thus,

it is quite interesting to compare the S-matrix of a spin chain of infinite length, and that of

string worldsheet whose spatial circumference is decompactified.

Surprisingly, it is shown that we can uniquely determine this S-matrix and the dispersion

relation to all orders in λ, on the basis of existing results from perturbative computation, and

the requirement that they agree with the results of string theory at strong coupling. They

provide nontrivial examples of precise matching in AdS/CFT correspondence, which we are

going to review below.

5.1 Asymptotic spin chain

In [12, 61], Beisert considered a spin chain of infinite length, called an asymptotic spin chain

[8], and argued that if the length of a spin chain is strictly infinite, one can add extra central

charges to its superconformal symmetry algebra. After the central extension, eigenvalue of the

dilatation operator for BPS states becomes a nontrivial function of λ.

We start by defining the ground state of asymptotic spin chain as

|0〉L=∞ ≡ [ . . . ZZZ . . . ] , where ∆− L = 0, (∆, L =∞) . (5.1.1)

We assume the ground state is invariant under the insertion or the removal of Z, because it

has an infinite number of Z’s. Accordingly we do not take trace in the right hand side, and

neglect the trace cyclicity condition for the moment.

Excitations over the vacuum (5.1.1) can be classified according to representations of the

superconformal symmetry algebra. Since the dilatation operator (or the Hamiltonian) is part
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of symmetry algebra and is not a central element in N = 4 theory, psu(2, 2|4) global symmetry

is spontaneously broken down to psu(2|2)2 nR ,1 ∆

S1

S2

∣∣∣∣∣∣∣
J1

J2

J3

 −→
broken

 S1

S2

∣∣∣∣∣∣∣ J2

J3

 . (5.1.2)

The residual bosonic symmetry is (SO(4)AdS × SO(4)sphere) n R , where the central element

corresponds to dilatation. We may discuss psu(2|2)L n R and psu(2|2)R n R separately, by

identifying dilatation operator of the two algebra.

The algebra su(2|2) ' psu(2|2) n R is a part of the full psu(2, 2|4) algebra. It has bosonic

subalgebra su(2)× su(2), whose generators are denoted by Ra
b and Lαβ with a, b, α, β = 1, 2.

The supersymmetry and superconformal generators are denoted by Qα
a and Sb

β, respectively.

There is a central charge C corresponding to the dilatation of psu(2, 2|4).

Being part of the psu(2, 2|4) symmetry, the commutation relations for psu(2|2)nR is given

as follows:

[Ra
b, Jc] = δca J

b − 1

2
δba J

c , (5.1.3)

[Lαβ, J
γ] = δγβ J

α − 1

2
δαβ J

γ , (5.1.4){
Qα

a,S
b
β

}
= δba L

α
β + δαβ Ra

b + δbaδ
α
β C , (5.1.5)

which can be determined from the symmetry, and other commutation relations are trivial.

Now we extend the above algebra by adding two extra central elements as follows:{
Qα

a,Q
β
b

}
= εαβεabP , (5.1.6){

Sa
α,S

b
β

}
= εαβε

abK . (5.1.7)

Since the generators Q and S have mass dimensions +1/2 and −1/2, the mass dimensions of

P and K are +1 and −1, respectively. As we shall see below, they act as the insertion or the

removal of Z.

5.1.1 The spectrum

We proceed to one magnon states. There are 16 magnons that have ∆0−J1 = 1 inN = 4 theory,

where ∆0 is conformal dimension at λ = 0. They constitute the fundamental representation of

su(2|2)2 . Let us rewrite the indices of N = 4 bosonic fields as

ΦI = (σI)aȧΦ
aȧ , DµZ = (σµ)aȧD

aȧZ , (5.1.8)

1The semidirect product means there are nonzero commutation relations between dilatation and the gener-

ators of psu(2|2)2.
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where the indices I or µ are raised or lowered by δIJ or by ηµν , respectively. Sixteen magnons

are then decomposed as

φ1 φ2 ψ1 ψ2

φ̄ 1̇ Φ11̇ Φ21̇ Ψ11̇ Ψ21̇

φ̄ 2̇ Φ12̇ Φ22̇ Ψ12̇ Ψ22̇

ψ̄ 1̇ Ψ
1̇1

Ψ
1̇2

D11̇Z D21̇Z

ψ̄ 2̇ Ψ
2̇1

Ψ
2̇2

D12̇Z D22̇Z

(5.1.9)

Other fields such as Z and F µν = (σµν)ab F
ab + (σ̄µν)ȧḃ F

ȧḃ are realized as higher dimensional

representations of su(2|2)2.

From this decomposition table, one sees that the bosons φa have bare dimension 1/2 and

the fermions ψα have bare dimension 1, which are equivalent to the mass dimensions of three-

dimensional free field theories.

Let us focus again on one of the su(2|2)2 ’s. If the cyclicity condition is relaxed, one magnon

states can carry nonzero quasi-momentum:

|X(p)〉 ≡
∑
n∈Z

eipn
[
. . . ZZ . . . X

∧
n

. . . ZZ . . .
]
, (5.1.10)

where X ∈ {φ1, φ2 |ψ1, ψ2} is in the fundamental representation of su(2|2) algebra, which we

denote by (2|2)p with p quasi-momentum of the magnon.

Let us see how the generators of su(2|2) act on the fundamental representation (2|2)p. From

(5.1.3) and (5.1.4). the rotation generators act as

Ra
b |φc〉 = δca

∣∣φb〉− 1

2
δba |φc〉 , (5.1.11)

Lαβ |ψγ〉 = δγβ |ψ
α〉 − 1

2
δαβ |ψγ〉 , (5.1.12)

and supersymmetry and superconformal generators act as

Qα
a

∣∣φb〉 = a δba |ψα〉 , (5.1.13)

Qα
a

∣∣ψβ〉 = b εαβεab
∣∣φb Z+

〉
, (5.1.14)

Sa
α

∣∣φb〉 = c εabεαβ
∣∣ψβ Z−〉 , (5.1.15)

Sa
α

∣∣ψβ〉 = d δβα |φ〉 . (5.1.16)

The symbols Z± signify insertion or removal of Z, which are needed to equate the mass dimen-

sion of both hand sides. Note that we do not distinguish the states with a different number of

Z±’s when we classify the excitations with respect to representations of su(2|2).

Alternatively, these relations can be deduced from psu(2, 2|4) superconformal symmetry of

the parent N = 4 theory using the decomposition of (5.1.9). One can find that insertion of Z

is understood as δQψ ∼ [φ, Z] and removal of Z as taking OPE with Z(0), like δSφ(x) ·Z(0) ∼
xψ(x) · Z(0) ∼ ψ(0), at weak coupling [144].
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Actions of P and K are determined from (5.1.6) and (5.1.7), as

P |X〉 = ab
∣∣XZ+

〉
and K |X〉 = cd

∣∣XZ−〉 . (5.1.17)

Using (5.1.5) to evaluate
{
Qα

a,S
b
β

}
|X(p)〉, one finds

ad− bc = 1 and C |X(p)〉 =
1

2
(ad+ bc) |X(p)〉 . (5.1.18)

If we impose the trace cyclicity condition on the (2|2)p state, it must obey P = K = 0 as well

as p = 0, giving C = ±1/2. Thus we can relate the central charge with the conformal dimension

as C = (∆− J1) /2 for the states with C > 0.

If the fundamental representation is unitary, we also have

a = d̄ , b = c̄ , p ∈ R. (5.1.19)

In other words, the generators Q and S are conjugate with each other.

We can obtain nontrivial results from centrally-extended supersymmetry algebra once we

consider multi magnon states (or tensor products of (2|2)p,), because those generators act on

the overall state.

Consider actions of P and K on the multi magnon state of the following form:

|X1(p1) · · ·XM(pM)〉 ∼
∑

n1�···�nM

eip1n1+···ipMnM
[
. . . ZZ . . . X1

∧
n1

. . . XM

∧
nM

. . . ZZ . . .
]
. (5.1.20)

First, we have to notice difference between the states |XZ±〉 and |Z±X〉. If we insert Z+ to

the left of an impurity X, we get∣∣Z+X(p)
〉

=
∑
n

eipn
[
. . . ZZ . . . X

∧
n+1

. . . ZZ . . .
]

=
∑
n

eip(n−1)
[
. . . ZZ . . . X

∧
n

. . . ZZ . . .
]

= e−ip
∣∣X(p)Z+

〉
, (5.1.21)

and similarly we get |Z−X(p)〉 = e+ip |X(p)Z−〉. Next, by applying (5.1.17) successively to the

state (5.1.20), we obtain

P |X1(p1) · · ·XM(pM)〉 =
M∑
j=1

ajbj exp

(
−i

M∑
k=j+1

pk

)
|X1(p1) · · ·XM(pM)〉 , (5.1.22)

K |X1(p1) · · ·XM(pM)〉 =
M∑
j=1

cjdj exp

(
+i

M∑
k=j+1

pk

)
|X1(p1) · · ·XM(pM)〉 . (5.1.23)

The factors akbk and ckdk can be determined by the following argument. We require the

conditions P = K = 0 must hold on the physical states that satisfy the trace cyclicity condition∑M
k=1 pk = 0 for any M . This requirement can be fulfilled if

akbk = gcα
(
e−ipk − 1

)
, ckdk = gcβ

(
eipk − 1

)
, (5.1.24)
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where constants α and β are independent of pk , and gc ≡
√
λ/(4π) are put for convenience.2

Written in this way, it is clear that P and K generates gauge transformation corresponding to

the insertion or the removal of Z,

P : X 7→ gcα [Z+, X] , K : X 7→ gcβ [Z−, X] . (5.1.25)

Gathering the results (5.1.18) and (5.1.24), central charge for the multi magnon state is obtained

as

C |X1(p1) · · ·XM(pM)〉 =
∑
k

(
±1

2

√
1 + 16 g2

c αβ sin2
(p

2

))
|X1(p1) · · ·XM(pM)〉 . (5.1.26)

Since the factor g2
cαβ is a function of the ’t Hooft coupling, we can rewrite this equation as

C =
1

2
(∆− J1) =

1

2

√
1 + f(λ) sin2

(p
2

)
. (5.1.27)

Consistency with the BDS Ansatz [7] requires

f(λ) =
λ

π2
+O

(
λ4
)
, (5.1.28)

and comparison with the BMN/pp-wave limit [4], or the results of string theory (discussed in

Section 5.2) dictates

f(λ) =
λ

16π2
= g2

c . (5.1.29)

It is convenient to parametrize the four parameters a, b, c, d by another set of variables

x+, x−, α, γ as follows:

a =
√
gc γ , b =

√
gc
α

γ

(
1− x+

x−

)
, c =

√
gc

iγ

αx+
, d =

√
gc
x+

iγ

(
1− x−

x+

)
. (5.1.30)

We have the consistency condition

ad− bc = 1 ⇐⇒ x+ +
1

x+
− x− − 1

x−
=

i

gc
. (5.1.31)

The momentum p and the central charge C are expressed as

eip =
x+

x−
, C =

gc
2i

(
x+ − 1

x+
− x− +

1

x−

)
. (5.1.32)

The new parameter γ controls normalization of the fermionic state |ψ〉 with respect to the

bosonic state |φ〉. We have |x+| = |x−| for real values of p, and the unitarity (5.1.19) imposes

the constraints

|γ|2 = −i
(
x+ − x−

)
,

∣∣∣γ
α

∣∣∣2 = −i
(
x+ − x−

)
, (5.1.33)

which can be solved by

|γ| =
∣∣−i (x+ − x−

)∣∣1/2 , |α| = 1. (5.1.34)

Their complex phases are left undetermined.

2Explicit forms of the coefficients, at one loop in λ, can also be obtained via the reduction of the super-

conformal transformation of the psu(2, 2|4) theory down to psu(2|2)2 n R3. They are consistent with (5.1.24)

[144].
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5.1.2 The S-matrix

Next let us consider scattering of two magnons over asymptotic spin chain. The two magnon

states transform as the representation (2|2)p1 × (2|2)p2 , and appears like

|X1(p1)X2(p2)〉 ∼
[
. . . ZZ . . .X1

→
p1

. . . X2

→
p2

. . . Z . . .
]

+ sint

[
. . . ZZ . . .

(
X1

→
p1

X2

→
p2

)
. . . Z . . .

]
+ S(p2, p1)

[
. . . ZZ . . .X1

→
p2

. . . X2

→
p1

. . . Z . . .
]

(5.1.35)

The second term represents the state where two magnons get close to with each other. The

coefficient sint will be determined such that it is compatible with su(2|2) symmetry. The last

term contains S(p1, p2), namely S-matrix of the asymptotic spin chain.

The S-matrix can be regarded as an operator interchanging two adjacent magnons,

Skl |· · ·XkXl · · ·〉 7→ (coefficient) |· · ·XlXk · · ·〉 . (5.1.36)

We require the S-matrix is compatible with the symmetry algebra, that is,

[Jk + Jl,Skl] = 0, (5.1.37)

where J is any generator of the su(2|2) algebra. Noticeably, combining the last condition

and the conjectured S-matrix in su(2) subsector (with the dressing phase) together, one can

uniquely determine the su(2|2)-invariant S-matrix. The results are listed below. We decompose

(2|2)p1×(2|2)p2 into irreducible representations of the su(2|2) algebra, and regroup each element

of the S-matrix with respect to these representations, as

S12|φa1φb2〉 = A12|φ{a2 φ
b}
1 〉+B12|φ[a

2 φ
b]
1 〉+

1

2
C12ε

abεαβ|ψα2ψ
β
1Z
−〉, (5.1.38)

S12|ψα1ψ
β
2 〉 = D12|ψ{α2 ψ

β}
1 〉+ E12|ψ[α

2 ψ
β]
1 〉+

1

2
F12ε

αβεab|φa2φb1Z+〉, (5.1.39)

S12|φa1ψ
β
2 〉 = G12|ψβ2φa1〉+H12|φa2ψ

β
1 〉, (5.1.40)

S12|ψα1 φb2〉 = K12|ψα2 φb1〉+ L12|φb2ψα1 〉. (5.1.41)
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The coefficients from A12 to L12 are given by,

A12 = S0
12

x+
2 − x−1
x−2 − x+

1

, (5.1.42)

B12 = S0
12

x+
2 − x−1
x−2 − x+

1

(
1− 2

1− 1/x−2 x
+
1

1− 1/x+
2 x

+
1

x−2 − x−1
x+

2 − x−1

)
, (5.1.43)

C12 = S0
12

γ1γ2

α

2

x+
1 x

+
2

1

1− 1/x+
1 x

+
2

x−2 − x−1
x−2 − x+

1

, (5.1.44)

D12 = −S0
12 , (5.1.45)

E12 = −S0
12

(
1− 2

1− 1/x+
2 x
−
1

1− 1/x−2 x
−
1

x+
2 − x+

1

x−2 − x+
1

)
, (5.1.46)

F12 = −S0
12

α

γ1γ2

2(x+
1 − x−1 )(x+

2 − x−2 )

x−1 x
−
2

1

1− 1/x−1 x
−
2

x+
2 − x+

1

x−2 − x+
1

, (5.1.47)

G12 = S0
12

x+
2 − x+

1

x−2 − x+
1

, (5.1.48)

H12 = S0
12

γ1

γ2

x+
2 − x−2
x−2 − x+

1

, (5.1.49)

K12 = S0
12

γ2

γ1

x+
1 − x−1
x−2 − x+

1

, (5.1.50)

L12 = S0
12

x−2 − x−1
x−2 − x+

1

. (5.1.51)

Various formulae useful to derive the above result are listed in [12]. The scalar factor S0
12 are

related to the dressing phase as [60]

(
S0

12

)2
=
x−2 − x+

1

x−1 − x+
2

1− 1/x−1 x
+
2

1− 1/x+
1 x
−
2

σ2(p1 , p2) . (5.1.52)

The representation of super-Lie algebra su(2|2)2 has an unusual feature that the product

of two irreducible representations can be irreducible. A good example is the tensor product of

two short (4 dimensional) representations

(2|2)p1 ⊗ (2|2)p2 ⊂ (8|8) , with C =
2∑

k=1

√
1 + 16 g2

c sin2
(pk

2

)
, (5.1.53)

which is in the long (16 dimensional) representation in general, depending on the value of

central charge C. It can become short again if C can be rewritten in the single square-root

form.

An important example of higher-dimensional short representation of su(2|2) is supersym-

metric extension of the totally symmetric representation of su(2), which is called (BPS) magnon

boundstates [50, 59, 58, 145]. For the two magnon case, the boundstate condition is given by

x−2 = x+
1 . (5.1.54)
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Since the coefficient A12 diverges there, the S-matrix becomes the projector onto the symmetric

product representation. The field content of two-magnon boundstate is explicitly obtained in

[145]. In general, Q-magnon boundstate forms 16Q2-dimensional representation of su(2|2)2.

Energy and charge of Q-magnon boundstate are given by

Etotal =
∑
k

E (xk) , Q =
∑
k

Q (xk) . (5.1.55)

By introducing the outermost rapidity variable by

X+ ≡ x+
Q , X− ≡ x−1 , (5.1.56)

and using the boundstate condition x+
j = x−j+1 for j = 1, . . . , Q− 1, the energy and the charge

become

E =

√
λ

4πi

{
X+ − 1

X+
−X− +

1

X−

}
, (5.1.57)

Q =

√
λ

4πi

{
X+ +

1

X+
−X− − 1

X−

}
. (5.1.58)

We may further diagonalize the su(2|2) spin chain using nested Bethe Ansatz, which was

done in [12, 146]. The resultant Bethe Ansatz equations are a part of Beisert-Staudacher

equations discussed in Section 2.5.3.

Let us comment on further development concerning the su(2|2) invariant S-matrix. The

above form of S-matrix is called spin chain frame. By a suitable definition of complex phase

in (5.1.34) one can derive S-matrix in string frame, which naturally arises from worldsheet

scattering in string theory [147, 60]. In addition, close connection between the su(2|2) S-matrix

and Shastry’s R-matrix of one-dimensional Hubbard model, is pointed out in [61, 148].

5.2 Giant magnons and their scattering

Excitations over the asymptotic spin chain were characterized as the limit

∆, L→∞ while ∆− L , p and λ kept finite. (5.2.1)

In view of AdS/CFT correspondence, string states corresponding to these excitations should

be found in the region

E, J →∞ while E − J , pstr and λ kept finite. (5.2.2)

Of course, classical string theory is valid only at strong coupling λ� 1.

Hofman and Maldacena considered classical string solutions with infinite angular momen-

tum, and found a solution called giant magnon which is dual to one magnon state in the
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asymptotic spin chain [49]. By exploiting the relation between classical string on Rt× S2 and

sine-Gordon model, they computed scattering phase between two giant magnons, and found

agreement with the conjectured all-loop S-matrix with the dressing phase in the limit λ→∞.

We summarize their results in this section.

Giant magnon from Nambu-Goto approach

First, we follow construction of giant magnon solution in [49] where Nambu-Goto action is

used. The metric on Rt× S2 is written as

ds2 = −dt2 + dθ2 + sin2 θdϕ2 , (5.2.3)

and Nambu-Goto action is given by

S =
1

2πα′

∫
dτdσ

√
−detG , (5.2.4)

with Gab an induced metric. We fix the gauge by

t = aτ, φ = b σ − a τ, (5.2.5)

with a and b constants. The induced metric is then written as

Gab =

(
−a2 + a2 sin2 θ + θ̇2 θ̇θ′ − ab sin2 θ

θ̇θ′ − ab sin2 θ θ′2 + b2 sin2 θ

)
(5.2.6)

Assuming the Ansatz θ = θ(σ), the Nambu-Goto action takes the form

S =

√
λ

2π

∫
dτ ′dσ′

√
cos2 θθ′2 + sin2 θ (5.2.7)

where τ ′ = aτ, σ′ = b σ. The solutions to the equation of motion are

sin θ = 1, or sin θ =
Θ

cosσ′
(Θ ≡ ± sin θc = ± cosσ′c) , (5.2.8)

where −σ′c ≤ σ′ ≤ σ′c and Θ is a constant. The latter solution is called giant magnon.

One advantage of the parametrization (5.2.5) is that it relates momentum on the worldsheet

with the conserved charges in the spacetime, as

E − J =

√
λ

2π

∫
dσ′
(

∂L

∂ (∂τ ′t)
− ∂L

∂ (∂τ ′φ)

)
=

√
λ

2π

∫
dσ′ Tτ ′

τ ′ ≡ Pτ ′ , (5.2.9)

J =

√
λ

2π

∫
dσ′

∂L

∂ (∂τ ′φ)
=

√
λ

2π

∫
dσ′ Tσ′

τ ′ ≡ Pσ′ . (5.2.10)

The canonical energy momentum tensor of giant magnon (5.2.8) is,3

Tτ ′
τ ′ = − Θ

cos2 σ′
, Tτ ′

σ′ = 0 ,

Tσ′
τ ′ = − Θ3 sin2 σ′

cos2 σ′ (cos2 σ′ −Θ2)
, Tσ′

σ′ = −Θ.

3Note that the ansatz θ = θ(σ) should not be imposed before we obtain explicit expressions of Ta
b .

77



We immediately obtain

E − J = −
√
λ

2π

∫ σ′c

−σ′c
dσ′ Tτ ′

τ ′ =

√
λ

π
sin

∆ϕ

2
, (5.2.11)

J = −
√
λ

2π

∫ σ′c

−σ′c
dσ′ Tσ′

τ ′ ≈
√
λ

2π
sin

∆ϕ

2

{
1− 1

2
ln

(
sin ∆ϕ

σ′c − σ′

)}
, (5.2.12)

where we defined

∆ϕ = ∆σ′ ≡ 2σ′c = π − 2θc , (5.2.13)

which is angular distance between two endpoints of an ‘open’ string. It is clear that E − J

remains finite while J diverges. With the identification of

∆ϕ = |p| , (5.2.14)

the energy-spin relation (5.2.11) becomes

E − J =

√
λ

π

∣∣∣sin(p
2

)∣∣∣ , (5.2.15)

which agrees with the strong coupling limit of one magnon state over the asymptotic spin chain,

∆− J1 =

√
1 +

λ

π2
sin2

(p
2

)
. (5.2.16)

Giant magnon looks non-closed in the spacetime, in correspondence with the fact that one

magnon state with p 6= 0 breaks the trace cyclicity condition. For the string to be closed, we

have to add “the opposite piece” of a string with ∆ϕ = −p.

Polyakov approach

We rewrite the giant magnon as a solution to classical string action on Rt× S2 in conformal

gauge, because it helps us to find connection with sine-Gordon solitons. In order to achieve the

limit (5.2.2), we decompactify the string worldsheet as

(t, x) ≡ (κτ, κσ) , κ→∞. (5.2.17)

We identify the coordinate t with the AdS-time. The giant magnon solution is then rewritten

as,

ξ1 =
{

cos
(p

2

)
+ i tanhxv sin

(p
2

)}
eiτ , ξ2 =

sin
(
p
2

)
coshxv

, (5.2.18)

where we used the target space coordinates given in (3.2.2), and

xv ≡
x− vt√
1− v2

=
x− cos

(
p
2

)
t

sin
(
p
2

) ≡ x cosh θ − t sinh θ . (5.2.19)

This solution obeys the boundary conditions

ξ1 → exp

(
±ip

2
+ it

)
, ξ2 → 0 as x→ ±∞. (5.2.20)

78



Thus, the endpoints of a string move the equator of S2 at the speed of light. The angular

momentum density Im (ξ∗1 ∂τξ1) is constant away from the origin xv = 0. Thus the angular

momentum around the equator diverges.

The giant magnon solution has natural interpretation from sine-Gordon point of view.

Through the identification

cosφ =
∑
j=1,2

(
− ∂τξ∗j ∂τξj + ∂σξ

∗
j ∂σξj

)
(5.2.21)

the field φ is same as the soliton solution of sine-Gordon equation

− ∂2
τφ+ ∂2

σφ− sinφ = 0, φ = 4 arctan
(
e−xv

)
. (5.2.22)

Of course, this is not just coincidence. In Chapter 6, we will see that the any consistent solution

of string theory on Rt× S3 can be identified as the solution of Complex sine-Gordon system

via the reduction procedure found by Pohlmeyer, Lund and Regge. Further, we will investigate

the Pohlmeyer-Lund-Regge reduction thoroughly in Appendix B.

Soliton picture is quite useful to compute phase shift for the scattering of two giant magnons

(GMs). This scattering takes place on the worldsheet rather than in spacetime, which corre-

sponds to scattering of magnons on the asymptotic spin chain.

By the scattering of GMs we mean certain classical string solution which reduces to soliton

scattering solution of sine-Gordon system via the map (5.2.21):

tan

(
φ

4

)
=

1

w

sinh

(
wtv√
1− w2

)
cosh

(
xv√

1− w2

) for kink-kink scattering, (5.2.23)

tan

(
φ

4

)
=

1

w

cosh

(
wtv√
1− w2

)
sinh

(
xv√

1− w2

) , for kink-antikink scattering. (5.2.24)

By comparing a kink solution (5.2.22) with scattering solutions (5.2.23) or (5.2.24), we find the

spacetime profile is no longer rigid for scattering solutions. In fact, the GM scattering solution

looks like two GMs placed next to each other at t = −∞. As the time evolves, two GMs

begin to collide while the center of mass moves along the equator at the speed of light. The

“scattering” of GMs finishes at t =∞, and the relative position of two GMs is interchanged.

To compute the phase shift of GM scattering, we do not need an explicit profile of the solu-

tion. We use the fact that under the map (5.2.21) both the scattering solutions of sine-Gordon

and the GM scattering solution have the same dependence on the worldsheet coordinates, giving

the same time delay.

79



For simplicity let us focus on kink-kink scattering solution (5.2.23). By taking the limit

t→ ±∞ and comparing them with kink solution (5.2.22), one finds that for v1 > v2 , the time

delay that particle 1 experiences as it passes through particle 2 is given by

∆t12 =
2
√

1− v2
1

v1

logw, vj = cos
(pj

2

)
= tanh θj , (5.2.25)

where w > 0 is the relative velocity between particles 1 and 2 given by

w ≡ tanh θw = tanh

(
θ1 − θ2

2

)
. (5.2.26)

It can be expressed in terms of p1,2 by using the definition of rapidity variable θj , as

w2 =
1− cos

(
p1−p2

2

)
1− cos

(
p1+p2

2

) , (p1 , p2 > 0) . (5.2.27)

From (5.2.25) and (5.2.27) one can compute the phase shift by applying the following formula,4

∂δ12 (ε1 , ε2)

∂ε1
= ∆t12 , εj ≡

√
λ

π
sin
(pj

2

)
. (5.2.28)

By performing integration, one finds

δ =

√
λ

π

[
− cos

(p1

2

)
+ cos

(p2

2

)]
log

[
1− cos

(
p1−p2

2

)
1− cos

(
p1+p2

2

)]− p1ε2 . (5.2.29)

The first term agrees with the strong coupling limit of AFS phase [10], which is classical part

of the dressing phase. The second term comes from difference of gauge choice between gauge

theory and string theory. Because GMs are excitations of nonzero size, the S-matrix depends

on the gauge we choose. For classical string theory in conformal gauge, the unit length is chosen

such that energy is constant, ṫ = 1. For spin chain theory, the unit length is chosen such that

angular momentum J is constant. If the unit length differs by E − J1 = ε, then S-matrix

S = eiδ acquires an extra phase eip1ε2 .

We mention succeeding developments on generalization of giant magnon solutions. The

giant magnon with the second spin J2 is constructed in [51] and called dyonic giant magnon,

which is dual to magnon boundstates found in [50]. The giant magnon with three spins J1,2,3 is

constructed in [150] via the generalized Neumann-Rosochatius Ansatz. The scattering solutions

of giant magnons as well as dyonic ones are obtained explicitly by using the dressing method in

[54, 151], and the phase shift for scattering of two dyonic giant magnons is studied in [58, 59].

Finite-J1 extension of giant magnon is first discussed in [52] (see also [73]). The one-loop

quantum correction to strings with an infinite spin is studied in [53], where they also studied

finite-gap representation of (dyonic) giant magnon solutions.

4Recall there exists similar formula in quantum mechanics, which has been generalized to the case of solitons

by Jackiw and Woo [149].
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5.3 The dressing phase

5.3.1 Notation

There are two sorts of notation used in the literature. We will introduce them in turn.

Perturbative gauge theory (BDS) notation

The first one is particularly suited for perturbative gauge theory computation, and used, for

example, in the paper of Beisert, Dippel, and Staudacher [7] as well as in Section 2.5.2.

As before, we introduced variables u and x through

u(p) =
1

2
cot

p

2

√
1 +

λ

π2
sin2 p

2
, (5.3.1)

u(x) = x+
λ

16π2

1

x
, (5.3.2)

where p stands for momentum of a magnon. The relation (5.3.2) can be solved explicitly in x

as

x(u) =
1

2

(
u+

√
u2 − λ

4π2

)
, (5.3.3)

then it follows

exp (ip) =
x(u+ i/2)

x(u− i/2)
≡ x+

x−
. (5.3.4)

We will also use the following coupling constant,

g2
B ≡ λ/

(
8π2
)
. (5.3.5)

Higher conserved charges are written as

qr(x) =
i

r − 1

{
1

(x+)r−1 −
1

(x−)r−1

}
, (5.3.6)

and the dilatation operator ∆ is written as

∆ = ∆0 +
λ

8π2
q2 . (5.3.7)

By using (5.3.6), one can show the identity√
1 +

λ

π2
sin2 p

2
− 1 =

iλ

8π2

(
1

x+
− 1

x−

)
, (5.3.8)

then (5.3.7) becomes

∆ =

√
1 +

λ

π2
sin2 p

2
(for ∆0 = 1) . (5.3.9)
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String theory (crossing) notation

Next we introduce the notation which is suitable for expressing the functions invariant under

Janik’s crossing transformation [14].

We shall use

g2
c ≡ λ/

(
16π2

)
, (5.3.10)

instead of gB defined in (5.3.5). We redefine variables u and x± by

uold ≡ gc u , x±old ≡ gc x
± , (5.3.11)

where uold , x
±
old are the variables used in the previous subsection. Note that we have encountered

the same rescale of x± in (3.3.66). In terms of new variables, the relations (5.3.1) and (5.3.2)

are rewritten as

u =
1

2gc

cot
(p

2

) √
1 + 16g2

c sin2
(p

2

)
= x+

1

x
. (5.3.12)

Equivalently, the functions x± = x±(p) can be expressed as

x± ≡ x

(
u± i

2

)
= e±ip/2

1 +
√

1 + 16g2
c sin2

(
p
2

)
4gc sin

(
p
2

) , (5.3.13)

which are a solution of the constraint

x+ − 1

x+
− x− +

1

x−
=

i

gc

. (5.3.14)

The last equation can be interpreted as the BPS condition for centrally-extended supersymme-

try algebra psu(2|2)2 nR3. The parameter u can be reexpressed in terms of x±, as

u =
1

2

(
x+ +

1

x+
+ x− +

1

x−

)
. (5.3.15)

The constraint (5.3.14) defines a torus as the space of spectral parameters spanned by x+ (or

x−), which is called rapidity torus. Uniformization of the rapidity torus is studied in [14, 152].

In the uniformized language, the crossing transformation x± → 1/x± can be mapped to the

shift of half periods over the torus.

5.3.2 The dressing phase in gauge theory

All-loop asymptotic Bethe Ansatz equation in the rank-one subsectors of N = 4 super Yang-

Mills was proposed in [8].5 With the notation introduced above, the Bethe Ansatz equations

including the dressing phase are written as(
x+
k

x−k

)L
=

K∏
j=1
j 6=k

(
x−k − x

+
j

x+
k − x

−
j

)η
1− g2

B/
(
2x+

k x
−
j

)
1− g2

B/
(
2x−k x

+
j

) exp
(

2iθ(xk, xj)
)
. (5.3.16)

5The proposal of [8] was generalized to the full psu(2, 2|4) sector in [9].
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where η = 1 for su(2), η = 0 for su(1|1), and η = −1 for sl(2) subsector.

At weak coupling, four loop computation in sl(2) subsector clarified the necessity of θ(xk, xj) 6=
0 also in the gauge theory side [127]. The numerical result of [127] was made precise in [153].

To explain the four-loop results, we have to introduce the universal scaling function f(gB),

also known as cusp anomalous dimension or soft anomalous dimension. The universal scaling

function appears in several situations of AdS/CFT. For instance, they appear in the expression

of anomalous dimension

∆O = S + f(gB) log(S) +O(S0), (S � 1) , (5.3.17)

of the low-twist operators

O = tr
(
DS

+Z
L
)

+ (permutations) , (S � L ∼ O(1)) , (5.3.18)

where D+ is covariant derivative in light-cone direction and Z is a complex scalar. In the large

spin limit S � L, the universal scaling function satisfy the Eden-Staudacher equation [17]

f(g) = 4g2 − 16g4

∫ ∞
0

dt σ̂(t)
J1(
√

2gt)√
2gt

, (5.3.19)

σ̂(t) =
t

et − 1

J1(
√

2gt)√
2gt

− 2g2

∞∫
0

dt′ K̂(
√

2gt,
√

2gt′) σ̂(t′)

 , (5.3.20)

where g = gB , J0,1(t) are Bessel functions. As shown in [17], one can compute the integration

kernel K̂(t, t′) from the Bethe Ansatz equation in sl(2) sector. If the dressing phase θ(xk, xj)

is absent in (5.3.16), the kernel is given by

K̂(t, t′) =
J1(t)J0(t′)− J0(t)J1(t′)

t− t′
. (5.3.21)

However, it turned out that the universal scaling function derived from the above kernel

(5.3.21) disagrees with the results of four loop computation done by [127]. This suggests the

dressing phase is nontrivial; θ(xk, xj) 6= 0.

Let us consider the general form of dressing phase consistent with the integrability. It is

argued that the dressing phase at weak coupling should take the form [10, 154]:

θ(xk, xj) =
∞∑
r=2

∞∑
s=r+1

βr,s(g)
[
qr(xk)qs(xj)− qr(xj)qs(xk)

]
,

βr,s(g) =
∞∑

n=s−1

g2n β(n)
r,s , βr,r+2m(g) = 0 (m ∈ Z), (5.3.22)

where qr(x) are the higher conserved charges defined in (5.3.6).

The perturbative calculation at three and four loops revealed [7, 127, 153, 112]

β
(2)
2,3 = 0, β

(3)
2,3 = 4ζ(3). (5.3.23)
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5.3.3 The BHL/BES proposal

Historically, the dressing phase θ(xk, xj) was first introduced on the classical string theory

side [10]. It was then subsequently extended to incorporate the result one loop in 1/
√
λ [13].

The universality test of the dressing phase, namely to check independence from subsectors one

chooses, was done up to one loop [155].

Janik argued in [14] that S-matrix equipped with the dressing phase should be crossing

symmetric, by analogy with the S-matrix of relativistic quantum field theories. It was then

shown that the dressing phase up to one loop in 1/
√
λ indeed satisfies Janik’s crossing relation

[15]. Beisert, Hernández, López constructed a general class of solutions to the crossing relation

all order in 1/
√
λ [156, 16]. Beisert, Eden, and Staudacher picked up one of the BHL solutions,

and proposed it as the exact form of the dressing phase. This is called BES (or BHL/BES)

phase [21].

The BHL/BES phase at strong coupling takes the form

θ(uk, uj) =
∞∑
r=2

∞∑
s=r+1

cr,s(g) (q̃r(uk) q̃s(uj)− q̃s(uk) q̃r(uj)) , (5.3.24)

where q̃r(u) = gr−1
c qr(u), and

cr,s(g) =
∞∑
n=0

c(n)
r,s g

1−n , (5.3.25)

c(n)
r,s =

(1− (−1)r+s) ζ(n)

2(−2π)nΓ(n− 1)
(r − 1)(s− 1)

Γ[1
2
(s+ r + n− 3)]Γ[1

2
(s− r + n− 1)]

Γ[1
2
(s+ r − n+ 1)]Γ[1

2
(s− r − n+ 3)]

. (5.3.26)

Their proposal is based on the proposal of crossing symmetric phase [16] and on the transcen-

dentality principle [18, 19, 20].

For n = 0, 1, they used the previously known results [10, 13] as an input:

c(0)
r,s = δr+1,s , c(1)

r,s = −(1− (−1)r+s)

π

(r − 1)(s− 1)

(s+ r − 2)(s− r)
. (5.3.27)

The term n = 0 is called AFS phase [10], and expected to capture classical string results. The

term n = 1 is called HL phase [13], and corresponds to one-loop results in string theory.

Furthermore in [21], they found that ‘analytic continuation of indices’ gives weak coupling

expansion of the dressing phase, consistent with the results (5.3.23). Suppose the function

cr,s(g) in (5.3.25) can be analytically continued in the following manner:

cr,s(g) = −
∞∑
n=1

c(−n)
r,s g1+n , (5.3.28)

then, after suitable regularization we find

c
(−1)
2,3 = 0 , c

(−2)
2,3 = −4 ζ(3) . (5.3.29)
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The latter equation is indeed consistent with β
(3)
2,3 = 4ζ(3) in (5.3.23). In general, one can relate

c
(−n)
r,s with β

(`)
r,s as

β(`)
r,s = −c(r+s−2`−1)

r,s . (5.3.30)

Putting this relation and (5.3.26) together, and using the identities

ζ(1− z) = 2(2π)−z cos
(πz

2

)
Γ(z) ζ(z), Γ(1− z) =

π

sin(πz)Γ(z)
, (5.3.31)

we can deduce an all-order expression for β
(`)
r,s ≡ β

(r+µ+ν)
r,r+1+2ν as

β
(r+µ+ν)
r,r+1+2ν = 2(−1)r+µ+1 (r − 1)(r + 2ν)

2µ+ 1

(
2µ+ 1

µ+ 1− r − ν

)(
2µ+ 1

µ− ν

)
ζ(2µ + 1) . (5.3.32)

The above result (5.3.32) can be rederived if we slightly modify the kernel of the Eden-

Staudacher equation (5.3.20), which is called Beisert-Eden-Staudacher (BES) equation. To see

this, we have to replace the undressed kernel (5.3.21) by

K̂(t, t′) −→ K̂(t, t′) + K̂d(t, t
′) , (5.3.33)

where the dressing kernel K̂d is given by

K̂d(t, t
′) ≡ 8 g2

c

∫ ∞
0

dt′′ K̂1(t, 2 gc t
′′)

t′′

et′′ − 1
K̂0(2 gc t

′′, t′) , (5.3.34)

K̂0(t, t′) ≡ tJ1(t)J0(t′)− t′J0(t)J1(t′)

t2 − t′2
, (5.3.35)

K̂1(t, t′) ≡ t′J1(t)J0(t′)− tJ0(t)J1(t′)

t2 − t′2
. (5.3.36)

Note K̂0 is the even part of K̂ under (t, t′) → (−t,−t′), while K̂1 is the odd part. After some

calculation, the dressing kernel (5.3.34) can be rewritten as

K̂d(t, t
′) = − 8

t t′

∞∑
µ=1

g2µ+1

k+l≤µ+1∑
k,l≥1

J2k(t)J2l−1(t′) (−1)µ+k+l×

(2k) (2l − 1)

2µ+ 1

(
2µ+ 1

µ+ 1− k − l

)(
2µ+ 1

µ+ 1 + k − l

)
ζ(2µ+ 1) . (5.3.37)

As discussed in [17, 21], the dressing kernel and the dressing phase at weak coupling (5.3.22)

are related as

K̂d(t, t
′) =

4

t t′

∞∑
ρ=1

∞∑
ν=0

∞∑
µ=ν

g2µ+1(−1)ν
(
β

(2ρ+ν+µ)
2ρ,2ρ+1+2νJ2ρ+2ν(t)J2ρ−1(t′)

+ β
(2ρ+1+ν+µ)
2ρ+1,2ρ+2ν+2J2ρ(t)J2ρ+1+2ν(t

′)
)
, (5.3.38)

One can easily check that the results (5.3.37) and (5.3.38) actually reproduce (5.3.32).
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5.3.4 Breakdown of perturbative BMN scaling

It was shown in [17], the nontrivial dressing phase at four loop (5.3.23) violates BMN scaling

hypothesis for anomalous dimensions in the gauge theory side. Let us observe that the term of

β
(3)
2,3 = 4ζ(3) diverges in the BMN limit.

The BMN limit is defined by

p =
n

L
, λ̃ =

λ

L2
, L→∞ with n, λ̃ fixed. (5.3.39)

As can be seen from (5.3.13) and (5.3.11), the x± variables in the BDS notation scales as

x± = L

(
1± in

2L
− 1

2

( n
2L

)2

+ · · ·
)(

1 +
√

1 + 4 g̃2
c n

2

2n

)
for L� 1. (5.3.40)

Thus, for L� 1 we have

1

(x±)r
∼ 1

Lrρrn

(
1∓ inr

2L

)
where ρn ≡

1 +
√

1 + 4 g̃2
c n

2

2n
, (5.3.41)

and the higher conserved charges (5.3.6) behave as

qr(xn) =
i

r − 1

{
1

(x+
n )r−1 −

1

(x−n )r−1

}
∼ 1

Lr
n

ρr−1
n

, ρn ≡
1 +

√
1 + 4 g̃2

c n
2

2n
. (5.3.42)

Now it is easy to see that the first nontrivial term of BES phase behaves like

θ(xk, xj) = 4ζ(3) g6
B

[
q2(xk)q3(xj)− q2(xj)q3(xk)

]
∼ L

4ζ(3) g̃6
B nknj (ρk − ρj)
ρ2
kρ

2
j

→∞ as L→∞, (5.3.43)

showing the breakdown of perturbative BMN scaling.

More generally, the BES phase behaves in the weak coupling region as

θ(xk, xj) =
∞∑
r=2

∞∑
s=r+1

∞∑
n=s−1

g2n
B β(n)

r,s

[
qr(xk)qs(xj)− qr(xj)qs(xk)

]
=
∞∑
r=2

∞∑
s=r+1

∞∑
n=s−1

L2n−r−s β
(n)
r,s g̃2n

B nknj
(
ρs−rk − ρs−rj

)
ρs−1
k ρs−1

j

for L� 1. (5.3.44)

For fixed r, we relabel the index by s = r + 1 + 2ν, n = r + 2ν + µ where µ, ν ≥ 0, then the

sum becomes

θ(xk, xj) =
∞∑
r=2

∞∑
ν=0

∞∑
µ=0

L2µ+2ν−1
β

(r+2ν+µ)
r,r+1+2ν g̃

2n
B nknj

(
ρ1+2ν
k − ρ1+2ν

k

)
ρr+2ν
k ρr+2ν

j

for L� 1, (5.3.45)

which implies the breakdown of perturbative BMN scaling at all order.6

Note also that one-loop quantum correction to energy-spin relation of classical strings neither

obeys the BMN scaling hypothesis, as shown in [48].

6Interestingly, BES claims that the coefficient β
(n)
r,s has transcendentality 2n− r − s+ 2 [21].
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Chapter 6

Large spin strings

We study a family of classical string solutions with large spins on Rt×S3 subspace of AdS5×S5

background, by pursuing connection with Complex sine-Gordon solitons. Via the reduction

procedure of Pohlmeyer, Lund, and Regge, the equations of motion for the classical strings

are cast into Lame equations and Complex sine-Gordon equations, which are solved under

periodic boundary conditions. The general solution interpolates various kinds of known rigid

configurations with two spins. The analytic profile of the solution is also reproduced as general

2-cut finite-gap solutions [62].

This chapter is mainly based on the author’s paper with K. Okamura [96].

6.1 Classical strings as complex sine-Gordon solitons

In this section, we will briefly sketch how classical strings on Rt× S3 are related to the solitons

of Complex Sine-Gordon (CsG) equations.

We begin with the Polyakov action for a string which stays at the center of the AdS5 and

rotating on the three-sphere. From (3.2.3) or (3.3.3) it reads,

SRt×S3 = −
√
λ

2

∫
dτ

∫
dσ

2π

{
γab
[
− ∂aη0 ∂bη0 + ∂a~ξ · ∂b~ξ∗

]
+ Λ(|~ξ|2 − 1)

}
. (6.1.1)

Taking the standard conformal gauge, Virasoro constraints read

0 = Tσσ = Tττ = −1

2
(∂τη0)2 − 1

2
(∂ση0)2 +

1

2
|∂τ~ξ|2 +

1

2
|∂σ~ξ|2 ,

0 = Tτσ = Tστ = Re
(
∂τ~ξ · ∂σ~ξ∗

)
.

(6.1.2)

just as in (3.2.6). The equations of motion that follow from (6.1.1) are given by

∂a∂
aη0 = 0 and ∂a∂

a~ξ + (∂a~ξ · ∂ a~ξ∗)~ξ = ~0 . (6.1.3)

Now we are going to solve the equations (6.1.2) and (6.1.3) to find consistent string motions.

Our strategy for that purpose is to make use of the trick invented by Pohlmeyer, Lund, and
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Regge, that is, to relate O(4) nonlinear sigma model with conformal gauge to CsG system

[55, 56, 57]. With a solution of the CsG equations at hand, the problem of constructing

corresponding string solutions will boil down to just solving a Schrödinger equation with a

potential resulted from the CsG solution.

The recipe for the Pohlmeyer-Lund-Regge reduction for O(4) sigma model is as follows.

First, define worldsheet light-cone coordinates σ± by τ = σ++σ−, σ = σ+−σ−. Second, choose

a basis of O(4)-covariant vectors as Xi, ∂+Xi, ∂−Xi and εijklX
j∂+X

k∂−X
l ≡ Ki (i, j, k, l =

1, . . . , 4) so that any vectors can be written as a linear combination of them. We can then

define two O(4)-invariants φ and χ through the relations

−∂+
~X · ∂− ~X ≡ cosφ , (6.1.4)

∂2
+
~X · ~K ≡ 2 ∂+χ sin2(φ/2), ∂2

−
~X · ~K ≡ −2 ∂−χ sin2(φ/2). (6.1.5)

Third, by using the equations of motion, Virasoro constraints and the normalization condition

|~ξ|2 = 1, write the equations of motion for φ and χ as

∂a∂
aφ− sinφ− sin (φ/2)

2 cos3 (φ/2)
(∂aχ)2 = 0 , ∂a∂

aχ+
2 ∂aφ ∂

aχ

sinφ
= 0 . (6.1.6)

They are nothing but the CsG equations. Finally, substitute (6.1.4) into (6.1.3) to get

∂a∂
a~ξ + (cosφ) ~ξ = ~0 . (6.1.7)

This is the Schrödinger equation with a self-consistent potential mentioned above.

In [51], the authors utilized Pohlmeyer’s reduction to obtain a family of classical string solu-

tions called dyonic giant magnons, which were associated with kink solitons of CsG equations.

In the same spirit, we are now going to exploit so-called helical wave solutions of CsG equations

to find new, more general motions of strings on Rt× S3.

Before doing so, let us end this section by making some additional notes on CsG system.

The CsG equations (6.1.6) follow from the Lagrangian

LCsG =
1

2
(∂aφ)2 +

tan2(φ/2)

2
(∂aχ)2 − cosφ . (6.1.8)

By introducing a complex field ψ ≡ sin(φ/2) exp(iχ/2), we can rewrite it as

LCsG =
∂̃aψ

∗ ∂̃aψ

1− |ψ|2
+ µ−2|ψ|2 , (6.1.9)

where we have also introduced a real parameter µ to rescale the worldsheet variables as (τ̃ , σ̃) ≡
(µτ, µσ). Then the equations of motion can be combined into

∂̃a∂̃
aψ + ψ∗

(∂̃aψ)2

1− |ψ|2
− µ−2ψ

(
1− |ψ|2

)
= 0 . (6.1.10)

When χ = constant, this CsG system reduces to sG system with the sG field φ.
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6.2 Helical string solutions with a single spin

To illustrate our strategy to find general classical string solutions, let us begin with a simple

single-spin case. It should result from a so-called “helical wave” (or “kink train”) of sG theory,

which is a rigid array of kinks. An example of such helical solitons is given by

φcn(x, t) = 2 arcsin

[
cn

(
(x− x0)− v(t− t0)

k
√

1− v2
, k

)]
, (6.2.1)

where v is the soliton velocity, (t0, x0) are initial values for (t, x) which will be set to zero in

what follows, and cn is the Jacobian cn function.1 The parameter k determines the spatial

period (or “wavelength”) of φ field with respect to x− vt as 4kK(k)
√

1− v2. Note that in the

limit k → 1, (6.2.1) reduces to an ordinary single-kink soliton with velocity v,

φ(x, t) = 2 arcsin

[
1

/
cosh

(
x− vt√
1− v2

)]
. (6.2.2)

As discussed before, our strategy to find periodic string solutions is to substitute (6.2.1) into

(6.1.7) to obtain a Schrödinger equation. For a generic helical soliton, the string equation of

motion (6.1.7) can be written in the form{
−∂2

τ + ∂2
σ − µ2k2

[
2 sn2

(
µ(σ − vτ)√

1− v2
, k

)
− 1

]}
~ξ = µ2U ~ξ , (6.2.3)

with (kµτ, kµσ) ≡ (t, x). In particular, we have U = 0 for the cn-type helical soliton (6.2.1),

but we will keep U general for the moment. Let us introduce boosted worldsheet coordinates,

T (τ, σ) ≡ τ̃ − vσ̃√
1− v2

, X(τ, σ) ≡ σ̃ − vτ̃√
1− v2

, (6.2.4)

with which we can rewrite the string equation of motion (6.2.3) as[
−∂2

T + ∂2
X − k2

(
2 sn2(X, k)− 1

)]
~ξ = U ~ξ . (6.2.5)

We can solve this equation under an Ansatz

ξj(T,X;wj) = Yj(X;wj) e
iuj(wj)T (j = 1, 2) . (6.2.6)

Here wj are complex parameters and Yj are independent of T . As for constraints on w, see

Appendix A.3. The differential equation satisfied by Yj then takes the form[
d2

dX2
− k2

(
2 sn2 (X, k)− 1

)
+ u2

j

]
Yj = U Yj , (6.2.7)

which is known as Lamé equation. General eigenfunctions of Lamé equations were found by

Hermite and Halphen in the nineteenth century; see Chapter 23.7 of [157] for details. They are

given by

Y(X;w) ∝ Θ1(X − w, k)

Θ0(X, k)
exp (Z0(w, k)X) with u2 = dn2(w, k) + U , (6.2.8)

1 For our conventions of elliptic functions and elliptic integrals, see Appendix A.1.
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where Θν , Zν are the Jacobian theta and zeta functions defined in Appendix A.1, respectively.

The result (6.2.8) is a good starting point for us to construct string solutions that satisfy the

string equation of motion (6.2.3), the consistency condition for Pohlmeyer’s reduction (6.1.4)

and the Virasoro conditions (6.1.2). Actually it turns out that, corresponding to several possi-

bilities of choosing a helical soliton solution of (C)sG equation, there can be as many consistent

string solutions. As it seems likely that all of them are related by appropriate reparametrization

of the elliptic functions, in this thesis, we are only concerned with cn-type helical soliton of

(6.2.1).

Recall that in Gubser-Klebanov-Polyakov (GKP) case [35], there were two possible config-

urations of closed strings moving on S2 : the folded and circular string. We will see, in our

helical case also, there are two types of rigid string configurations possible. They will turn out

to reduce, in certain limits, to each of two GKP configurations. The first type stays only one of

the hemispheres about the equator, say the northern hemisphere (See Figure 6.1 below), while

the second type sweeps in both hemispheres, crossing the equator several times (Figure 6.4).

We will call the first type “type (i)” and the second “type (ii)” helical string solution, after

the name “helical wave” in soliton theory.2 Below we will demonstrate these two types in turn.

We will only present the results, and the details will be presented in Section 6.3 and Appendix

A.3.

6.2.1 Type (i) helical strings with a single spin

We begin with the type (i) case. The profile is given by3

t (T,X) = aT + bX with a = k cn(iω) , b = −ik sn(iω) , (6.2.9)

ξ1(T,X) =

√
k

dn(iω)

Θ0(0)

Θ0(iω)

Θ1(X − iω)

Θ0(X)
exp [Z0(iω)X + i dn(iω)T ] , (6.2.10)

ξ2(T,X) =
dn(X)

dn(iω)
, (6.2.11)

with ω a real parameter. The soliton velocity v, which appeared in the definitions of T and X

(6.2.4), is related to the parameters a and b in (6.2.9) as v ≡ b/a. Using various properties and

identities listed in Appendices A.1 and A.3, one can check the proposed set of solutions (6.2.9)-

(6.2.11) indeed satisfies the required physical constraints. Note that the AdS-time variable t

can be rewritten as t = kτ̃ .

The spacetime profile of this kind of solutions is depicted in Figure 6.1. From its appearance,

it looks quite similar to the one obtained in [158], which is known as a “spiky” string on S2.

Indeed, the single-spin limit of the type (i) helical spinning strings agrees with so-called “spiky

strings” studied in [158, 52, 73]. Also, the authors of [150] argued both the “spiky” strings and

2Throughout this chapter, the term “helical strings” is used to mean helical spinning strings.
3We often omit the elliptic moduli k in the expressions of elliptic functions.
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giant magnons can be obtained from a generalized Neumann-Rosochatius Ansatz on a string

sigma model.

The type (i) single spin solution does not actually have singularities at the apparent spikes,

as can be seen from ∂σ~ξ
∣∣∣
σ=±l

= ~0 with l defined in (6.2.12) below. Two-spin helical spinning

strings are different from the spiky strings in that they have no singular points in spacetime.

When embedded in R×S3 , the singular “cusps” of the spiky string that apparently existed on

R× S2 are all smoothed out to result in non-spiky profiles.




Figure 6.1: Type (i) helical solution with a single spin. The diagram shows k = 0.68 and n = 8 case.

Each turning points are located away from the equator, and each segment curves inwards.

In order to make the string closed and rigid, we impose a periodic boundary condition.

Since our solutions are quasi-periodic in X with the period 2 K, we shall refer to the region

− l ≤ σ ≤ l , l ≡ K
√

1− v2

µ
, (6.2.12)

at fixed τ as “one-hop”. Just as (3.2.12), the periodicity of a closed string requires

∆σ
∣∣∣
one -hop

≡ 2π

n
=

2K
√

1− v2

µ
, (6.2.13)

∆ϕ1

∣∣∣
one -hop

≡ 2πNϕ1

n
= 2K

(
−iZ0(iω) +

i sn(iω) dn(iω)

cn(iω)

)
+ (2n′1 + 1) π, (6.2.14)

with n = 1, 2, . . . , and Nϕ1 , n
′
1 being integers. When σ runs from 0 to 2π, an array of n hops

winds Nϕ1 times in ϕ1-direction in the target space, thus making the string closed. The integer

n′1 is related to periodicity with respect to ω. When we make a shift ω 7→ ω+ 2K′ , the integer

n′1 increase by one while ξi and ∆ϕi are unchanged.

Let us compute the conserved charges for the type (i) strings. The energy E and the spin

J1 are defined as (3.2.7) and (3.2.9):

E ≡
√
λ

π
E =

n
√
λ

2π

∫ l

−l
dσ ∂τ t , J1 ≡

√
λ

π
J1 =

n
√
λ

2π

∫ l

−l
dσ Im (ξ∗1∂τξ1) . (6.2.15)
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Then the conserved charges for this type (i) solution are computed as

E =
nkK

cn(iω)
, J1 =

n(K− E)

dn(iω)
. (6.2.16)

In what follows, we will see two distinct limits that reduce the solution to two simple known

examples ; one is the folded string of GKP, and the other is the giant magnon of HM.

The GKP Case. In ω → 0 limit, a type (i) solution reduces to a folded string solution

studied in [35]. See Figure 6.2 for the spacetime profile. In this limit, boosted worldsheet

coordinates become (T,X)→ (τ̃ , σ̃) defined in (6.2.4), and the fields (6.2.9)-(6.2.11) reduce to,

respectively,

t→ kτ̃ , ξ1 → k sn (σ̃, k) eiτ̃ , ξ2 → dn (σ̃, k) . (6.2.17)

This solution corresponds to a kink-array of sG equation at rest (v = 0), and it spins around

the northern pole of an S2 with its center of mass fixed at the pole. The integer n counts the

number of folding, which is related to µ via the boundary condition (6.2.13).

Figure 6.2: Type (i) helical solution with a single spin; ω = 0 and k = 0.75. This can be regarded as

a folded string of [38], in which case n represents the number of folds.

The HM Case. The limit k → 1, µ → ∞ takes the type (i) solution to an array of giant

magnons, each of which having the same soliton velocity of sG system [49]. The endpoints of

the string move on the equator θ = π/2 at the speed of light, see Figure 6.3. In this limit,

boosted worldsheet coordinates become T → τ̃ / cosω− (tanω) σ̃ and X → σ̃/ cosω− (tanω) τ̃ ,

and the fields (6.2.9)-(6.2.11) reduce to

t→ τ̃ , ξ1 →
[
tanh

(
σ̃−(sinω)τ̃

cosω

)
cosω − i sinω

]
eiτ̃ , ξ2 →

cosω

cosh
(
σ̃−(sinω)τ̃

cosω

) . (6.2.18)
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The following boundary conditions are imposed at each end of hops :

ξ1 → exp (±i∆ϕ1/2 + iτ̃) , ξ2 → 0 as σ̃ → ±∞ , (6.2.19)

in place of (6.2.13) and (6.2.14). One can see ∆ϕ1 is determined only by ω, which is further

related to the magnon momentum p of the gauge theory as ∆ϕ1 = p = π − 2ω in view of the

AdS/CFT [49].

Figure 6.3: Type (i) helical solution with a single spin, in the limit k → 1. The diagram shows n = 8

case, and it can be understood as an array of n = 8 giant magnons.

6.2.2 Type (ii) helical strings with a single spin

Let us turn to the type (ii) solution. In contrast to the type (i) case, it winds around the

equator of S2, waving up and down; see Figure 6.4. The profile is given by4

t̂ (T,X) = â T + b̂X , with â = dn(iω) , b̂ = −ik sn(iω) , (6.2.20)

ξ̂1(T,X) =
1√

k cn(iω)

Θ0(0)

Θ0(iω)

Θ1(X − iω)

Θ0(X)
exp [Z0(iω)X + ik cn(iω)T ] , (6.2.21)

ξ̂2(T,X) =
cn(X)

cn(iω)
, (6.2.22)

where ω is again a real parameter, and the soliton velocity is given by v̂ ≡ b̂/â . In this type

(ii) case, the AdS-time can be written as η̂0 = τ̃ . Just as was the case with type (i) solutions,

we need to impose the periodic boundary conditions for a type (ii) solution to be closed :

∆σ
∣∣∣
one -hop

≡ 2π

m
=

2K
√

1− v2

µ
, (6.2.23)

∆ϕ1

∣∣∣
one -hop

≡ 2πMϕ1

m
= 2K

(
−iZ0(iω) +

ik2 sn(iω) cn(iω)

dn(iω)

)
+ (2m′1 + 1)π , (6.2.24)

4 We use a hat to indicate type (ii) quantities.
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where m = 1, 2, . . . is the number of hops, Mϕ1 is the winding number in ϕ1-direction, and m′1

is an integer.

Figure 6.4: Type (ii) helical solution with a single spin. The diagram shows k = 0.68 and m = 8

case. As compared to the type (i) case, each segment curves outwards about the northern pole.

The conserved charges for the type (ii) solution are calculated in the same manner as in

the type (i) case. They are given by

Ê =
mK

dn(iω)
, Ĵ =

m(K− E)

k cn(iω)
. (6.2.25)

The GKP Case. In ω → 0 limit, a type (ii) solutions reduce to a circular string studied in

[35]. See Figure 6.5 for a snapshot. Again, the boosted coordinates (6.2.4) become (T,X) →
(τ̃ , σ̃), and the profile reduces to

t̂→ τ̃ , ξ̂1 → sn (σ̃, k) eiτ̃ , ξ̂2 → cn (σ̃, k) . (6.2.26)

The integer m counts the number of winding, which is related to µ via the boundary condition

(6.2.23).

The HM Case. The limits k → 1 and µ → ∞ reduce the type (ii) solution to an array of

giant magnons and flipped giant magnons, one after the other. The shape of each giant magnon

is same as (6.2.18), see Figure 6.6.

6.3 Helical string solutions with two spins

Let us now turn to the problem of finding generic helical string solutions with two spins. As

discussed in Section 6.1, string solutions on Rt× S3 of our concern are related to CsG solitons

via Pohlmeyer’s reduction. Therefore we begin with generalizing helical solitons of sG equation

94



Figure 6.5: Type (ii) helical solution with a single spin, with ω = 0. This can be regarded as a

circular string of [38], in which case m/2 represents the winding number along a great circle.

(6.2.1) to those of CsG equations. One can easily confirm the following function is an example

of such helical solutions of CsG equations:

ψcn = ck cn (cxv, k) exp
(
itv
√

(1− c2k2)(1 + c2(1− k2))
)
, (6.3.1)

where c takes the value in −1/k < c < 1/k for 0 ≤ k ≤ 1, and xv, tv are defined as

xv ≡
x− vt√
1− v2

, tv ≡
t− vx√
1− v2

. (6.3.2)

Thus the periodic function (6.3.1) can be thought of a natural generalization of (6.2.1). We

will use this solution to find the dyonic extended version of helical solutions.

The string equations of motion become the same as (6.2.5) under identifications (µτ, µσ) ≡
(ct, cx), and we can solve them with the same Ansatz (6.2.6). For the case of cn-type helical

soliton (6.3.1), U is evaluated as Ucn = (1/c2)−k2 ≥ 0. If we started with other helical solitons

such as of sn- or dn-type, they would give different ranges for U in general. Hence we will treat

U as a controllable parameter.

We are interested in string configurations with two spins, which interpolate known string

solutions in an obvious way.
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Figure 6.6: Type (ii) helical solution with single spin, in the limit k → 1. The diagram shows m = 8

case, and it can be realized as an array of four giant magnons and four flipped giant magnons by

turns. It can be regarded as the same configuration as that of Figure 6.3, which is made up of eight

giant magnons; these two configurations can be switched to each other without energy costs.

6.3.1 Type (i) helical strings with two spins

First we will focus on the type (i) case. The solution can be written in the following form:

t = aT + bX , (6.3.3)

ξ1 = C
Θ0(0)√
kΘ0(iω1)

Θ1(X − iω1)

Θ0(X)
exp

(
Z0(iω1)X + iu1T

)
, (6.3.4)

ξ2 = C
Θ0(0)√
kΘ2(iω2)

Θ3(X − iω2)

Θ0(X)
exp

(
Z2(iω2)X + iu2T

)
. (6.3.5)

Here ω1 and ω2 are real parameters. The normalization constant C is chosen as

C =

(
dn2(iω2)

k2 cn2(iω2)
− sn2(iω1)

)−1/2

, (6.3.6)

so that the sigma model condition |ξ1|2 + |ξ2|2 = 1 is satisfied. The parameters a and b in

(6.3.3) are fixed by Virasoro conditions, which imply

a2 + b2 = k2 − 2k2 sn2(iω1)− U + 2u2
2 , (6.3.7)

ab = −i C2

(
u1 sn(iω1) cn(iω1) dn(iω1)− u2

1− k2

k2

sn(iω2) dn(iω2)

cn3(iω2)

)
. (6.3.8)

Just as in the single spin cases, we can adjust the soliton velocity v so that the AdS-time

is proportional to the worldsheet time variable. It then follows that v ≡ b/a ≤ 1 and η0 =
√
a2 − b2 τ̃ . Two angular velocities are constrained as

u2
1 = U + dn2(iω1) , u2

2 = U − (1− k2) sn2(iω2)

cn2(iω2)
, (6.3.9)
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where the parameter U corresponds to the eigenvalue of the Lamé equation (6.2.5). From

(6.3.9) we find the two angular velocities u1 and u2 satisfy

u2
1 − u2

2 = dn2(iω1) +
(1− k2) sn2(iω2)

cn2(iω2)
. (6.3.10)

When ω2 = u2 = 0, this reproduces the type (i) single spin solution of Section 6.2.1. The

consistency condition (6.1.4) is indeed satisfied as

1

µ2

2∑
i=1

(
|∂σξi|2 − |∂τξi|2

)
= k2 − 2k2 sn2(X)− U , (6.3.11)

from which we can deduce the equation of motion (6.2.5).

As in the single spin case, we can write down the conditions for a type (i) dyonic helical

string to be closed. They read,

∆σ
∣∣∣
one -hop

≡ 2π

n
=

2K
√

1− v2

µ
, (6.3.12)

∆ϕ1

∣∣∣
one -hop

≡ 2πNϕ1

n
= 2K (−iZ0(iω1)− vu1) + (2n′1 + 1)π , (6.3.13)

∆ϕ2

∣∣∣
one -hop

≡ 2πNϕ2

n
= 2K (−iZ2(iω2)− vu2) + 2n′2π . (6.3.14)

As σ runs from 0 to 2π, the string hops n times in the target space, winding Nϕ1 and Nϕ2 times

in ϕ1- and ϕ2-direction, respectively.

Global conserved charges can be computed just as was done in Section 6.2. The rescaled

energy E and the spins Jj (j = 1, 2) are evaluated after a little algebra to give

E = na
(
1− v2

)
K , (6.3.15)

J1 =
nC2 u1

k2

[
−E +

(
dn2(iω1) +

vk2

u1

i sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (6.3.16)

J2 =
nC2 u2

k2

[
E + (1− k2)

(
sn2(iω2)

cn2(iω2)
− v

u2

i sn(iω2) dn(iω2)

cn3(iω2)

)
K

]
. (6.3.17)
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6.3.2 Type (ii) helical strings with two spins

Next let us turn to the type (ii) solutions. We can reach them by shifting the parameter ω2 of

a type (i) solution by K′.5 The resulting expressions are

t̂ = âT + b̂X , (6.3.18)

ξ̂1 = Ĉ
Θ0(0)√
kΘ0(iω1)

Θ1(X − iω1)

Θ0(X)
exp

(
Z0(iω1)X + iu1T

)
, (6.3.19)

ξ̂2 = Ĉ
Θ0(0)√
kΘ3(iω2)

Θ2(X − iω2)

Θ0(X)
exp

(
Z3(iω2)X + iu2T

)
, (6.3.20)

where Ĉ is the normalization constant given by

Ĉ =

(
cn2(iω2)

dn2(iω2)
− sn2(iω1)

)−1/2

. (6.3.21)

The Virasoro conditions constrain the coefficients â, b̂ as

â2 + b̂2 = k2 − 2k2 sn2(iω1)− U + 2u2
2 , (6.3.22)

â b̂ = −i Ĉ2

(
u1 sn(iω1) cn(iω1) dn(iω1) + u2

(
1− k2

) sn(iω2) cn(iω2)

dn3(iω2)

)
. (6.3.23)

The soliton velocity is given by v̂ ≡ b̂/â ≤ 1 so that we have η̂0 =
√
â2 − b̂2 τ̃ . The angular

velocities u1 and u2 satisfy

u2
1 = U + dn2(iω1) , u2

2 = U +
1− k2

dn2(iω2)
, (6.3.24)

and are constrained as

u2
1 − u2

2 = dn2(iω1)− 1− k2

dn2(iω2)
. (6.3.25)

When ω2 = u2 = 0, it reduces to the type (ii) single spin solution.

The closedness conditions for a type (ii) solution are given by

∆σ
∣∣∣
one -hop

≡ 2π

m
=

2K
√

1− v̂2

µ
, (6.3.26)

∆ϕ1

∣∣∣
one -hop

≡ 2πMϕ1

m
= 2K (−iZ0(iω1)− v̂u1) + (2m′1 + 1)π , (6.3.27)

∆ϕ2

∣∣∣
one -hop

≡ 2πMϕ2

m
= 2K (−iZ3(iω2)− v̂u2) + (2m′2 + 1)π , (6.3.28)

where m = 1, 2, . . . is again the number of hops for 0 ≤ σ ≤ 2π, and Mϕ1 and Mϕ2 are winding

numbers for ϕ1- and ϕ2-direction, respectively.

5 The type (ii) solution can be also obtained by applying a transformation k → 1/k to the type (i) solution,

just as for the cases with the Frolov-Tseytlin solutions. See, for example, [11].
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The conserved charges of m hops can be evaluated as

Ê = mâ
(
1− v̂2

)
K , (6.3.29)

Ĵ1 =
mĈ2 u1

k2

[
−E +

(
dn2(iω1) +

v̂k2

u1

i sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (6.3.30)

Ĵ2 =
mĈ2 u2

k2

[
E− (1− k2)

(
1

dn2(iω2)
− v̂k2

u2

i sn(iω2) cn(iω2)

dn3(iω2)

)
K

]
. (6.3.31)

6.4 Taking various limits

Now that we have obtained generic helical solutions with two spins, for both type (i) and (ii)

dyonic solutions, we can reproduce known string configurations as their special limiting cases.

Interesting limits are the “stationary” limit ωi → 0, the “infinite spin” limit k → 1 and the

“uniform charge-density” limit k → 0. We will see them in turn.

6.4.1 Stationary limit : Frolov-Tseytlin strings

In the stationary limit where both ωi vanish, the soliton velocity tends to zero, thus reducing

the solutions to the spinning strings of Frolov and Tseytlin [38].

As usual, let us begin with the type (i) case. In this limit, the boosted coordinates (6.2.4)

become (T,X)→ (τ̃ , σ̃), and (6.3.3)-(6.3.5) reduce to

t =
√
k2 + u2

2 τ̃ , ξ1 = k sn(σ̃, k) eiu1τ̃ , ξ2 = dn(σ̃, k) eiu2τ̃ , (6.4.1)

with a constraint u2
1 − u2

2 = 1. This is the folded spinning/rotating string of [38], which

stretches over a great circle in the θ-direction and spinning around its center of mass with

angular momentum J2. The center of mass itself moves along another orthogonal great circle

of S5 with spin J1. To compare our results with the one presented in [38], one should relate the

parametrization as

τ̃ = µτFT , σ̃ = µσFT , κFT = µ
√
k2 + u2

2 , wi = µui with µ ≡
√
w2

1 − w2
2 . (6.4.2)

In this stationary limit, the conserved charges take the following simple form,

E = n
√
k2 + u2

2 K , J1 = nu1 (K− E) , J2 = nu2 E , (6.4.3)

with the hopping number n now represents the folding number.

As discussed in Section 4.1, by expanding the moduli k and the charges E and Ji in powers of

λ/J2 with J = J1+J2 , we can compare them with global charges of double-contour distribution

of Bethe roots on the gauge side.
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Circular strings of Frolov-Tseytlin [38] are also reproduced in much the same way, by taking

the stationary limit for the type (ii) solutions. In this case (6.3.18)-(6.3.20) reduce to

t̂ =
√

1 + u2
2 τ̃ , ξ̂1 = sn(σ̃, k) eiu1τ̃ , ξ̂2 = cn(σ̃, k) eiu2τ̃ , (6.4.4)

with a constraint u2
1 − u2

2 = k2. This string wraps around a great circle of S5 and rotates both

in X1 -X2 and X3 -X4 planes. The conserved charges are given by

Ê = m
√

1 + u2
2 K , Ĵ1 =

mu1

k2
(K− E) , Ĵ2 =

mu2

k2

(
E− (1− k2)K

)
, (6.4.5)

with m now represents the winding number for θ-angle.

Again, the moduli k and the charges can be expanded in powers of λ/J2 to obtain ck of

(0.0.1). This time, they can be compared to the ak for a imaginary root distribution of Bethe

roots on the gauge side.

6.4.2 Infinite spin limit : dyonic giant magnons

When the moduli parameter k goes to unity, both type (i) and (ii) solutions become an array

of dyonic giant magnons. The relation (6.3.10) (or (6.3.25)) implies that the ω2-dependence of

the solutions disappears in this limit. We will therefore write ω in place of ω1 . The relation

u2
1 − u2

2 = 1 + tan2 ω implies a = u1 and b = tanω in view of (6.3.7) and (6.3.8) (or (6.3.22)

and (6.3.23)), and the profiles of both types of strings become

t =
√

1 + u2
2 τ̃ , ξ1 =

sinh(X − iω)

cosh(X)
ei tan(ω)X+iu1T , ξ2 =

cos(ω)

cosh(X)
eiu2T . (6.4.6)

Let us impose the same boundary conditions as in the single spin case (6.2.19), then it requires

µ→∞ as well as the relation ∆ϕ1 = π − 2ω.

The conserved charges for one-hop (i.e., single giant magnon) are given by

E = u1

(
1− tan2 ω

u21

)
K(1) , J1 = u1

[(
1− tan2 ω

u21

)
K(1)− cos2 ω

]
, J2 = u2 cos2 ω , (6.4.7)

where K(1) is divergent, i.e., E , J1 →∞. Energy-spin relation then becomes

E − J1 =
√
J 2

2 + cos2 ω . (6.4.8)

By comparing (6.4.8) with (0.0.2) with an identification Q ≡ J2 = (
√
λ/π)J2, we find p = π−2ω

as we mentioned earlier. It would be useful to note that, one can match the expressions above

with the ones presented in [51], by redefining the parameters as

T = |cosα| T̃ , X = |cosα| X̃ and u2 ≡ tanα , (6.4.9)

where T̃ and X̃ are the boosted worldsheet variables used in [51].
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6.4.3 Uniform charge-density limit

Another interesting limit is k → 0, where the densities of Ji tend to distribute uniformly along

the worldsheet space variable σ in our gauge choice.

As for the type (i) case, the parameters a and b go to a → u2 = ±
√
U + tanh2 ω2 and

b→ − tanhω2 , and the fields become

t = τ̃ , ξ1 = 0 , ξ2 = ei
√
Uτ̃ , (6.4.10)

and the conserved charges for one-hop are E =
√
λ/2, J1 = 0 and J2 =

√
λ/2. This is a

point-like, BPS (E − J2 = 0) string, rotating along the great circle in the X3 -X4 plain.

For the type (ii) case, the profile becomes

t̂ =

√
â2 − b̂2 τ̃ , ξ̂1 = Ĉ sin(X − iω1) eiu1T , ξ̂2 = Ĉ cos(X − iω2) eiu2T , (6.4.11)

where Ĉ =
(
cosh2 ω2 + sinh2 ω1

)−1/2
. The angular velocities satisfy u2

1 = u2
2 = U + 1. The

parameters â and b̂ (with â ≥ b̂) are determined by

â2 + b̂2 = −U + 2u2
2 , (6.4.12)

â b̂ = Ĉ2
√
U + 1 (sinhω1 coshω1 ∓ sinhω2 coshω2) , (6.4.13)

where ∓ reflects the sign ambiguity of angular momenta. The conserved charges for one-hop

are evaluated as

Ê =
πâ (1− v̂2)

2
, (6.4.14)

Ĵ1 = −πĈ
2v̂

2
sinhω1 coshω1 , (6.4.15)

Ĵ2 =
πĈ2v̂

2
sinhω2 coshω2 . (6.4.16)

As we are assuming â ≥ b̂ ≥ 0, the situation b̂ = 0 can be realized when ω1 = ω2 with “−”

sign of (6.4.13), or when ω1 = −ω2 with “+” sign. In both cases, the soliton velocity v̂ ≡ b̂/â

vanishes, which then implies the equal spin relation J1 = J2 in view of (6.4.15) and (6.4.16).

This equal two-spin (or “rational”) solution can also be realized as J1 = J2 case of a so-called

constant-radii string solution, which follows from an Ansatz ξj = aj e
i(wjτ+njσ) (j = 1, 2) with

aj constants [38]. From the viewpoint of a finite-gap problem, an equal two-spin case mentioned

above corresponds to a single-cut limit of the symmetric two-cut imaginary root solution, that

is, the limit when the outer two branch points of the cuts go to ±i∞, thus making it a single-cut.

This situation can also be realized as a certain limiting configuration of a single cut distribution

of Bethe roots, that is, when the filling fraction of the spin-chain (the ratio of the number of

impurities to the number of sites) goes to 1/2.
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6.5 On the moduli space of helical solutions

The profile of helical string solutions contains many parameters under several constraints. For

the sake of completeness, we count the number of independent parameters and show several

numerical examples which solve all constraints explicitly.

6.5.1 Number of independent parameters

Computing the moduli space of solutions, namely the number of independent parameters, is

easy. There are four parameters corresponding to four conserved charges, say

(k , U , ω1 , ω2) ↔ (Nϕ1 , Nϕ2 , J1 , J2) . (6.5.1)

In addition, the parameter µ, that is spatial scale of worldsheet, controls the number of hops

n.

Any classical solutions are characterized by two real parameters and three integers (n,N1 , N2),

so the moduli space of solutions is real two-dimensional. If one imposes the semiclassical quan-

tization conditions on J1 and J2 . then the moduli space becomes zero-dimensional, specified

by five integers (n,N1 , N2 , J1 , J2).

From Complex sine-Gordon point of view, there are three parameters (k , U , v) which char-

acterize helical-wave solutions (6.3.1). Helical-wave solutions of the real sine-Gordon model do

not depend on U .

There are other constraints which should be kept in mind when we look for consistent

solutions.

• The reality of ωj is required for the normalizability of ξj as well as the equation of motion.

• The condition v = b/a is required for the timelike winding number to vanish. The

parameters a and b, which are chosen as a solution of Virasoro constraints, must of course

be real.

• The parameters u1 and u2 must be real, which imposes the lower limit on U .

6.5.2 Numerical results

We tried to find a pair of real parameters (ω1 , ω2) which can solve the closedness conditions

for given (k, U) and (n,Nϕ1 , Nϕ2), by computer-aided search.

Because periodic boundary conditions like (6.3.13), (6.3.14) contain the ambiguity of n′1,2 ,

we had to look for solutions up to

Nϕ1 ≡ Nϕ1 + n , and Nϕ2 ≡ Nϕ2 + n . (6.5.2)
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k U n N◦ϕ1
N◦ϕ2

ω1 ω2 v µ E J1 J2

0.7 3 6 1 -1 0.8953 2.914 0.4460 3.155 18.52 11.56 6.284

6 1 -2 1.118 3.195 0.5317 2.986 17.76 12.17 4.852

6 1 -3 1.267 3.436 0.6073 2.801 17.16 12.43 3.784

6 1 -4 1.376 3.676 0.6767 2.595 16.47 12.35 2.930

6 1 -5 1.443 0.2194 0.7241 2.431 15.92 12.14 2.357

6 1 -6 1.465 0.5698 0.7404 2.369 15.80 12.20 1.998

6 -1 5 2.282 3.506 -0.7245 2.431 15.91 12.13 2.355

6 2 -1 0.6285 3.540 0.2411 3.421 20.28 8.394 11.10

6 3 -1 0.3723 0.2639 0.05333 3.520 21.22 7.162 13.08

6 -3 1 3.353 3.459 -0.05283 3.520 21.23 7.167 13.07

0.7 50 6 1 -5 1.344 3.338 0.2392 3.423 76.73 64.01 12.38

0.7 0.1386 6 1 -1 1.057 0 0.7626 2.280 6.146 3.042 1.458

0.7 1.127 6 1 -6 1.143 1.846 0.6686 2.621 12.00 8.511 1.648

Table 6.1: List of numerical values of parameters (k, U, ω1 , ω2) that make strings to be closed.

Once we find a consistent pair of parameters (ω1 , ω2), we can compute the physical winding

number (N◦ϕ1
, N◦ϕ2

).

The results are listed as follows:

There are several interesting features of this result:

• As far as we studied, there is only one solution (N◦ϕ1
, N◦ϕ2

) for any winding number

(Nϕ1 , Nϕ2) defined modulo n. In other words, the winding numbers |Nϕ1| and |Nϕ2| are

bounded from above.

• It seems that the bound on |Nϕ1| is stronger. In fact, the above table suggests |N1| ≤
n/2. Existence of such bound was also consistent with the argument in the Nambu-Goto

approach of [158].

• The inequality E > J1 + J2 is satisfied for all solutions. This is interpreted as the

counterpart of unitarity bound imposed on gauge theory side.

Obviously, the numerical results listed above are neither comprehensive nor satisfactory.

One should not draw any conclusion from it, except that there indeed exist lots of solutions to

both Virasoro constraints and periodicity conditions.

6.6 General 2-cut finite-gap solutions

Helical (spinning) string solutions are identified as general 2-cut finite-gap solutions in [62],

which we will summarize below.
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In Section 3.3.3, we see that general finite-gap solutions on Rt× S3 constructed in [31] are

expressed in terms of the Riemann θ functions. General 2-cut solutions can be obtained when

the Riemann θ functions reduce to the Jacobi θ functions, that is, when the genus is one.

A genus-one algebraic curve is called elliptic. Let us define an elliptic curve by

y2 := (x− x1) (x− x̄1) (x− x2) (x− x̄2) . (6.6.1)

The hermiticity of flat currents requires that the branch points should be located symmetrically

with respect to the real axis. We introduce the normalized holomorphic differential on this

elliptic curve by

ω := ν
/∫

a

ν , ν :=
dx

y
, (6.6.2)

where the integral over a stands for the a-period chosen as in Figure 6.7. Then, the parameters

ρ̃± are given by

iω1 = iρ̃− ≡ 2K(k)

(∫ 0+

∞−
ω − iK′(k)

2K(k)

)
, iω2 = iρ̃+ ≡ 2K(k)

(∫ 0+

∞+

ω − 1

2

)
. (6.6.3)

By using Riemann’s bilinear identity, one can express the integral
∫ 0+

∞∓ ω in terms of the

location of the branch points. The results are∫ 0+

∞∓
ω =

iF (ϕ±, k
′)

2K(k)
, with tan

(ϕ±
2

)
=

(√
x̄2 ±

√
x1

) (√
x̄1 +

√
x2

)
|x1 − x̄2|

, (6.6.4)

where F (ϕ, k) is the normal (or incomplete) elliptic integral of the first kind given in Appendix

A.1. From (6.6.3) and (6.6.4), we obtain the relation between the parameters ω1,2 of helical

strings and the location of the branch points:

ω1 = F (ϕ+, k
′)−K′(k) , ω2 = F (ϕ−, k

′) + iK(k). (6.6.5)

It can be shown that the right hand side of the second equation is always real. So we may

redefine ω2 as

ω2 =


Re [F (ϕ−, k

′)] (for k < 1, k → 1) ,

Re [F (ϕ−, k
′)]− π

2
(for k > 1, k → 1) .

(6.6.6)

This expression is more useful than (6.6.5) for studying the behavior of ω2 near k = 1.

The profile of 2-cut finite-gap solutions obtained in [62] reads

Z1 = C
Θ3

(
X̃ − iρ̃+

)
Θ2

(
iρ̃+

)
Θ0

(
X̃
) exp

(
Z2(iρ̃+, k)X̃ + iv+T̃ + iϕ0

1

)
,

Z2 = C
Θ1

(
X̃ − iρ̃−

)
Θ0

(
iρ̃−
)
Θ0

(
X̃
) exp

(
Z0(iρ̃−, k)X̃ + iv−T̃ + iϕ0

2

)
,

(6.6.7)
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Figure 6.7: Choice of a - and b - cycles for an elliptic curve.

where C and ϕ0
1,2 are real constants. It has exactly the same form as (6.3.4) and (6.3.5) after

trivial interchange of Z1 ↔ Z2 . Let us explain a little more about parameters used here in

terms of algebro-geometric data.

The elliptic modulus k is determined from the location of branch points, as

k′ =
√

1− k2 =

∣∣∣∣x1 − x2

x1 − x̄2

∣∣∣∣ , (6.6.8)

The boosted space coordinate X is defined as

X ≡ X0 +
1

2π

∫
b

dQ = X0 +
1

2π

∫
b

(σdp+ τdq) . (6.6.9)

The integral over b-cycle gives

X̃ ≡ 2K(k)X = X̃0 +
x− vt√
1− v2

, v ≡ y+ − y−
y+ + y−

, (6.6.10)

where (x, t) is given by

(x, t) ≡ (µσ , µτ) , µ ≡ κ
|x1 − x̄2|√
y+y−

, (6.6.11)

and y± = y(x)|x=±1 . The tilde stands for rescaling by 2K(k), like ρ̃± = 2K(k)ρ± , and so on.

The differential dQ appeared also in the exponential term of the general formula (3.3.55)

and (3.3.56). A part of exponential term gives the boosted time coordinate T multiplied by

angular velocities v± , which are given by

T̃ =
t− vx√
1− v2

and v± =
y(0)± 1

|x1 − x̄2|
. (6.6.12)

In finite-gap solutions, the b-period of quasi-momentum is quantized. In the present situa-

tion, the mode number

n ≡ 1

2π

∫
b

dp ∈ Z , (6.6.13)
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is identified as the number of hops. The periodic boundary conditions for a closed string are

expressed as

1

2π

∫ 0+

∞±
dp ≡ −N± ∈ Z . (6.6.14)

Global conserved charges are computed as

E − J1 = 2 Re

[
1

2πi

∮
b

α̃

]
, J2 = 2 Re

[
1

2πi

∮
b

α

]
, (6.6.15)

where the differentials α and α̃ are defined as

α ≡
√
λ

4π

(
x+

1

x

)
dp , α̃ ≡

√
λ

4π

(
x− 1

x

)
dp . (6.6.16)

Recall that an array of dyonic giant magnon solution is obtained by taking k → 1 limit of

helical spinning string. In the finite-gap formulation, from the relation (6.6.8) one finds the

limit k → 1 is equivalent to x1 → x2 .

The quasi-momentum dp(x) on the upper sheet CP1
+ in this singular curve limit is given by

dp(x) =
πκdx

(x− x1)(x− x̄1)

(
|1− x1|2

(x− 1)2
+
|1 + x1|2

(x+ 1)2

)
. (6.6.17)

We substitute this expression into (6.6.15). Because the integral over b-cycle picks up a pole at

x = x1 , global conserved charges are expressed as functions of x1 , as

E − J1 =
n
√
λ

4π

∣∣∣∣(x1 −
1

x1

)
−
(
x̄1 −

1

x̄1

)∣∣∣∣ , (6.6.18)

J2 =
n
√
λ

4π

∣∣∣∣(x1 +
1

x1

)
−
(
x̄1 +

1

x̄1

)∣∣∣∣ . (6.6.19)

For the case of a single dyonic giant magnon, i.e. n = 1, we obtain the famous square-root

formula

E − J1 =

√
J2

2 +
λ

π2
sin2

(p
2

)
. (6.6.20)

The results (6.6.18) and (6.6.19) exactly match with the conserved charges of magnon bound-

states (5.1.57) and (5.1.58) upon identification of the parameters x±1 = X±.
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Chapter 7

Large winding strings

We study a family of classical strings on Rt× S3 background which has large winding numbers

and oscillates in spacetime. They are obtained from helical spinning strings discussed in the

previous chapter by interchanging worldsheet time and space coordinates. They interpolate

various classical strings whose energy is roughly given by the length times the tension of a string,

like pulsating strings and single-spike strings. From a finite-gap perspective, this transformation

is realized as an interchange of quasi-momentum and quasi-energy defined for the algebraic

curve.

This chapter is mainly based on the author’s paper with H. Hayashi, K. Okamura, and B.

Vicedo [97].

7.1 2D-transforming classical strings on Rt× S3

We consider classical string theory on Rt× S3 and relate it to CsG system via the Pohlmeyer-

Lund-Regge reduction procedure, just as in Section 6.1.

We are interested in how the 2D transformation acts on classical strings and solutions of

Complex sine-Gordon equations, respectively. Let us first look at the string equations of motion

(6.1.3) and the Virasoro constraints (6.1.2). In view that they are invariant under the τ ↔ σ

flip, any string solution is mapped to another solution under this map. On closer inspection

of the Virasoro constraints (6.1.2), one actually finds that the τ ↔ σ operation can be applied

independently to the R ⊂ AdS5 and S3 ⊂ S5 parts. We will use this observation to generate

new string solutions from known solutions on R× S3 , by transforming only the S3 part while

retaining the gauge t ∝ τ . In order to satisfy other consistency conditions such as closedness

of the string, one needs to care about the periodicity in the new σ direction (that used to be

the τ direction before the flip).

Before discussing the CsG counterparts of such τ ↔ σ transformed string solutions, it would

be useful to review some relevant aspects of the (C)sG ↔ string correspondence before the
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transformation. A good starting point is a single-spin helical spinning string. From the stand-

point of sG theory, the helical string corresponds to the following helical wave (“kink-train”)

solution of sG equation,

φ(t, x) = 2 arcsin

[
cn

(
(x− x0)− v(t− t0)

k
√

1− v2
, k

)]
. (7.1.1)

via the PLR procedure. The single-spin helical string thus has two controllable parameters

derived from the sG soliton (7.1.1) ; one is the soliton velocity v and the other is the elliptic

moduli parameter k that controls the period of the kink-array. In the k → 1 limit, it reduces

to an array of giant magnons, while as v → 0 , it reduces to a folded/circular string of [35].

Actually there is another periodic solution of sG equation, namely a periodic instanton.

Generally, one can interpret a static, finite energy classical solution of sG theory in (1 + 1) -

dimensions as a finite action Euclidean solution in (1 + 0) -dimension that interpolates between

different vacua of the theory. Such a sG instanton solution is known in the literature (see, e.g.,

[162]) and is given by

φ(t′) = 2 arcsin

[
cn

(
t′ − t′0
k

, k

)]
. (7.1.2)

Here t′ = it is the Euclidean time. One can see that a static kink soliton of sG equation

−∂2
xφ = sinφ (set v = 0 in (7.1.1)) is related to the instanton (7.1.2) of the Euclidean sG

equation ∂2
itφ = −∂2

t′φ = sinφ by a formal translation x↔ t′ (i.e., space-like motion turns into

“time-like” motion), which amounts to swapping worldsheet variables τ ↔ σ . Starting from

the instanton solution (7.1.2) , and boosting it by a parameter v , we obtain a one parameter

family of sG solutions of the form

φ(t′, x′) = 2 arcsin

[
cn

(
(t′ − t′0)− v(x′ − x′0)

k
√

1− v2
, k

)]
(7.1.3)

with (t′, x′) = (it, ix) , which is related to the sG helical wave (7.1.1) by τ ↔ σ .

Via the PLR map, each periodic instanton corresponds to a point-like segment, or “string-

bit”, and an infinite series of such periodic sG instantons (7.1.2) arrayed in the σ-direction make

up the corresponding classical string. Note that for the boosted instanton (7.1.3), v no longer

represents a velocity, rather it should be viewed as a parameter that controls the difference

between time-origins t′0 for each bits. A pulsating string corresponds to the v = 0 case, when

the timing of the pulsation of each string-bits is perfectly right. When the pulsation timing

of the bits is off in a coherent manner, a symmetric “spike” comes into being, reflecting the

staggered motions of bits.1 In the limit k → 1 , the oscillation period of each bit becomes

infinite, and the bits stay in the vicinity of the equator for an infinite amount of time, except

1 The situation is much the same as the case of familiar transverse waves, where oscillation in the medium

takes place in a perpendicular direction to its own motion. This direction of motion corresponds to, in our case,

the circumferential direction along the equator of the sphere.
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during a short sudden jump away from the equator — this is one way to interpret the single-spin

single-spike string of [63] from the sG point of view.2

We have just discussed the way to realise the oscillating solutions resulting from a τ ↔ σ

transformation in terms of a collection of sG instantons. We gave this interpretation because it

is very intuitive. Actually one cannot generalize this argument to the CsG case directly, since in

this case the argument requires χ to be imaginary. So for the CsG case, it would be convenient

instead to interpret the effect of the τ ↔ σ operation as flipping the sign of the “mass” term

in the Lagrangian as

LCsG =
∂aψ

∗ ∂aψ

1− ψ∗ψ
+ ψ∗ψ 7→ ∂aψ

∗ ∂aψ

1− ψ∗ψ
− ψ∗ψ .

In this way one can easily understand how one solution of CsG is related to another via the

τ ↔ σ transformation, keeping φ and χ real.

Notice also, as in the soliton cases, that there are two classes of “boosted” instantons

possible; the first is an instanton that oscillates about one of the barriers of the periodic

potential with fixed finite oscillation range, while the other no longer oscillates back and forth

but goes on from one barrier to the neighboring one. A similar kind of distinction exists for

what we call type (i)′ and type (ii)′ strings.

7.2 Helical oscillating strings

We are now in a position to discuss the 2D transformed helical strings. We first study the type

(i)′ case in the following section 7.2.1. The results on the type (ii)′ solutions will be collected

in section 7.2.2.

7.2.1 Type (i)′ helical strings

We start from the profile of helical spinning strings (6.3.3)-(6.3.5), and swap τ and σ of ξi(τ, σ)

(i = 1, 2) while keeping the relation t (τ, σ) = aT + bX as it is. One then obtains the 2D-

transformed version of the type (i) two-spin helical (spinning) strings, which we call type (i)′

2 As is noticed in [63], for sG case, it is also possible to argue that the τ ↔ σ transformation results in

the change of sG kink soliton from φ = 2 arcsin (1/ coshxv) to φ = 2 arcsin (tanhxv) . However, it seems this

interpretation cannot be directly applied to CsG case.
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helical (oscillating) strings,

t = aT + bX , (7.2.1)

ξ1 = C
Θ0(0)√
kΘ0(iω1)

Θ1(T − iω1)

Θ0(T )
exp

(
Z0(iω1)T + iu1X

)
, (7.2.2)

ξ2 = C
Θ0(0)√
kΘ2(iω2)

Θ3(T − iω2)

Θ0(T )
exp

(
Z2(iω2)T + iu2X

)
. (7.2.3)

The coordinates (T,X) and the normalization constant C are same as before. Virasoro con-

straints fix the parameters a and b as in (6.3.7) and (6.3.8), and the PLR reduction relation

(6.1.7) relates u1 and u2 as (6.3.9). We adjust the parameter v such that the AdS time is

proportional to the worldsheet time variable, namely η0 =
√
a2 − b2 τ̃ with v ≡ b/a ≤ 1 .

We are interested in closed string solutions, which means we need to consider the periodicity

conditions. The period in σ -direction is defined such that it leaves the theta functions in (6.3.4)

and (6.3.5) invariant, namely it is given by

− ` ≤ σ ≤ `, ` =
K
√

1− v2

vµ
, (v > 0) . (7.2.4)

Then, closedness of the string requires

∆σ ≡ 2π

n
=

2K
√

1− v2

vµ
, (7.2.5)

∆ϕ1 ≡
2πNϕ1

n
= 2K

(u1

v
+ iZ0(iω1)

)
+ (2n′1 + 1)π , (7.2.6)

∆ϕ2 ≡
2πNϕ2

n
= 2K

(u2

v
+ iZ2(iω2)

)
+ 2n′2π , (7.2.7)

where n = 1, 2, . . . counts the number of periods in 0 ≤ σ ≤ 2π , and Nϕ1 ,ϕ2 are the winding

numbers in ϕ1,2 -directions respectively. The integers n′1,2 specify the ranges of ω1,2 respectively.

The energy and angular momenta of a string, defined in (6.2.15), yields

E =
na(1− v2)

v
K =

n(a2 − b2)

b
K , (7.2.8)

J1 =
nC2 u1

k2

[
E−

(
dn2(iω1) +

ik2

vu1

sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (7.2.9)

J2 =
nC2 u2

k2

[
−E− (1− k2)

(
sn2(iω2)

cn2(iω2)
− i

vu2

sn(iω2) dn(iω2)

cn3(iω2)

)
K

]
. (7.2.10)

It is meaningful to compare the above expressions with those of type (i) helical spinning strings,
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(6.3.15)-(6.3.17) :

E (i) = na
(
1− v2

)
K =

n(a2 − b2)

a
K , (7.2.11)

J (i)
1 =

nC2 u1

k2

[
−E +

(
dn2(iω1) +

ivk2

u1

sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (7.2.12)

J (i)
2 =

nC2 u2

k2

[
E + (1− k2)

(
sn2(iω2)

cn2(iω2)
− iv

u2

sn(iω2) dn(iω2)

cn3(iω2)

)
K

]
. (7.2.13)

If we regard E and Ji as functions of v = b/a, the global charges of the transformed solutions are

related to the original ones by E(a, b) = −E (i)(b, a) and Ji(v) = −J (i)
i (−1/v) . Similar relations

are also true for the winding numbers given in (7.2.6) and (7.2.7), Nϕi(v) = −N (i)
ϕi (−1/v)

(i = 1, 2) . They are just a consequence of the symmetry a ↔ b the Virasoro constraints

possess. For example, if (a, b) = (a0, b0) solves (6.3.7) and (6.3.8), then (a, b) = (b0, a0) gives

another solution.

Notice that in the limit v → 0 (ω1,2 → 0) , all the winding numbers in (7.2.5)-(7.2.7) become

divergent (and so ill-defined), due to the fact that the θ defined in (3.2.2) becomes independent

of σ . Therefore, in this limiting case, we may choose µ arbitrarily without the need of solving

(7.2.5), provided that Nϕ1 and Nϕ2 are both integers.

Figure 7.1: Type (i)′ helical string (k = 0.68 , n = 6) , projected onto S2 . The figure shows a single-

spin case (u2 = ω2 = 0) . The (red) circle indicates the θ = 0 line (referred to as the “equator” in the

main text).

The type (i)′ helical strings contains both pulsating strings and single-spike strings in par-

ticular limits. Below we will consider various limits including them.

• ω1,2 → 0 limit : Pulsating strings

Let us first consider the ω1,2 → 0 limit. In this limit, the boosted coordinates (6.2.4) reduce to

(T,X)→ (τ̃ , σ̃) , and (7.2.1)-(7.2.3) become

t =
√
k2 + u2

2 τ̃ , ξ1 = k sn(τ̃ , k) eiu1σ̃ , ξ2 = dn(τ̃ , k) eiu2σ̃ , (7.2.14)
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with the constraint u2
1 − u2

2 = 1 . Since the radial direction is independent of σ , we may treat

µ as a free parameter satisfying Nϕ1 = µu1 and Nϕ2 = µu2 . Then the conserved charges for a

period become

E = πk

√
N2
ϕ1

+

(
1

k2
− 1

)
N2
ϕ2
, J1 = J2 = 0 . (7.2.15)

Left of Figure 7.2 shows the time evolution of the type (i)′ pulsating string. It stays above

the equator, and sweeps back and forth between the pole (θ = π
2
) and the turning latitude

determined by k .

When we set u2 = 0 , this string becomes identical to the simplest pulsating solution studied

in [41] (the zero-rotation limit of rotating and pulsating strings studied in [42, 43]).3

• k → 1 limit : Single-spike strings

When the moduli parameter k goes to unity, type (i)′ helical string becomes an array of single-

spike strings studied in [63, 64]. Dependence on ω2 drops out in this limit, so we write ω instead

ω1 . The Virasoro constraints can be explicitly solved by setting a = u1 and b = tanω . The

profile of the string then becomes

t =
√

1 + u2
2 τ̃ , ξ1 =

sinh(T − iω)

cosh(T )
ei tan(ω)T+iu1X , ξ2 =

cos(ω)

cosh(T )
eiu2X . (7.2.16)

with the constraint u2
1 − u2

2 = 1 + tan2 ω .4 The conserved charges are computed as

E =

(
u2

1 − tan2 ω

tanω

)
K(1) , J1 = u1 cos2 ω , J2 = u2 cos2 ω , (7.2.17)

where K(1) is a divergent constant. For n = 1 case (single spike), the expressions (7.2.17)

result in

J1 =
√
J 2

2 + cos2 ω , i .e., J1 =

√
J2

2 +
λ

π2
cos2 ω . (7.2.18)

Since the winding number ∆ϕ1 also diverges as k → 1 , this limit can be referred to as the

“infinite winding” limit,5 which can be viewed as the 2D-transformed version of the infinite

spin limit of [49]. By examining the periodicity condition carefully, one finds that both of the

divergences come from the same factor K(k)|k→1 . Using the formula (A.4.24), one can deduce

that

E − ∆ϕ1

2

∣∣∣∣
k→1

= −
(
ω − (2n′1 + 1) π

2

)
≡ θ̄ . (7.2.19)

Using the θ̄ variable introduced above, which is the same definition as used in [63], one can see

(7.2.18) precisely reproduces the relation between spins obtained in [63].

3 The type (i)′ pulsating solution studied here and also the type (ii)′ pulsating string discussed later are

qualitatively different solutions from the so called “rotating pulsating string” [42], so that the finite-gap inter-

pretation and the gauge theory interpretation of type (i)′ and (ii)′ are also different from those of [42].
4 Here u1,2 and ω are related to γ used in [63] (see their Eq. (6.23)) by u1 = 1

cos γ cosω and u2 = tan γ
cosω .

5 Notice, however, that the string wraps very close to the equator but touches it only once every period

(every “cusp”).
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Figure 7.2: In the ω1,2 → 0 limit, type (i)′ (Left figure) and type (ii)′ (Right figure) helical strings

reduce to different types of pulsating strings. Their behaviors are different in that the type (i)′ sweeps

back and forth only in the top hemisphere with turning latitude controlled by the elliptic modulus,

while the type (ii)′ pulsates on the entire sphere, see Section 7.2.2. For the type (ii)′ case, we only

showed half of the oscillation period (for the other half, it sweeps back from the south pole to the

north pole).
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Figure 7.3: The k → 1 limit of type (i)′ helical string : single-spike string (ω = 0.78) . The figure

shows the single-spin case (u2 = ω2 = 0) .

Let us comment on a subtly about v → 0 (or equivalently ω → 0) limit of a single spike

string. It is easy to see the profile of single-spike solution (7.2.16) with ω = 0 agrees with

that of pulsating string solution (7.2.14) with k = 1 , however, due to a singular nature of the

v → 0 limit, the angular momenta of both solutions (7.2.18) and (7.2.15) do not agree if we

just naively take the limits on both sides.

• k → 0 limit : Rational circular (static) strings

Another interesting limit is to send k to zero, where elliptic functions reduce to rational func-

tions. The Virasoro conditions become

a2 + b2 = u2
2 + tanh2 ω2 and ab = ±u2 tanhω , (7.2.20)

where u2 =
√
U + tanh2 ω . This can be solved by a = u2 and b = tanhω (assuming U > 0).

The profile is given by

t =
√
Uτ̃ , ξ1 = 0 , ξ2 = ei

√
Uσ̃ . (7.2.21)

This is an unstable string that has no spins and just wraps around one of the great circles, and

can be viewed as the τ ↔ σ transformed version of a point-like, BPS string with E−(J1 +J2) =

0 . The conserved charges for one period reduce to

E = πµ
√
U , J1 = J2 = 0 . (7.2.22)

The winding number for the ϕ2 -direction becomes Nϕ2 = µ
√
U , so the energy can also be

written as

E = Nϕ2

√
λ = (2πNϕ2)×

(√λ
2π

)
. (7.2.23)

Thus the energy of rational circular strings is given by (length)× (tension).

114



• u2, ω2 → 0 : Single-spin limit

A single-spin type (i)′ helical string is obtained by setting u2 = ω2 = 0 , which results in

J2 = Nϕ2 = 0 .6 In view of (6.3.9), the condition u2 = ω2 = 0 requires U = 0 , u1 = dn(iω)

and C = k/ dn(iω) , and the Virasoro constraints (6.3.7) and (6.3.8) are solved by setting

a = k cn(iω) , b = −ik sn(iω) and v = −i sn(iω)/ cn(iω) . Periodicity conditions then become

∆σ =
2π

n
=

2iK

µ sn(iω)
,

2πNϕ2

n
= 0 , (7.2.24)

∆ϕ1 =
2πNϕ1

n
= 2iK

(
cn(iω) dn(iω)

sn(iω)
+ Z0(iω)

)
+ (2n′1 + 1) π , (7.2.25)

and the conserved charges for one period are

E =
ik

sn(iω)
K , J1 =

1

dn(iω)

[
E−

(
1− k2

)
K
]
, J2 = 0 . (7.2.26)

7.2.2 Type (ii)′ helical strings

The type (ii)′ solution can be obtained from the type (i)′ solutions, either by shifting ω2 7→
ω2 + K′ or by transforming k to 1/k . The profile is given by7

t̂ = âT + b̂X , (7.2.27)

ξ̂1 = Ĉ
Θ0(0)√
kΘ0(iω1)

Θ1(T − iω1)

Θ0(T )
exp

(
Z0(iω1)T + iu1X

)
, (7.2.28)

ξ̂2 = Ĉ
Θ0(0)√
kΘ3(iω2)

Θ2(T − iω2)

Θ0(T )
exp

(
Z3(iω2)T + iu2X

)
, (7.2.29)

The normalization constant C is same as that of Section 6.3.2. The equations of motion imposes

the relation (6.3.24) on u1 and u2 . Virasoro conditions are equivalent to (6.3.22) and (6.3.23).

As in the type (i)′ case, we can set t̂ =
√
â2 − b̂2 τ̃ with v̂ ≡ b̂/â ≤ 1 .

The periodicity conditions for the type (ii)′ solutions become

∆σ ≡ 2π

m
=

2K
√

1− v̂2

v̂µ
, (7.2.30)

∆ϕ1 ≡
2πMϕ1

m
= 2K

(u1

v̂
+ iZ0(iω1)

)
+ (2m′1 + 1) π , (7.2.31)

∆ϕ2 ≡
2πMϕ2

m
= 2K

(u2

v̂
+ iZ3(iω2)

)
+ (2m′2 + 1) π , (7.2.32)

where m = 1, 2, . . . counts the number of periods in 0 ≤ σ ≤ 2π , and Mϕ1 ,ϕ2 are the winding

numbers in the ϕ1,2-directions respectively, and m′1,2 are integers. The conserved charges are

6 It turns out the other single-spin limit u1 , ω1 → 0 , which gives J1 = 0 , does not result in real solutions

for this type (i)′ case.
7 We use a hat to indicate type (ii)′ variables.
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given by

Ê =
ma(1− v2)

v
K =

n(a2 − b2)

b
K , (7.2.33)

Ĵ1 =
mĈ2 u1

k2

[
E−

(
dn2(iω1) +

ik2

v̂u1

sn(iω1) cn(iω1) dn(iω1)

)
K

]
, (7.2.34)

Ĵ2 =
mĈ2 u2

k2

[
−E + (1− k2)

(
1

dn2(iω2)
− ik2

v̂u2

sn(iω2) cn(iω2)

dn3(iω2)

)
K

]
. (7.2.35)

Just as in the type (i) ↔ (i)′ case, the winding numbers and the conserved charges of the

original type (ii) and (ii)′ are related by Ê(â, b̂) = −Ê (ii)(b̂, â) , Ĵi(v̂) = −Ĵ (ii)
i (−1/v̂) and

Mϕi(v̂) = −M (ii)
ϕi (−1/v̂) .

Figure 7.4: Type (ii)′ helical string (k = 0.40 ,m = 8) . The figure shows a single-spin case (u2 =

ω2 = 0) .

As in the type (i)′ case, we can take various limits.

• ω1,2 → 0 limit : Pulsating strings

The profiles (6.3.18)-(6.3.20) reduce to

t̂ =
√

1 + u2
2 τ̃ , ξ̂1 = sn(τ̃ , k) eiu1σ̃ , ξ̂2 = cn(τ̃ , k) eiu2σ̃ , (7.2.36)

with constraint u2
1 − u2

2 = k2 . The conserved charges for a period become

E =
π

k

√
M2

ϕ1
+ (k2 − 1)M2

ϕ2
, J1 = J2 = 0 . (7.2.37)

Right of Figure 7.2 shows the time evolution of the type (ii)′ pulsating string. Again, when we

set u2 = 0 , this string reduces to the simplest pulsating solution studied in [41].
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• k → 1 limit : Single-spike strings

This limit results in essentially the same solution as the type (i)′ case, that is an array of

single-spike strings. The only difference is that while in the type (i)′ case every cusp appears

in the same side about the equator, say the northern hemisphere, in the type (ii)′ case cusps

appear in both the northern and southern hemispheres in turn, each after an infinite winding.

• k → 0 limit : Rational circular strings

In the k → 0 limit, the profile becomes

t̂ =

√
â2 − b̂2 τ̃ , ξ̂1 = Ĉ sin(T − iω1) eiu1X , ξ̂2 = Ĉ cos(T − iω2) eiu2X , (7.2.38)

with Ĉ =
(
cosh2 ω2 + sinh2 ω1

)−1/2
and u2

1 = u2
2 = U + 1 . Virasoro constraints imply the

following set of relations between the parameters â and b̂ (with â ≥ b̂):

â2 + b̂2 = −U + 2u2
2 , (7.2.39)

â b̂ = Ĉ2
√
U + 1 (sinhω1 coshω1 ∓ sinhω2 coshω2) . (7.2.40)

Here ∓ reflects the sign ambiguity in the angular momenta. The periodicity conditions become

∆σ ≡ 2π

m
=
π
√

1− v̂2

v̂µ
, (7.2.41)

∆ϕ1 ≡
2πMϕ1

m
=
πu1

v̂
+ (2m′1 + 1) π , (7.2.42)

∆ϕ2 ≡
2πMϕ2

m
=
πu2

v̂
+ (2m′2 + 1) π . (7.2.43)

The conserved charges for a single period are evaluated as

Ê =
πâ (1− v̂2)

2 v̂
, Ĵ1 =

πĈ2

2v̂
sinhω1 coshω1 , Ĵ2 = −πĈ

2

2v̂
sinhω2 coshω2 . (7.2.44)

• u2 , ω2 → 0 : Single-spin limit

As in the type (i)′ case, we obtain the type (ii)′ helical strings with J2 = Mϕ2 = 0 by setting

u2 = ω2 = 0.8 Then we find U = −1 + k2 , u1 = k cn(iω) and Ĉ = 1/ cn(iω) . The Virasoro

conditions require â = dn(iω) , b̂ = −ik sn(iω) and v̂ = −ik sn(iω)/ dn(iω) . The periodicity

conditions become

∆σ =
2π

m
=

2iK

µk sn(iω)
,

2πMϕ2

m
= 0 , (7.2.45)

∆ϕ1 =
2πMϕ1

m
= 2iK

(
cn(iω) dn(iω)

sn(iω)
+ Z0(iω)

)
+ (2m′1 + 1) π , (7.2.46)

8 For the type (ii)′ case, the other single-spin limit u1 = ω1 = 0 results in U = −1 , u22 = −1 + (1 −
k2)/dn2(iω2) and Ĉ = dn(iω2)/ cn(iω2) . It turns out equivalent to the ω1,2 → 0 limit, because u2 must be

real, and thus the second condition implies ω2 = 0 .
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and the conserved charges for a single period are given by

Ê =
i

k sn(iω)
K , Ĵ1 =

1

k cn(iω)
E , Ĵ2 = 0 . (7.2.47)

7.3 Finite-gap interpretation

The helical strings (6.3.4), (6.3.5) of [96] were shown in [62] to be equivalent to the most general

elliptic (“two-cut”) finite-gap solution on R×S3 ⊂ AdS5×S5 , with both cuts intersecting the

real axis within the interval (−1, 1) (see Figure 7.5 (a)). The aim of this section is to present

the corresponding finite-gap description of the τ ↔ σ transformed helical string (7.2.2), (7.2.3)

obtained in the previous section.

Recall first from [62] that the (σ, τ)-dependence of the general finite-gap solution enters

solely through the differential form

dQ(σ, τ) =
1

2π
(σdp+ τdq) , (7.3.1)

where dp and dq are the differentials of the quasi-momentum and quasi-energy defined below by

their respective asymptotics near the points x = ±1. The differential multiplying σ in dQ(σ, τ)

(namely dp) is related to the eigenvalues of the monodromy matrix, which by definition is

the parallel transporter along a closed loop σ ∈ [0, 2π] on the worldsheet. This is because

the Baker-Akhiezer vector ψ(P, σ, τ), whose (σ, τ)-dependence also enters solely through the

differential form dQ(σ, τ) in (7.3.1), satisfies [31]

ψ(P, σ + 2π, τ) = exp

{
i

∫ P

∞+

dp

}
ψ(P, σ, τ) .

Now it is clear from (7.3.1) that the σ ↔ τ operation can be realised on the general finite-gap

solution by simply interchanging the quasi-momentum with the quasi-energy,

dp ↔ dq . (7.3.2)

However, since we wish dp to always denote the differential related to the eigenvalues of the

monodromy matrix, by the above argument it must always appear as the coefficient of σ

in dQ(σ, τ). Therefore equation (7.3.2) should be interpreted as saying that the respective

definitions of the differentials dp and dq are interchanged, but dQ(σ, τ) always takes the same

form as in (7.3.1).

Before proceeding let us recall the precise definitions of these differentials dp and dq . Con-

sider an algebraic curve Σ , which admits a hyperelliptic representation with cuts. For what

follows it will be important to specify the position of the different cuts relative to the points

x = ±1 , i.e., Figures 7.5 (a) and 7.5 (b) are to be distinguished for the purpose of defining dp

and dq . We could make this distinction by specifying an equivalence relation on representa-

tions of Σ in terms of cuts, where two representations are equivalent if the cuts of one can be
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deformed into the cuts of the other within CP1 \ {±1} . It is straightforward to see that there

are only two such equivalence classes for a general algebraic curve Σ . For example, in the case

of an elliptic curve Σ the representatives of these two equivalence classes are given in Figures

7.5 (a) and 7.5 (b). Now with respect to a given equivalence class of cuts, the differentials dp

and dq can be uniquely defined on Σ as in [31] by the following conditions:

(1) their A-period vanishes.

(2) their respective poles at x = ±1 are of the following form, up to a trivial overall change

of sign (see [62]),

dp(x±) ∼
x→+1

∓ πκdx

(x− 1)2
, dp(x±) ∼

x→−1
∓ πκdx

(x+ 1)2
, (7.3.3)

dq(x±) ∼
x→+1

∓ πκdx

(x− 1)2
, dq(x±) ∼

x→−1
± πκdx

(x+ 1)2
, (7.3.4)

where x± ∈ Σ denotes the pair of points above x , with x+ being on the physical sheet,

and x− on the other sheet.

Once the differentials dp and dq have been defined by (7.3.3) and (7.3.4) with respect to a given

equivalence class of cuts, one can move the cuts around into the other equivalence class (by

crossing say x = −1 with a single cut) to obtain a representation of dp and dq with respect

to the other equivalence class of cuts. So for instance, if we define dp and dq by (7.3.3) and

(7.3.4) with respect to the equivalence class of cuts in Figure 7.5 (a), then with respect to the

equivalence class of cuts in Figure 7.5 (b) the definition of dp will now be (7.3.4) and that of

dq will now be (7.3.3).

Figure 7.5: Different possible arrangements of cuts relative to x = ±1 : (a) corresponds to the helical

string, (b) corresponds to the τ ↔ σ transformed helical string.

In summary, both equivalence classes of cuts represents the very same algebraic curve Σ , but

each equivalence class gives rise to a different definition of dp and dq . So the two equivalence
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classes of cuts give rise to two separate finite-gap solutions but which can be related by a

τ ↔ σ transformation (7.3.2). Indeed, if in the construction of [62], it is assumed the generic

configuration of cuts given in Figure 7.5 (b), instead of Figure 7.5 (a), then the resulting solution

is the generic helical string but with

X ↔ T

namely the 2D transformed helical string (7.2.2), (7.2.3). Therefore, with dp and dq defined

as above by their respective asymptotics (7.3.3) and (7.3.4) at x = ±1, the helical string of

[96, 62] is the general finite-gap solution corresponding to the class represented by Figure 7.5

(a), whereas the 2D transformed helical string corresponds to the most general elliptic finite-gap

solution on R× S3 with cuts in the other class represented in Figure 7.5 (b).

As is clear from the above, a given finite-gap solution is not associated with a particular

equivalence class of cuts; since dp and dq are defined relative to an equivalence class of cuts,

one can freely change equivalence class provided one also changes the definitions of dp and dq

with respect to this new equivalence class according to (7.3.2), so that in the end dp and dq

define the same differentials on Σ in either representation. For example, we can describe the

2D transformed helical string in two different ways: either we take the configuration of cuts

in Figure 7.5 (b) with dp and dq defined as usual by their asymptotics (7.3.3) and (7.3.4) at

x = ±1 , or we take the configuration of cuts in Figure 7.5 (a) but need to swap the definitions

of dp and dq in (7.3.3) and (7.3.4). In the following we will use the latter description of Figure

7.5 (a) in order to take the singular limit k → 1 where the cuts merge into a pair of singular

points.

We can obtain expressions for the global charges J1 = (JL + JR)/2 , J2 = (JL− JR)/2 along

the same lines as in [62] for the helical string. In terms of the differential form

α ≡
√
λ

4π

(
x+

1

x

)
dp , α̃ ≡

√
λ

4π

(
x− 1

x

)
dp , (7.3.5)

we can write

J1 = −Res0+α + Res∞+α = Res0+α̃ + Res∞+α̃ , (7.3.6)

J2 = −Res0+α− Res∞+α . (7.3.7)

Note that α and α̃ both have simple poles at x = 0 , ∞ but α̃ also has simple poles at x = ±1

coming from the double poles in dp at x = ±1 . It follows that we can rewrite (7.3.6), (7.3.7)

as

J1 = −
2∑
I=1

1

2πi

∫
AI
α̃− Res(+1)+α̃− Res(−1)+α̃ , (7.3.8)

J2 =
2∑
I=1

1

2πi

∫
AI
α , (7.3.9)
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where AI is the A-cycle around the I-th cut. Whereas in [62] the residues of α̃ at x = ±1 were

of the same sign (as a consequence of p(x) having equal residues at x = ±1) so that their sum

gave the energy E of the string, in the present 2D-transformed helical case the residues of α̃

at x = ±1 are now opposite (since p(x) now has opposite residues at x = ±1) and therefore

cancel in the above expression for J1 , resulting in the following expressions

− J1 =
2∑
I=1

1

2πi

∫
AI
α̃ , J2 =

2∑
I=1

1

2πi

∫
AI
α . (7.3.10)

Figure 7.6: Definitions of cycles. Figure 7.7: k → 1 limit of cuts.

In parallel to the discussion of the helical string case in [62], there are two types of limits one

can consider: the symmetric cut limit (where the curve acquires the extra symmetry x↔ −x)

which corresponds to taking ω1,2 → 0 in the finite-gap solution, or the singular curve limit

which corresponds to taking the moduli of the curve to one, k → 1 . In the symmetric cut

limit the discussion is identical to that in [62] (when working with the configuration of cuts in

Figure 7.5 (a)), in particular there are two possibilities corresponding to the type (i)′ and type

(ii)′ cases, for which the cuts are symmetric with x1 = −x̄2 and imaginary with x1 = −x̄1 ,

x2 = −x̄2 respectively (see Figure 2 of [62]).

In the singular limit k → 1 where both cuts merge into a pair of singular points at x = x1 ,

x̄1 [62], the sum of A-cycles turns into a sum of cycles around the points x1, x̄1 , so that (7.3.10)

yields in this limit

− J1 = Resx1α̃ + Resx1α̃ , J2 = Resx1α + Resx1α . (7.3.11)

Moreover, in the singular limit dp acquires simple poles at x = x1 , x̄1 so that the periodicity

condition about the B-cycle,
∫
B dp = 2πn , implies

Resx1dp =
n

i
.
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Let us set n = 1 (n can be easily recovered at any moment). Then (7.3.11) simplifies to

−J1 =

√
λ

4π

∣∣∣∣(x1 −
1

x1

)
−
(
x̄1 −

1

x̄1

)∣∣∣∣ , (7.3.12)

J2 =

√
λ

4π

∣∣∣∣(x1 +
1

x1

)
−
(
x̄1 +

1

x̄1

)∣∣∣∣ . (7.3.13)

The energy E =
√
λκ = (n

√
λ/π) E diverges in the singular limit k → 1 , but this divergence

can be related to the one in ∆ϕ1 . In the present case the σ-periodicity condition
∫
B dp ∈ 2πZ

can be written as

−2K
√

1− v2

v
=

2π

n
µ ≡ 2πκ|x1 − x̄2|

n
√
y+y−

,

where we used (6.6.11). Using this σ-periodicity condition the energy can be expressed in the

k → 1 limit as

E =
u1

v

(
1− v2

)
K(1) .

We can relate this divergent expression with the expression (7.2.6) for ∆ϕ1 which also diverge

in the limit k → 1 , making use of the relation u1v = tanω1 ,9 and find

E − ∆ϕ1

2
= −

(
ω1 −

(2n′1 + 1)π

2

)
≡ θ̄ . (7.3.14)

Comparing this scenario with the one for helical strings in [62] we can write an expression for

θ̄ in terms of the spectral data x1 of the singular curve. Identifying

θ̄ = − i
2

ln

(
x1

x̄1

)
, (7.3.15)

the expressions (7.3.12), (7.3.13) and (7.3.15) together imply the relation10

− J1 =

√
J2

2 +
λ

π2
sin2 θ̄ . (7.3.16)

9The notation in Section 6.6 is u1 = v− and ω1 = ρ̃− .
10 The sign difference between (7.2.18) and here is not essential.
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Chapter 8

AdS helical strings

This chapter is devoted to construction of helical string solutions on AdS3 × S1 ⊂ AdS5 × S1.

The construction almost parallels that in previous two chapters. However, non-compactness of

the AdS space leads to new non-trivial features compared to the Rt× S3 case.

8.1 Classical strings on AdS3 × S1 and Complex sinh-

Gordon model

A string theory on AdS3 × S1 ⊂ AdS5 × S5 spacetime is described by an O(2, 2)×O(2) sigma

model. Let us denote the coordinates of the embedding space as η0 , η1 (for AdS3) and ξ1 (for

S1) and set the radii of AdS3 and S1 both to unity,

~η ∗ · ~η ≡ − |η0|2 + |η1|2 = −1 , |ξ1|2 = 1 . (8.1.1)

In the standard polar coordinates, the embedding coordinates are expressed as

η0 = cosh ρ eit , η1 = sinh ρ eiφ1 , ξ1 = eiϕ1 , (8.1.2)

and all the charges of the string states are defined as Nöther charges associated with shifts of

the angular variables. The bosonic Polyakov action for the string on AdS3 × S1 is given by

S = −
√
λ

4π

∫
dσdτ

[
γab (∂a~η

∗ · ∂b~η + ∂aξ
∗ · ∂bξ ) + Λ̃

(
~η ∗ · ~η + 1

)
+ Λ

(
ξ∗1 · ξ1 − 1

)]
, (8.1.3)

and we take the same conformal gauge as in the Rt× S3 case. From the action (8.1.3) we get

the equations of motion

∂a∂
a~η − (∂a~η

∗ · ∂ a~η) ~η = 0 , ∂a∂
aξ1 + (∂aξ

∗
1 · ∂ aξ1) ξ1 = 0 , (8.1.4)

and Virasoro constraints

0 = Tσσ = Tττ =
δab

2
(∂a~η

∗ · ∂b~η + ∂aξ
∗
1 · ∂bξ1) , (8.1.5)

0 = Tτσ = Tστ = Re (∂τ~η
∗ · ∂σ~η + ∂τξ1 · ∂σξ∗1) . (8.1.6)

123



We assume δab∂aξ
∗
1 · ∂bξ1 = 1 and ∂τξ1 · ∂σξ∗1 throughout this section. In contrast to the Rt× S3

case, however, it is possible to construct string solutions with δab∂aξ
∗
1 · ∂bξ1 = 0 as was done in

[163].

The PLR reduction procedure, which we made use of in obtaining the O(4) sigma model

solutions from Complex sine-Gordon solution, also works for the current case in much the same

way. The O(2, 2) sigma model in conformal gauge is now related to what we call Complex

sinh-Gordon (CshG) model, which is defined by the Lagrangian

LCshG =
∂ aψ∗∂aψ

1 + ψ∗ψ
+ ψ∗ψ , (8.1.7)

with ψ = ψ(τ, σ) being a complex field. It can be viewed as a natural generalization of the

well-known sinh-Gordon model in the sense we describe below. By defining two real fields α and

β of the CshG model through ψ ≡ sinh (α/2) exp(iβ/2) , the Lagrangian (8.1.7) is rewritten as

LCshG =
1

4
(∂aα)2 +

tanh2(α/2)

4
(∂aβ)2 + sinh2(α/2) . (8.1.8)

The equations of motion that follow from the Lagrangian are

∂ a∂aψ − ψ∗
∂ aψ ∂aψ

1 + ψ∗ψ
− ψ (1 + ψ∗ψ) = 0 , (8.1.9)

i.e.,


∂ a∂aα−

sinh(α/2)

2 cosh3(α/2)
(∂aβ)2 − sinhα = 0 ,

∂ a∂aβ +
2 ∂aα ∂

aβ

sinhα
= 0 .

(8.1.10)

We refer to the coupled equations (8.1.10) as Complex sinh-Gordon (CshG) equations. If β is

a constant field, the first equation in (8.1.10) reduces to

∂a∂
aα− sinhα = 0 . (8.1.11)

which is the ordinary sinh-Gordon equation. As readers familiar with the PLR reduction can

easily imagine, it is this field α that gets into a self-consistent potential in the Schrödinger

equation this time. Namely, we can write the string equations of motion given in (8.1.4) as

∂a∂
a~η − (coshα) ~η = 0 , coshα ≡ ∂a~η

∗ · ∂ a~η , (8.1.12)

with the same field α we introduced as the real part of the CshG field ψ . What this means is that

if {~η , ξ} is a consistent string solution which satisfies Virasoro conditions (8.1.5) and (8.1.6),

then ψ = sinh (α/2) exp(iβ/2) defined via (8.1.12) and (8.1.16) solves the CshG equations.

The derivation of this fact parallels the usual PLR reduction procedure. Let us define

worldsheet light-cone coordinates as σ± = τ±σ , and the embedding coordinates as η0 = Y0+iY5

and η1 = Y1 + iY2 . Then consider the equations of motion of the O(2, 2) nonlinear sigma model

through the constraints

~Y · ~Y = −1 , (∂+
~Y )2 = −1 , (∂−~Y )2 = −1 , ∂+

~Y · ∂−~Y ≡ − coshα , (8.1.13)
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where ~Y · ~Y ≡ (~Y )2 ≡ −(Y0)2 + (Y1)2 + (Y2)2 − (Y5)2 . A basis of O(2, 2)-covariant vectors can

be given by Yi , ∂+Yi , ∂−Yi and Ki ≡ εijklY
j∂+Y

k∂−Y
l . By defining a pair of scalar functions

u and v as

u ≡
~K · ∂ 2

+
~Y

sinhα
, v ≡

~K · ∂ 2
−
~Y

sinhα
, (8.1.14)

the equations of motion of the O(2, 2) sigma model are recast in the form

∂−∂+α + sinhα +
uv

sinhα
= 0 , ∂−u =

v ∂+α

sinhα
, ∂+v =

u ∂−α

sinhα
. (8.1.15)

One can easily confirm that this set of equations is equivalent to the pair of equations (8.1.10)

of CshG theory, under the identifications

u = (∂+β) tanh
α

2
, v = −(∂−β) tanh

α

2
. (8.1.16)

Thus there is a (classical) equivalence between the O(2, 2) sigma model ↔ CshG as in the

O(4) ↔ CsG case. Making use of the equivalence, one can construct classical string solutions

on AdS3 × S1 by the following recipe :

1. Find a solution ψ of CshG equation (8.1.9).

2. Identify coshα ≡ ∂a~η
∗ · ∂ a~η , where α appears in the real part of the solution ψ , and η

are the embedding coordinates of the corresponding string solution in AdS3 .

3. Solve the “Schrödinger equation” (8.1.12) together with the Virasoro constraints (8.1.5)

and (8.1.6), under appropriate boundary conditions.

4. Resulting set of ~η (“wavefunction”) and ξ1 gives the corresponding string profile in AdS3×
S1 .

Let us start with step 1. From the similarities between the CshG equation and the CsG

equation, it is easy to find helical-wave solutions of the CshG equation. Here we give two such

solutions that will be important later. The first one is given by

ψcd = kc
cn(cxv)

dn(cxv)
exp

(
i
√

(1 + c2)(1 + k2c2) tv

)
, (8.1.17)

and the second one is

ψds = c
dn(cxv)

sn(cxv)
exp

(
i
√

(1− k2c2)(1 + c2 − k2c2) tv

)
. (8.1.18)

By substituting the solution (8.1.18) into the string equations of motion (8.1.12), we obtain[
−∂2

T + ∂2
X − k2

(
2

k2 sn2(X, k)
− 1

)]
~η = U~η , (8.1.19)

under the identification of (µτ, µσ) ≡ (ct, cx) . The “eigenenergy” U can be treated as a free

parameter as was the case in [96]. Different choices of helical-waves of CshG equation simply

correspond to taking different ranges of U .
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We are now at the stage of constructing the corresponding string solution by following the

steps 2 - 4 listed before. However, we do not need to do this literally. Since the metrics of

AdS3 × S1

string solutions on both manifolds are related by a sort of analytic continuation of global

coordinates. Therefore, the simplest way to obtain helical string solutions on AdS3 × S1 is

to perform analytic continuation of helical string solutions on Rt× S3, as will be done in the

following sections. Large parts of the calculation parallel the R×S3 case. The most significant

difference lies in the constraints imposed on the solution of the equations of motion, such as

the periodicity conditions.

8.2 Helical strings on AdS3 × S1 with two spins

In this section, we consider the analytic continuation of helical strings on Rt× S3 to those on

AdS3 × S1. Among various possible solutions, we will concentrate on two particular examples

that have clear connections with known string solutions of interest to us. The first example,

called type (iii) helical string, is a helical generalization of the folded string solution on AdS3×S1

[164]. The second one, called type (iv), reproduces the SL(2) “giant magnon” solution [53, 165]

in the infinite-spin limit.

8.2.1 Type (iii) helical strings

In [45], it was pointed out that (S, J) folded strings can be obtained from (J1, J2) folded strings

by analytic continuation of the elliptic modulus squared, from k2 ≥ 0 to k2 ≤ 0 . Here we apply

the same analytic continuation to type (i) helical strings to obtain solutions on AdS3 × S1,

which we call type (iii) strings. For notational simplicity, it is useful to introduce a new moduli

parameter q through the relation

k ≡ iq

q′
≡ iq√

1− q2
. (8.2.1)

If k is located on the upper half of the imaginary axis, i.e., k = iκ with 0 ≤ κ , then q is a real

parameter in the interval [0, 1] .

As shown in Appendix A.2.2, the transformation (8.2.1) can be regarded as a T-transformation

of the modulus τ . Hence, by performing a T-transformation on the profile of type (i) helical

strings (6.3.3)-(6.3.5), we obtain type (iii) string solutions:

η0 =
C√
qq′

Θ3(0) Θ0(X̃ − iω̃0)

Θ2(iω̃0) Θ3(X̃)
exp

(
Z2(iω̃0)X̃ + iũ0 T̃

)
, (8.2.2)

η1 =
C√
qq′

Θ3(0) Θ1(X̃ − iω̃1)

Θ3(iω̃1) Θ3(X̃)
exp

(
Z3(iω̃1)X̃ + iũ1 T̃

)
, (8.2.3)

ξ1 = exp
(
iãT̃ + ib̃X̃

)
, (8.2.4)
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Figure 8.1: Type (iii) helical string (q = 0.700 , U = 12.0 , ω̃0 = −0.505 , ω̃1 = 0.776 , n = 6),

projected onto AdS2 spanned by (Re η1, Im η1, |η0|) . The circle represents a unit circle |η1| = 1 at

η0 = 0 .

where we rescaled various parameters as

X̃ = X/q′ , T̃ = T/q′ , ω̃j = ωj/q
′ , ã = aq′ , b̃ = bq′ , ũj = uj q

′ . (8.2.5)

We choose the constant C so that they satisfy |η0|2 − |η1|2 = 1 . One such possibility is to

choose1

C =

(
1

q2 cn2(iω̃0)
+

sn2(iω̃1)

dn2(iω̃1)

)−1/2

. (8.2.6)

With the help of various formulae on elliptic functions, one can check that ~η in (8.2.2), (8.2.3)

certainly solves the string equations of motion as[
−∂2

T̃
+ ∂2

X̃
+ q2

(
2(1− q2)

sn2

dn2 (X̃, q)− 1

)]
~η = Ũ~η , (8.2.7)

if the parameters are related as

ũ2
0 = Ũ − (1− q2)

sn2(iω̃0)

cn2(iω̃0)
, ũ2

1 = Ũ +
1− q2

dn2(iω̃1)
. (8.2.8)

As is clear from (8.2.7), the type (iii) solution is related to the helical-wave solution of the CshG

equation given in (8.1.17). The Virasoro constraints (8.1.5) and (8.1.6) impose constraints on

ã and b̃ in (8.2.4) :2

ã2 + b̃2 = −q2 − Ũ − 2(1− q2)

cn2(iω0)
+ 2ũ2

1 , (8.2.9)

ã b̃ = i C2

(
ũ0

q2

sn(iω0) dn(iω0)

cn3(iω0)
+ ũ1

sn(iω1) cn(iω1)

dn3(iω1)

)
. (8.2.10)

1 In contrast to the Rt× S3 case, the RHS of (8.2.6) is not always real for arbitrary real values of ω̃0 and

ω̃1 . If C2 < 0 , we have to interchange η0 and η1 to obtain a solution properly normalized on AdS3.
2 Note that the Virasoro constraints require neither a ≥ b nor a ≤ b . This means that both ξ1 = exp

(
iã0T̃ +

ib̃0X̃
)

and exp
(
ib̃0T̃ + iã0X̃

)
are consistent string solutions. It can be viewed as the τ ↔ σ transformation

applied only to the S1 ⊂ S5 part while leaving the AdS3 part intact.
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The reality of ã and b̃ must also hold.

Since we are interested in closed string solutions, we should impose periodic boundary

conditions. Let us define the period in the σ direction by

∆σ =
2K(k)

√
1− v2

µ
=

2q′K(q)
√

1− v2

µ
≡ 2l ≡ 2π

n
, (8.2.11)

which is equivalent to ∆X̃ = 2K(q) and ∆T̃ = −2vK(q). The closedness conditions for the

AdS variables are written as

∆t = 2K(q) {−iZ2(iω̃0)− vũ0}+ 2n′timeπ ≡
2πNt

n
, (8.2.12)

∆φ1 = 2K(q) {−iZ3(iω̃1)− vũ1}+ (2n′1 + 1) π ≡ 2πNφ1

n
. (8.2.13)

And from the periodicity in ϕ1 direction, we have

Nϕ1 = µ
b̃− vã√
1− v2

∈ Z . (8.2.14)

We must further require the timelike winding Nt to be zero. Just as in the Rt×S3 case, one

can adjust the value of v to fulfill this requirement.3 The integer n′time is evaluated as

2n′timeπ =
1

2i

∫ K

−K
dX̃

∂

∂X̃

[
log

(
Θ0(X̃ − iω̃0)

Θ0(X̃ + iω̃0)

)]
. (8.2.15)

Then, by solving the equation Nt = 0 , one finds an appropriate value of v = vt. The absolute

value of the worldsheet boost parameter vt may possibly exceed one (the speed of light). In such

cases, we have to perform the 2D transformation τ ↔ σ on the AdS space to get vt 7→ −1/vt .

As usual, conserved charges are defined by

E ≡
√
λ

π
E =

n
√
λ

2π

∫ l

−l
dσ Im (η∗0 ∂τη0) , (8.2.16)

S ≡
√
λ

π
S =

n
√
λ

2π

∫ l

−l
dσ Im (η∗1 ∂τη1) , (8.2.17)

J ≡
√
λ

π
J =

n
√
λ

2π

∫ l

−l
dσ Im (ξ∗1 ∂τξ1) . (8.2.18)

which are evaluated as, for the current type (iii) case,

E =
nC2 ũ0

q2(1− q2)

[
E + (1− q2)

{
sn2(iω̃0)

cn2(iω̃0)
− iv

ũ0

sn(iω̃0) dn(iω̃0)

cn3(iω̃0)

}
K

]
, (8.2.19)

S =
nC2 ũ1

q2(1− q2)

[
E− (1− q2)

{
1

dn2(iω̃1)
− ivq2

ũ1

sn(iω̃1) cn(iω̃1)

dn3(iω̃1)

}
K

]
, (8.2.20)

J = n
(
ã− v b̃

)
K . (8.2.21)

3 Note in R× S3 case, the vanishing-Nt condition was trivially solved by v = b/a .
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It is interesting to see some of the limiting behaviors of this type (iii) helical string in detail.4

• ω̃1,2 → 0 limit : folded strings on AdS3 × S1

In the ω̃1,2 → 0 the timelike winding condition (8.2.12) requires v = 0 , so the boosted worldsheet

coordinates (T̃ , X̃) become

(T̃ , X̃)→
(
µτ

q′
,
µσ

q′

)
≡ (µ̃τ, µ̃σ) ≡ (τ̃ , σ̃) . (8.2.22)

The periodicity condition (8.2.11) allows µ̃ to take only a discrete set of values.

Figure 8.2: ω̃1,2 → 0 limit of type (iii) helical string becomes a folded string studied in [164].

The profile of type (iii) strings now reduces to

η0 =
1

dn(σ̃, q)
eiũ0τ̃ , η1 =

q sn(σ̃, q)

dn(σ̃, q)
eiũ1τ̃ , ξ1 = exp

(
i

√
Ũ − q2 τ̃

)
, (8.2.23)

where ũ2
0 = Ũ and ũ2

1 = Ũ + 1− q2 . This solution is equivalent to T-transformation of (J1, J2)

folded strings of [38], namely, (S, J) folded strings.5 The conserved charges of (8.2.23) are

computed as

E =
nũ0

1− q2
E(q) , S =

nũ1

1− q2

(
E(q)− (1− q2)K(q)

)
, J = n

√
Ũ − q2 K(q) . (8.2.24)

Rewriting these expressions in terms of the original imaginary modulus k , we find the following

relations among conserved charges :(
J

K(k)

)2

−
(
E

E(k)

)2

= n2k2 ,

(
S

K(k)− E(k)

)2

−
(
J

K(k)

)2

= n2(1− k2) , (8.2.25)

as obtained in [45].

4 It seems the original “spiky string” solution of [166] is also contained in the type (iii) class, although we

have not been able to reproduce it analytically.

5 Note the set, η0,1 = the same as (8.2.23) and ξ1 = exp[i

√
Ũ − q2 σ̃] , also gives a solution.
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• q → 1 limit : logarithmic behavior

Another interesting limit is to send the elliptic modulus q to unity. In this limit, the spikes of

the type (iii) string attach to the AdS boundary, and the energy E and AdS spin S become

divergent. Again, the condition of vanishing timelike winding is fulfilled by v = 0, and the

periodicity condition (8.2.11) implies that µ̃ given in (8.2.22) goes to infinity. The profile

becomes

η0 = C cosh(σ̃ − iω̃0) eiũ0τ̃ , η1 = C sinh(σ̃ − iω̃1) eiũ1τ̃ , ξ1 = exp
(
iãτ̃ + ib̃σ̃

)
, (8.2.26)

where

C =
(
cos2 ω̃1 − sin2 ω̃0

)−1/2
, ũ2

0 = ũ2
1 = Ũ . (8.2.27)

The constants ã and b̃ satisfy the constraints

ã2 + b̃2 = −1 + Ũ , ãb̃ = C2 (ũ0 sin ω̃0 cos ω̃0 + ũ1 sin ω̃1 cos ω̃1) . (8.2.28)

The conserved charges are computed as

E = nC2 ũ0

(
Λ− sin2 ω̃0 K(1)

)
, S = nC2 ũ1

(
Λ− cos2 ω̃1 K(1)

)
, J = nãK(1) , (8.2.29)

where we defined a cut-off Λ ≡ 1/(1− q2) .

Let us pay special attention to the ũ0 = ũ1 =
√
Ũ case. For this case the energy-spin relation

reads

E − S = n
√
Ũ K(1) . (8.2.30)

Obviously the RHS is divergent, and careful examination reveals it is logarithmic in S . This

can be seen by first noticing, on one hand, that the complete elliptic integral of the first kind

K(q) ≡ K(e−r) has asymptotic behavior

K(e−r) = −1

2
ln
(r

8

)
+O(r ln r) , (8.2.31)

while on the other, the degree of divergence for Λ is

Λ =
1

1− q2
=

1

1− e−2r
∼ 1

2r
, (as r → 0) . (8.2.32)

Since the most divergent part of S is governed by Λ rather than K(1) , it follows that

K(e−r) ∼ K(1− r) ∼ −1

2
ln

(
nC2 ũ1

16S

)
, (as r → 0) , (8.2.33)

at the leading order. Then it follows that

E − S ∼ −n
√
Ũ

2
ln

(
16S
nC2 ũ1

)
, (as r → 0) , (8.2.34)
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as promised.

Let us consider the particular case Ũ = 1, which is equivalent to ã = b̃ = 0 and ω̃0 = −ω̃1 .

The above dispersion relation (8.2.34) now reduces to

E − S ∼ n
√
λ

2π
lnS , (8.2.35)

omitting the finite part. This result was first obtained in [35] for the n = 2 case, and generalised

to generic n case in [166].

One can also reproduce the double logarithm behavior of [164] (see also [45, 167, 168, 169]).

To see this, let us set b̃ = 0 and ã =
√
Ũ − 1 , and rewrite the relation (8.2.30) as

E − S =
√
J 2 + n2 K(1)2 ∼

[
J 2 +

n2

4
ln2

(
2S

nC2
√
Ũ

)]1/2

. (8.2.36)

There are two limits of special interest. The “slow long string” limit of [168], is reached by√
U � λ , so that in the strong coupling regime λ� 1 the RHS of (8.2.36) becomes

E − S ∼
√
J 2 +

n2

4
ln2 S . (8.2.37)

Similarly, the “fast long string” of [168] is obtained by taking
√
U ∼ λ� 1 , resulting in

E − S ∼

[
J 2 +

n2

4

(
ln

(
S
J

)
+ ln (ln r)

)2
]1/2

∼

√
J 2 +

n2

4
ln2

(
S
J

)
, (8.2.38)

where we neglected a term ln (ln r) which is relatively less divergent in the limit r → 0 .

8.2.2 Type (iv) helical strings

Let us finally present another AdS helical solution which incorporates the sl(2) “(dyonic) giant

magnon” of [53, 165]. This solution, which we call the type (iv) string, is obtained by applying

a shift X → X + iK′(k) to the type (i) helical string. Its profile is given by

η0 =
C√
k

Θ0(0) Θ0(X − iω0)

Θ0(iω0) Θ1(X)
exp

(
Z0(iω0)X + iu0T

)
, (8.2.39)

η1 =
C√
k

Θ0(0) Θ3(X − iω1)

Θ2(iω1) Θ1(X)
exp

(
Z3(iω1)X + iu1T

)
, (8.2.40)

ξ1 = exp (iaT + ibX) . (8.2.41)

We omit displaying all the constraints among the parameters (they can be obtained in a similar

manner as in the type (i) case). The type (iv) solution corresponds to the helical-wave solution

given in (8.1.18), and satisfy the string equations of motion of the form (8.1.19). 6

6 This can be easily checked by using a relation 1/k2 sn2(x, k) = sn2 (x+ iK′(k), k) .
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• k → 1 limit : sl(2) “dyonic giant magnon”

The sl(2) “dyonic giant magnon” is reproduced in the limit k → 1 , as

η0 =
cosh(X − iω0)

sinhX
ei(tanω0)X+iu0T , η1 =

cosω0

sinhX
eiu1T , ξ1 = eiâT+ib̂X , (8.2.42)

where

u2
0 = u2

1 +
1

cos2 ω0

, (â, b̂) = (u1, tanω0) or (tanω0, u1) . (8.2.43)

Due to the non-compactness of AdS space, the conserved charges are divergent. This is a UV

divergence, and we regularize it by the following prescription. First change the integration

range for the charges (see (8.2.16) - (8.2.18)) from
∫ 2l

0
dσ to

∫ 2l−ε
ε

dσ , with ε > 0 , to obtain

E = u0 cos2 ω0

(
ε−1 − 1

)
+ K(1)(u0 − v tanω0) , (8.2.44)

S = u1 cos2 ω0

(
ε−1 − 1

)
, (8.2.45)

J = K(1)(u0 − v tanω0) , (8.2.46)

then drop the terms proportional to ε−1 by hand. This prescription yields a regularized energy

and an S5 spin which are still IR divergent due to the non-compactness of the worldsheet.

However, their difference becomes finite, leading to the energy-spin relation

(E − J )reg = −
√

(S)2
reg + cos2 ω0 . (8.2.47)

Note that in view of the AdS/CFT correspondence, E − J must be positive, which in turn

implies (E − J )reg is negative.

Let us take v = tanω0/u0 in (8.2.42), and consider a rotating frame ηnew
0 = e−iτ̃η0 ≡ Ỹ0+iỸ5 .

We then find Ỹ5 = −i sinω0 is independent of τ̃ and σ̃ , showing that the “shadow” of the sl(2)

“dyonic giant magnon” projected onto the Ỹ0-Ỹ5 plane is just given by two semi-infinite straight

lines on the same line. Namely, the shadow is obtained by removing a finite segment from an

infinitely long line, where the two endpoints of the segment are on the unit circle |η0| = 1 with

angular difference ∆t = π − 2ω0 . Figure 8.3 shows the snapshot of the sl(2) “dyonic giant

magnon”, projected onto the plane spanned by (Re η0, Im η0, |η1|) .

It is interesting to compare this situation with the usual giant magnon on R × S3 . In the

sphere case, the “shadow” of the giant magnon is just a straight line segment connecting two

endpoints on the equatorial circle |ξ1| = 1 . So the “shadows” of su(2) and sl(2) giant magnons

are just complementary. Using this picture of “shadows on the LLM plane”, one can further

discuss the “scattering” of two sl(2) “(dyonic) giant magnons” in the similar manner as in the

su(2) case.7

These “shadow” pictures remind us of the corresponding finite-gap representations of both

solutions, resulting from the su(2) and sl(2) spin-chain analyses. While in the su(2) case, a

7 Scattering sl(2) (dyonic) giant magnon solutions can be constructed from the scattering su(2) (dyonic)

giant magnon solutions ξi(u1, u2; v1, v2) [54] by performing (u1, u2) 7→ (u1 + iπ/2, u2 + iπ/2) .
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Figure 8.3: k → 1 limit of type (iv) helical string (ω0 = 0.785 , u0 = 1.41 , u1 = 0) : “giant magnon”

solution in AdS space.

condensate cut, or a Bethe string, has finite length in the imaginary direction of the complex

spectral parameter plane, for the sl(2) case, they are given by two semi-infinite lines in the

same imaginary direction [53]. This complementary feature reflects the structural symmetry

between the BDS parts of S-matrices, Ssu(2) = S−1
sl(2) .

These “shadow” pictures also show up in matrix model context [170, 171, 172, 173]. In a

reduced matrix quantum mechanics setup obtained from N = 4 SYM on R×S3 , a “string-bit”

connecting eigenvalues of background matrices forming 1
2
-BPS circular droplet can be viewed as

the shadow of the corresponding string. For the su(2) sector, it is true even for the boundstate

(bound “string-bits”) case [172]. It would be interesting to investigate the sl(2) case along

similar lines of thoughts.
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Chapter 9

Finite-size effects for dyonic giant

magnons

We compute finite-size corrections to dyonic giant magnons in two ways. One is to examine

the asymptotic behavior of helical spinning strings as elliptic modulus k goes to unity, and the

other is to apply generalized Lüscher formula of [79] to the case in which incoming particles

are boundstates. We find agreement of the two results in special cases, confirming the validity

of generalized Lüscher formula, which captures the leading finite-size correction to the energy

solely from the infinite-size information for general dispersion relation.

9.1 Overview

There are two types of finite-size corrections which are well studied in the context of AdS/CFT

correspondence: one is 1/J -type and the other is e−J -type.

Recall in the BMN scaling limit we keep λ̃ = λ/J2 fixed and small, so 1/J correction can

be regarded, via 1/J ∼ 1/
√
λ, as one-loop quantum corrections to classical strings. In the dual

Bethe Ansatz framework, we take thermodynamic limit where the number of Bethe roots are

of order L. Thus the finite-size correction is regarded as fluctuation of a few number of Bethe

roots. For literature on an interplay between finite size effects in Bethe Ansatz equations and

one-loop corrections, see [169, 174].

The exponential-type correction appears when we consider finite-J1 extension of (dyonic)

giant magnons, where J1 is the angular momentum along a great circle of S5. The finite-J1

extension of giant magnons is constructed in [52, 73], where they find the energy-spin relation

receives correction of the form e−cJ1 , with c a constant. The exponential correction e−cJ also

shows up in the one-loop computation of string theory, for the case of su(2) sector [175] as

well as of sl(2) sector [72]. In [72], they further discovered that quantum string Bethe Ansatz

cannot reproduce such terms.

It is argued in [74] that the exponential finite-size correction at strong coupling is related
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to the wrapping interaction at weak coupling, based on Thermodynamic Bethe Ansatz ap-

proach [75, 176, 177] and the Lüscher formula [76, 77, 78]. Recently, Janik and  Lukowski

have elaborated this argument [79], assuming that Lüscher’s argument can be applied to the

non-relativistic dispersion relation

ε(p) =

√
1 +

λ

π2
sin2

(p
2

)
. (9.1.1)

Their “generalized Lüscher formula” computes finite -J1 correction to the energy-spin relation

of giant magnons from the S-matrix and the dispersion relation (9.1.1) of infinite -J1 system.

Since we know the conjectured S-matrix and dispersion relation of infinite-size system, the

generalized Lüscher formula will in principle give the finite-size correction valid at arbitrary

values of λ. However, just like the original Lüscher formula, it is only sensitive to the leading

part of corrections exponentially suppressed in L (or J1), that is the first term in the following

expansion:

δε(p) = α(p, λ, L) e−c(p,λ)L +O (e−c
′(p,λ)L) with c′(p, λ) > c(p, λ), (9.1.2)

where α(p, λ, L) contains no factor exponentially dependent on L. According to the (general-

ized) Lüscher formula, the leading finite-size correction arises from exchanging virtual particles

going around the worldsheet cylinder once, and is written as

δε(p) = δεµ(p) + δεF (p) . (9.1.3)

The first term is called µ-term and the second one is called F -term, which have different

diagrammatic interpretation as shown in Figure 9.1.

Janik and  Lukowski computed the µ-term of their generalized formula and found, after

taking contributions from the BHL/BES dressing phase [16, 21] into account, that

α(p, λ, L) e−cL
∣∣∣
µ−term

≈ −4
√
λ

π
sin3

(p
2

)
exp

[
− 2πL√

λ sin
(
p
2

) − 2

]
(as λ, L→∞) , (9.1.4)

which correctly reproduces the leading finite -J1 correction to the dispersion relation of giant

magnons in conformal gauge, with L = J1 [52, 73].1

In this chapter, we extend their analysis and study the leading finite-size correction to

magnon boundstates and dyonic giant magnons. Firstly, we analyze the asymptotic behavior

of helical strings of [96] in the limit when they nearly reduce to an array of dyonic giant magnons,

and determined the leading finite -J1 correction to the energy-spin relation. Secondly, we apply

the generalized Lüscher formula for µ-term to the situation in which the incoming particle is

magnon boundstate.

1What corresponds to the F -term in string theory, is not discussed in [79]. Indeed, the exponential part of

F -term seems to be different from that of µ-term, so we do not discuss F -term in the main text.
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b c

a

b

a

Figure 9.1: Diagrams for the leading finite-size corrections. The left is called µ-term, and the

right F -term. a is an incoming physical particle, and b, c are virtual (but on-shell) particles.

Since the generalized Lüscher formula of Janik and  Lukowski is applicable only to incoming

elementary magnons, we slightly generalize their argument, assuming there exists an effective

field theory such that it reproduces the non-relativistic dispersion

εQ(p) =

√
Q2 +

λ

π2
sin2

(p
2

)
, (9.1.5)

and the S-matrix which is given by the product of the conjectured two-body S-matrices. Our

results serve as a consistency check between the generalized Lüscher formula and the results

from string theory. It is desirable if one can give further justification of these formulae from

other methods of computing the finite-size corrections.

Also we would like to stress that evaluation of the formula is not straightforward. Evaluation

of the µ-term requires information of residue at the poles that are located at the nearest from

the real axis. Thus, to compute the µ-term correctly, we have to determine which poles of the

su(2|2)2 S-matrix are relevant.

Singularity structure of the su(2|2)2 S-matrix with the BHL/BES dressing phase has been

studied in [80, 81]. Particularly in [81], they discussed where in the spectral parameter torus one

can find the singularity of magnon S-matrix corresponding to exchanges of physical particle.

In [81] they determined the location of simple and double poles when incoming particles are

elementary magnons. This result is extended in [82] to the case where incoming particles are

magnon boundstates.

To pick up the relevant poles for µ-term, we use heuristic reasoning based on the arguments

similar to [81, 82]. It should be noticed that the generalized Lüscher formula is sensitive to

residue at the (simple) poles, while kinematical (or diagrammatic) arguments of [81, 82] probed

only the location of poles.
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9.2 Finite -J correction to dyonic giant magnons

Remember that dyonic giant magnon is a classical string solution on Rt×S3 obeying the square-

root type energy-spin relation:

E − J1 =

√
J2

2 +
λ

π2
sin2

(p1

2

)
, E, J1 →∞ . (9.2.1)

Two-spin helical spinning strings can be regarded as finite -J1 generalization of this solution.

Thus, the finite -J1 correction to the above energy-spin relation can be computed quite straight-

forwardly.

9.2.1 Dyonic giant magnons

We begin with the review on J1 = ∞ case: the dyonic giant magnons. Dyonic giant magnons

can be obtained by taking k, the elliptic modulus of helical string, to unity.

As shown in (6.4.7), the conserved charges for one-hop (a single dyonic giant magnon) are

given by

E = u1

(
1− tan2 ω1

u2
1

)
K(1) , J1 = u1

[(
1− tan2 ω1

u2
1

)
K(1)− cos2 ω1

]
, J2 = u2 cos2 ω1 ,

(9.2.2)

where K(1) is a divergent constant. Then, the relation (9.2.1) follows by setting ∆ϕ1 ≡ p1 .

One can estimate exponential part of the finite -J1 corrections to the leading order, only

from the above information. This is because the correction term is of order (k′)2, while k′ can

also be expressed by the angular momenta.

Let us first relate k′ with the complete elliptic integral of the first kind K(k). As shown in

Appendix A.4.2, K(k) has the asymptotic form

K(k) = ln

(
4

k′

)
+O

(
k′2 ln k′

)
, (as k → 1) . (9.2.3)

Inverting this relation, we obtain k′ = 4 exp [−K(1)]. We express a divergent constant K(1) by

angular momenta J1 and J2 . The expressions (9.2.2) tell us

K(1) =
1

1− tan2 ω1

u21

(
J1

u1

+ cos2 ω1

)
, where u1 =

√
J 2

2 + cos2 ω1

cos2 ω1

. (9.2.4)

Eliminating u1 from the first equation, we get

K(1) =
J 2

2 + cos2 ω1

J 2
2 + cos4 ω1

(
J1 cos2 ω1√
J 2

2 + cos2 ω1

+ cos2 ω1

)
,

≈
J 2

2 + sin2 p1
2

J 2
2 + sin4 p1

2

 J1 sin2 p1
2√

J 2
2 + sin2 p1

2

+ sin2 p1

2

 , (9.2.5)
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where we neglected higher-order corrections to the relation 2ω1 = π−p1 +O (k′2) in the second

line.

If we take the limit J2 → 0 within this expression, we get

K(1)→ J1

cosω1

+ 1 ≈ J1

sin p1
2

+ 1 , (9.2.6)

which is the single-spin result.

9.2.2 Helical strings with two spins near k = 1

For general value of k, helical strings have two finite angular momenta J1 , J2 and two finite

winding numbersN1 , N2 . Correspondingly, there are four controllable parameters (k, U, ω1 , ω2).

Other parameters which appear in the profile of helical strings can be expressed as functions of

those four parameters. Below, we are going to investigate the precise form of these functions

when k is near 1, and determine finite -J1 correction to the energy-spin relation of dyonic giant

magnons.

We collect the results of Section 6.3 again for convenience. The profile of type (i) helical

string is shown in Figure 9.2, and takes the form:

η0 = aT + bX , (9.2.7)

ξ1 = C
Θ0(0)√
kΘ0(iω1)

Θ1(X − iω1)

Θ0(X)
exp

(
Z0(iω1)X + iu1T

)
, (9.2.8)

ξ2 = C
Θ0(0)√
kΘ2(iω2)

Θ3(X − iω2)

Θ0(X)
exp

(
Z2(iω2)X + iu2T

)
. (9.2.9)
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Figure 9.2: Left: Type (i) helical spinning string solution with two spins, where the (x, y, z) axes

show (Re ξ1 , Im ξ1 , |ξ2|). Right: The same string solution with (x, y, z) = (Re ξ2 , Im ξ2 , |ξ1|).

The normalization constant C is given by

C =

(
dn2(iω2)

k2 cn2(iω2)
− sn2(iω1)

)−1/2

. (9.2.10)
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Two angular velocities are constrained as

u2
1 = U + dn2(iω1) , u2

2 = U − (1− k2) sn2(iω2)

cn2(iω2)
. (9.2.11)

Then, the parameters a and b are fixed by Virasoro conditions, and given by

a2 + b2 = k2 − 2k2 sn2(iω1)− U + 2u2
2 , (9.2.12)

ab = −i C2

(
u1 sn(iω1) cn(iω1) dn(iω1)− u2

1− k2

k2

sn(iω2) dn(iω2)

cn3(iω2)

)
. (9.2.13)

The velocity v is chosen so that v ≡ b/a ≤ 1.

All quantities given above can be expanded in powers of k′ ≡
√

1− k2 . Let us see the

leading k′ corrections by turns. The angular velocities become

u1 =

√
U cos2 ω1 + 1

cosω1

− k′2

4

sinω1 (ω1 + sinω1 cosω1)

cos2 ω1

√
U cos2 ω1 + 1

+O(k′4), (9.2.14)

u2 =
√
U +

k′2

2

sin2 ω2√
U

+O(k′4). (9.2.15)

The normalization constant is

C = cos (ω1) +
k′2

4

{(
1− 2 cos2 ω2

)
cos3 ω1 − cosω1 + ω1 sinω1

}
+O(k′4). (9.2.16)

The parameters a, b and v = b/a become, at the next-to-leading order,

a ≈
√
U + cos2 ω1

cosω
+ k′2 a(2) , b ≈ tanω1 + k′2 b(2) , v ≈ sinω1√

U + cos2 ω1

+ k′2 v(2) , (9.2.17)

where the exact expressions of a(2) , b(2) and v(2) are shown in Appendix A.5.

From (6.3.12)-(6.3.14), the conditions for the type (i) helical string to be closed read,

∆σ
∣∣∣
one -hop

≡ 2π

n
=

2K(k)
√

1− v2

µ
, (9.2.18)

∆ϕ1

∣∣∣
one -hop

≡ 2πN1

n
= 2K(k) (−iZ0(iω1)− vu1) + (2n′1 + 1)π , (9.2.19)

∆ϕ2

∣∣∣
one -hop

≡ 2πN2

n
= 2K(k) (−iZ2(iω2)− vu2) + 2n′2π . (9.2.20)

The finite J1 effects on the periodicity conditions can be evaluated in a similar manner. Let

p1,2 ≡ ∆ϕ1,2, then the equations (9.2.19) and (9.2.20) are rewritten as, at the next-to-leading

order,

p1 ≡ π − 2ω1 +
k′2

2
p

(2)
1 +O

(
k′4
)
, (9.2.21)

p2 ≡ −
2 `k sinω1

√
U√

U cos2 ω1 + 1
− 2ω2 +

k′2

2
p

(2)
2 +O

(
k′4
)
. (9.2.22)
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where `k ≡ ln (4/k′) and p
(2)
1,2 are given in Appendix A.5. By inverting the relation (9.2.21), one

can express ω1 in terms of p1 . For instance, we obtain

cos2 ω1 ≡ sin2
(p1

2

)
− k′2

2
sin
(p1

2

)
cos
(p1

2

)
W

(2)
1 +O

(
k′4
)
, (9.2.23)

where W
(2)
1 can be obtained by formally substituting ω1 = (π − p1) /2 into the expression of

p
(2)
1 , at this order of validity. However, since p2 is generally divergent as k → 1, we cannot

invert the relation (9.2.22). We will return to this issue in Section 9.2.3.

The rescaled energy E and the spins Jj (j = 1, 2) were evaluated in (6.3.15)-(6.3.17). There

we can find

E = na
(
1− v2

)
K(k) , (9.2.24)

J1 =
nC2 u1

k2

[
−E(k) +

(
dn2(iω1) +

vk2

u1

i sn(iω1) cn(iω1) dn(iω1)

)
K(k)

]
, (9.2.25)

J2 =
nC2 u2

k2

[
E(k) + (1− k2)

(
sn2(iω2)

cn2(iω2)
− v

u2

i sn(iω2) dn(iω2)

cn3(iω2)

)
K(k)

]
. (9.2.26)

We may set n = 1, since a single dyonic giant magnon corresponds to this case. By expanding

the conserved charges in `k = ln (4/k′) and k′, we obtain

E =
`k (U + 1) cosω1√
U cos2 ω1 + 1

+
k′2

4
E (2) +O

(
k′4
)
, (9.2.27)

J1 =
`k (U + 1) cosω1√
U cos2 ω1 + 1

−
√
U cos2 ω1 + 1 cosω1 +

k′2

4
J (2)

1 +O
(
k′4
)
, (9.2.28)

J2 =
√
U cos2 ω1 +

k′2

4
J (2)

2 +O
(
k′4
)
, (9.2.29)

where E (2),J (2)
1 and J (2)

2 are functions of ω1 , ω2 , U and `k . We want to rewrite (9.2.27)-(9.2.29)

in terms of p1 = ∆ϕ1 , because this parameter has a clearer physical meaning than ω1. By using

(9.2.23), we obtain

E =
`k (U + 1) sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1

+
k′2

4
E (2′) +O

(
k′4
)
, (9.2.30)

J1 =
`k (U + 1) sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1
−
√
U sin2

(p1

2

)
+ 1 sin

(p1

2

)
+
k′2

4
J (2′)

1 +O
(
k′4
)
, (9.2.31)

J2 =
√
U sin2

(p1

2

)
+
k′2

4
J (2′)

2 +O
(
k′4
)
. (9.2.32)

It follows that

E − J1 ≈
√
J 2

2 + sin2
(p1

2

)
+
k′2

4

(
E (2′) − J (2′)

1 −
√
U sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1
J (2′)

2

)
. (9.2.33)
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where we assumed sin (p1/2) > 0.

The precise form of the next-to-leading terms appearing in (9.2.33) is computed in Appendix

A.5. With those expressions, we finally obtain a quite simple result

E (2′) − J (2′)
1 −

√
U sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1
J (2′)

2 ≈ sin3
(p1

2

) (1− 2 cos2 ω2)√
U sin2

(
p1
2

)
+ 1

, (9.2.34)

At this order of validity, it can also be reexpressed as

E (2′) − J (2′)
1 − J2√

J 2
2 + sin2

(
p1
2

) J (2′)
2 ≈ sin4

(p1

2

) (1− 2 cos2 ω2)√
J 2

2 + sin2
(
p1
2

) . (9.2.35)

For later purpose, let us introduce a new ‘rapidity’ variable θ by

tanh

(
θ

2

)
=

J2√
J 2

2 + sin2
(
p1
2

) =

√
U sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1

+O
(
k′2
)
, (9.2.36)

then it follows

cosh

(
θ

2

)
=

√
J 2

2 + sin2
(
p1
2

)
sin
(
p1
2

) ≈
√
U sin2

(p1

2

)
+ 1 . (9.2.37)

Using this rapidity variable, (9.2.35) is rewritten as

E (2′) − J (2′)
1 − tanh

(
θ

2

)
J (2′)

2 = sin3
(p1

2

) (1− 2 cos2 ω2)

cosh
(
θ
2

) , (9.2.38)

which is the prefactor of the leading finite -J1 correction.

For the exponential part, recall that k′ is related to J1 as in (9.2.5):

k′ ≈ 4 exp

[
−

sin2
(
p1
2

)
J 2

2 + sin4
(
p1
2

)√J 2
2 + sin2

(p1

2

)(
J1 +

√
J 2

2 + sin2
(p1

2

))]
,

= 4 exp

[
−

sin2
(
p1
2

)
cosh2

(
θ
2

)
sin2

(
p1
2

)
+ sinh2

(
θ
2

) ( J1

sin
(
p1
2

)
cosh

(
θ
2

) + 1

)]
, (9.2.39)

Collecting the results (9.2.38) and (9.2.39), the energy-spin relation (9.2.33) becomes

E − J1 ≈
√
J 2

2 + sin2
(p1

2

)
− 4 cos (2ω2)

sin3
(
p1
2

)
cosh

(
θ
2

) exp

[
−

2 sin2
(
p1
2

)
cosh2

(
θ
2

)
sin2

(
p1
2

)
+ sinh2

(
θ
2

) ( J1

sin
(
p1
2

)
cosh

(
θ
2

) + 1

)]
. (9.2.40)

This is consistent with the finite -J1 correction to giant magnons in the literature [52, 73] if we

set θ = 0 and cos (2ω2) = 1. In other words, their results are equivalent to the asymptotic

behavior of single-spin type (i) helical strings near k = 1.

Single-spin type (ii) helical strings corresponds to the case cos (2ω2) = −1. For two-spin

case, the finite -J1 correction is essentially same as (9.2.40), because type (ii) solution can be

obtained via the operation

ω2 7→ ω2 + K′(1) = ω2 +
π

2
. (9.2.41)
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9.2.3 Finite-gap interpretation

Results in the last subsection revealed that the finite -J1 correction to the energy-spin relation

of dyonic giant magnons depends on the parameter ω2 that has not appeared in the J1 = ∞
case.2 Unfortunately we are unable to fix ω2 from the periodicity conditions of closed strings,

because the winding number N2 becomes ill-defined as k → 1 as we saw in (9.2.22). To clarify

the situation, we reconsider the rôle of the parameter ω2 from a finite-gap point of view.

As discussed in Section 6.6, two-spin helical strings are equivalent to general elliptic finite-

gap solutions of classical string action on Rt× S3, and the limit k → 1 corresponds to the

situation in which the algebraic curve becomes singular. Written explicitly, the functions Z1 , Z2

of [62] correspond to ξ2 , ξ1 given in (9.2.9), (9.2.8), and the parameters ρ̃+ , ρ̃− of [62] correspond

to ω2 , ω1 , respectively. The parameters ω1,2 and the location of branch points are related as

ω1 = F (ϕ+, k
′)−K′(k) , ω2 =


Re [F (ϕ−, k

′)] (for k < 1, k → 1) ,

Re [F (ϕ−, k
′)]− π

2
(for k > 1, k → 1) ,

(9.2.42)

where F (ϕ, k) is the normal elliptic integral of the first kind, and the angles ϕ± are given by

tan
(ϕ±

2

)
=

(√
x̄2 ±

√
x1

) (√
x̄1 +

√
x2

)
|x1 − x̄2|

. (9.2.43)

Let us take the k → 1 limit of the relation (9.2.42), which is equivalent to x2 → x1 . From

the definition of ϕ± in (9.2.43), one finds

tan
(ϕ+

2

)
→ ± cot

(p
4

)
, tan

(ϕ−
2

)
→ ∓i , with x1 ≡ exp

(
ip− θ

2

)
. (9.2.44)

If we choose the upper sign in each equation, we find

ϕ+ = − p
2

+ n+π , ϕ− = −i∞+ r . (9.2.45)

with n+ being an integer and r a real number. Applying the formula (A.1.14) to (6.6.5) and

setting n+ = 1, we can reproduce the results in the previous subsection ω1 = (π − p) /2 .

Similarly we have ω2 = r or ω2 = r− π/2Gin the latter case we may redefine r to have ω2 = r.

To study the case k is close but not equal to unity, one has to pull x2 off from x1 . What

matters here is that the direction in which x2 is to be pulled off. If we write

x2 = eiα x1 , α ≡ a+ ib, with |α| � 1, (9.2.46)

2When a two-spin helical string reduces to an array of dyonic giant magnons in k → 1 limit, the dependence

of ω2 naturally disappears whatever value it has.
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then the former expressions (9.2.44) are modified into

tan
(ϕ+

2

)
= ±

{
cot
(p

4

)
− a

4 sin2
(
p
4

)}+O
(
|α|2
)
, (9.2.47)

tan
(ϕ−

2

)
= ∓

{
i+

b

2 sin
(
p
2

)}+O
(
|α|2
)
. (9.2.48)

Note that the parameters a and b should be of order k′, as follows from the expression of elliptic

modulus in terms of the location of branch points:

k′ =

∣∣∣∣x1 − x2

x1 − x̄2

∣∣∣∣ ≈
∣∣∣∣∣ α

2 sin
(
p
2

)∣∣∣∣∣ ≥ ∣∣∣α2 ∣∣∣ . (9.2.49)

Substituting these results into (6.6.5) and (6.6.6), one finds

ω1 =

(
n+ +

1

2

)
π − p

2
+O (|α|) , ω2 = r +O (|α|) . (9.2.50)

This result suggests that ω2 is left undetermined again in this finite-gap method.

9.3 Review of the generalized Lüscher formula

In this section, we give a brief review on the generalized Lüscher formula proposed by Janik and

 Lukowski [79]. The original Lüscher formula is a method to compute finite-size mass corrections

from infinite-volume information of relativistic field theories [76, 77]. In [79], this formula was

generalized to the non-relativistic theory, in which an elementary particle has the dispersion

relation

ε1(p) =

√
1 + 16g2 sin2

(p
2

)
, (9.3.1)

with g ≡
√
λ/(4π) and they reproduced the correct finite-size corrections to giant magnons.

Here we consider a little more general situation where a particle satisfies the dispersion relation

of a magnon boundstate

εQ(p) =

√
Q2 + 16g2 sin2

(p
2

)
, (9.3.2)

with Q an arbitrary integer. In other words, we draw a single propagator for a set of particles

among whose spectral parameters satisfy the boundstate conditions x−j = x+
j−1.

Before deriving the generalized Lüscher formula, let us make our position clearer. We start

from a two-dimensional effective Lagrangian describing the worldsheet theory in the decompact-

ified limit. To fix the 2-point function, we use the dispersion relations (9.3.1) and (9.3.2) that

are conjectured to all-loop orders in the ’t Hooft coupling. We also assume the existence of 3-

and higher point vertices, chosen so that they reproduce the conjectured two-body S -matrices.

Our treatment grounds on the following Lüscher’s argument [77]. The non-perturbative nature
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of his formula suggests that the leading finite-size correction can be captured only by kinematics

rather than dynamics, once the exact dispersion relation and S-matrix are known. Therefore,

if we regard the magnon boundstates as a composite particle obeying the dispersion relation

(9.3.2), we can expect generalization of Lüscher formula to the dispersion relation (9.3.2) should

reproduce the correct finite-size corrections to dyonic giant magnons.3

Now let us see derivation of the Lüscher formula. We begin with the two-point function for

bosonic excitations in the 2d infinite volume theory:

〈φa(x)φb(0)〉 = δab

∫
d2p

(2π)2
eipxGa,Q(p), (9.3.3)

Ga,Q(p) =
1

ε2
E + ε2

Q(p1)− Σ(p)
, (9.3.4)

where εE = ip0 is the Euclidean energy and Σ(p) is the self-energy of φa. The self-energy Σ(p)

and its derivative with respective to pµ vanish on the mass shell:

Σ(p)|on-shell =
∂Σ(p)

∂pµ

∣∣∣∣
on-shell

= 0. (9.3.5)

The latter condition fixes the normalization of φa , and the former condition fixes the residue

of the Green function as

Res
ε2E

Ga,Q(p) = 1 . (9.3.6)

Regarded as a function of p1, (9.3.6) is equivalent to

Res
p1=p∗

Ga,Q(p) =
1

ε2
Q(p∗)′

. (9.3.7)

Next let us proceed to the theory on a cylinder of finite-circumference L. We impose the

periodic boundary condition on φa ,

φ(L)
a (x0, x1) = φ(L)

a (x0, x1 +mL), for ∀m ∈ Z , (9.3.8)

so the Green function is given by

〈φ(L)
a (x)φ

(L)
b (0)〉 = δab

1

L

∑
p1

∫
dp0

2π
eipxG

(L)
a,Q(p), (9.3.9)

G
(L)
a,Q(p) =

1

ε2
E + ε2

Q(p1)− ΣL(p)
. (9.3.10)

3More generally, such method will be applicable to string states corresponding to asymptotic spin chains

[8, 12], but generic states which are not dual to asymptotic spin chains, may not be described in a simple way

using particle-like picture. We thank the reviewer of Nuclear Physics B for a valuable comment.
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Note that the integral over p1 in (9.3.3) is replaced with summation over discrete values. Com-

bining the on-shell conditions for both infinite and finite volume cases (9.3.4), (9.3.10), and

assuming[
Σ(p)− ΣL(p)

]
on-shell

∼ O
(
e−cL

)
,

[
∂Σ(p)

∂pµ
− ∂ΣL(p)

∂pµ

]
on-shell

∼ O
(
e−cL

)
, (9.3.11)

for some constant c, we obtain the equation

δεL(p) ≈ − ΣL(p)

2 εQ(p1) + i

(
∂ΣL(p)

∂ εE

) ≈ − 1

2 εQ(p1)
ΣL(p), (9.3.12)

where δεL(p) is the finite-size energy correction defined by εE = i(εQ(p) + δεL(p)). Thus we

get the finite-size energy correction if we can calculate the finite-size self-energy.

An important fact is that the finite-size two-point function can be related to the infinite

one as follows:

〈φ(L)
a (x)φ

(L)
b (0)〉 =

∑
m∈Z

〈φa(x0, x1 +mL)φb(0)〉 . (9.3.13)

In the momentum space language, the Green function is given by

G
(L)
a,Q(p) =

∑
m∈Z

eip
1mLGa,Q(p) . (9.3.14)

Following Lüscher [76, 77], we consider only the case that |m| = 1 below because the leading

finite-size correction arises from |m| = 1 as in the relativistic case.

There are three types of diagrams shown in Figure 9.3 contributing to the self-energy of

particle a whose charge is Q:

(ΣL)a =
1

2

(∑
b,c

Iabc +
∑
b,c

Jabc +
∑
b

Kab

)
. (9.3.15)

The term Iabc consists of odd-point vertices, Kab consists of even-point vertices, and Jabc

consists of tadpole diagrams. They are given by

Iabc =
∑
Qb 6=0

∑
Qc 6=0

∫
d2q

(2π)2
2e−iq

1LGb,Qb(q − sp)Gc,Qc(q + (1− s)p)×

Γabc(−p,−q + sp, (1− s)p+ q)Γacb(p,−(1− s)p− q, q − sp) , (9.3.16)

Jabc =
∑
Qb 6=0

∑
Qc 6=0

′
∫

d2q

(2π)2
2e−iq

1LGb,Qb(q)Γbbc(q,−q, 0)Gc,Qc(0)Γaac(−p, p, 0) , (9.3.17)

Kab =
∑
Qb 6=0

∫
d2q

(2π)2
2e−iq

1LGb,Qb(q)Γaabb(p,−p, q,−q) , (9.3.18)

where G is the (infinite-size) Green function, e.g. given by Gb,Qb(q) = ((q0
E)2+ε2

Qb
(q1)−Σ(q))−1,

and the Γ’s are effective 3- and 4-point vertices. We replaced eiq
1L + e−iq

1L with 2e−iq
1L by an
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L

L

L

Figure 9.3: Diagrams which contribute to the finite-size self-energy ΣL . The propagator carry-

ing the exponential correction is marked with L. The diagram (a), (b), and (c) represents the

term Iabc , Jabc , and Kab given in (9.3.16), (9.3.17) , and (9.3.18), respectively.

appropriate change of the loop momentum q, and assigned the multiplet number Qb, Qc to the

particle b, c respectively, which travel around the world (see Figure 9.1). The prime over
∑

in (9.3.17) means we sum over particles having no global psu(2|2)2 charges (if such particles

exist).

Assuming the analyticity of propagators and vertices, now we shift the contour of integration

over q1 to imaginary values, κ ≡ Im q1 < 0.4 The integral over κ is suppressed by e−κL, so we

are able to neglect it in the limit L → ∞. We cannot however neglect the contribution from

poles of the Green function. The momentum vector (q0
E, q

1) = (q̃, q̃1) at the pole of Gb,Qb(q)

satisfy the condition

q̃2 + ε2
Qb

(q̃1) = 0 , (9.3.19)

and using the dispersion relation εQ(p) =
√
Q2 + 16g2 sin2(p

2
), we obtain

q̃1 = −2i arcsinh

(√
Q2
b + q̃2

4g

)
. (9.3.20)

The integrand of Iabc has two poles coming from Gb,Qb(q − sp) and Gc,Qc(q + (1 − s)p). We

denote the contribution from Gb,Qb(q−sp) by I+
abc and from Gc,Qc(q+(1−s)p) by I−abc following

[79]. As for I+
abc, we shift the integration variable as

q 7→ q + sp, Gb,Qb(q − sp)Gc,Qc(q + (1− s)p) 7→ Gb,Qb(q)Gc,Qc(q + p), (9.3.21)

4Alternatively, one may deform the contour of integration to Im q1 > 0. But the final results are independent

of this choice.
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and obtain the momentum-vector (9.3.20). Similarly for I−abc, we perform

q 7→ q − (1− s)p, Gb,Qb(q − sp)Gc,Qc(q + (1− s)p) 7→ Gb,Qb(q − p)Gc,Qc(q). (9.3.22)

Since the term Iabc (9.3.16) is symmetric under the interchange of b and c, we obtain the same

momentum-vector as in (9.3.20) for both (9.3.21) and (9.3.22).

Now using Eq. (9.3.7), we can perform integration over q1 and get the expression

(ΣL)a = i
∑
n

∫ ∞
−∞

dq

2π

e−iq∗L

ε2
n(q∗)′

Ia(p, q) (9.3.23)

where Ia is the integrand coming from the sum I+
abc + I−abc + Jabc +Kab and explicitly given by

Ia(p, q) =
∑
b

∑
c

{
Γabc(−p,−q, p+ q)Gc,Qc(p+ q)Γacb(p,−p− q, q)

+ Γacb(−p, p− q, q)Gc,Qc(q − p)Γabc(p,−q, q − p) + Γaabb(p,−p, q,−q)
}

+
∑
b

∑
c

′
Γaac(p,−p, 0)Gc,Qc(0)Γbbc(q,−q, 0), (9.3.24)

where the momentum vectors p and q are both on-shell. Lüscher’s remarkable observation is

that the integrand Ia is just the connected 4-point forward Green function Gabab(−p,−q, p, q)
between on-shell particles [76, 77, 78]. Furthermore, this 4-point Green function is related to

the S-matrix element as follows:

Gabab(−p,−q, p, q) = −4iεQ(p)εn(q∗)(ε
′
n(q∗)− ε′Q(p))(Sbaba(q, p)− 1) (9.3.25)

We finally obtain the finite-size energy correction called F -term

δεFa (p) = −
∑
Qb

∫ ∞
−∞

dq̃

2π

(
1−

ε′Q(p)

ε′Qb(q̃
1)

)
e−iq̃

1L
∑
b

(Sbaba(q̃, p)− 1) , (9.3.26)

where q̃1 is given by Eq. (9.3.20).

There is another type of the finite-size correction called µ-term, which comes from the

integral in I±abc. The shifts of the integration variable made in (9.3.21), (9.3.22) push the contour

of integration over q into the complex plane, because q is Euclidean while p is Minkowskian.

When we deform the contour back again onto the real axis, one may encounter new poles from

the S-matrix. If we denote the location of pole by q̃1 = q1
∗, we obtain the generalized µ-term

formula

δεµa(p) = −i
∑
Qb

(
1−

ε′Q(p)

ε′Qb(q
1
∗)

)
e−iq

1
∗L Res

q̃=q̃∗

∑
b

Sbaba(q̃, p) . (9.3.27)

The expression (9.3.27) is not real-valued in general. This problem can be attributed to

the replacement cos(iq1L) by 2e−iq
1L to obtain the formula (9.3.16)-(9.3.18). If we analytically
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continue q1 to the upper half plane, we obtain the result that is complex conjugate to (9.3.27).

By undoing such replacement and adding the two contributions, we obtain the real part of the

above result. Consequently, the generalized µ-term formula becomes

δεµa = Re

{
−i
∑
Qb>0

(
1−

ε′Q(p)

ε′Qb(q
1
∗)

)
e−iq

1
∗L Res

q̃=q̃∗

∑
b

Sbaba(q̃, p)

}
, (9.3.28)

in place of (9.3.27).

9.4 Finite-size corrections to magnon boundstates

In this section, we calculate finite-size corrections to magnon boundstates by using the Lüscher

formula known in quantum field theory, relating finite-size correction to the single-particle en-

ergy with the S-matrix of infinite-size system. In the infinite-size limit, (dyonic) giant magnons

correspond to solitons of (complex) sine-Gordon system, which are localized excitations of a

two-dimensional theory. Thus we can think of a (dyonic) giant magnon as the particle of an

effective field theory, and use the Lüscher formula to compute the finite-size effects of it. More

generally, such method will be applicable to string states corresponding to asymptotic spin

chains [8, 12], but generic states which are not dual to asymptotic spin chains, may not be

described in a simple way using particle-like picture.

Here we focus ourselves on considering the µ-term correction, which is given by5

δεµa = Re

{
−i
∑
Qb>0

(
1−

ε′Q(p)

ε′Qb(q
1
∗)

)
e−iq

1
∗L Res

q̃=q̃∗

∑
b

Sbaba(q̃, p)

}
, (9.4.1)

where p, q1
∗ are the momenta of particles a, b respectively and Qb is multiplet number of b.

There is possible contribution from the F -term. We expect that they do not contribute

to the leading finite-size correction because the exponential part of the F -term seems different

from that of the µ-term, or negligibly small if S-matrix behaves regularly over the path of

integration. We will discuss this point in Appendix C.2.

9.4.1 The su(2|2)2 S-matrix and its singularity

Before applying the generalized Lüscher formula to our case, let us briefly summarize some

facts about the su(2|2)2 S-matrix. Recall that elementary magnons appearing here are in the

fundamental BPS representation of the su(2|2)2 superconformal symmetry.

There are 16 kinds of such elementary magnons, among which scalar fields can form a part

of boundstate multiplet. The Q-magnon boundstate also belongs to a 16Q2-dimensional BPS

5At the time of writing the version 5 of this paper, it is known that the correct formula is given by∑
b(−1)FbSbaba rather than

∑
b S

ba
ba [179, 180]. Here we neglect this sign because fermionic terms are subleading

in our computation.
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representation of su(2|2)2 [145, 61]. We refer to the number of magnons Q as the multiplet

number.

Let us first consider the scattering of two elementary magnons. The two-body S-matrix has

the following form:

S(y, x) = S0(y, x)[Ssu(2|2)(y, x)⊗ Ssu(2|2)(y, x)] , (9.4.2)

where S0 is the scalar factor expressed as

S0(y, x) =
y− − x+

y+ − x−
·

1− 1
x−y+

1− 1
x+y−

· σ2(y, x) , (9.4.3)

and Ssu(2|2) is the su(2|2) invariant S-matrix and determined only by the symmetry algebra

[12]. The dressing phase σ2(y, x) takes the following form,

σ2(y, x) = exp
[
2i
(
χ(y−, x−)− χ(y+, x−) + χ(y+, x+)− χ(y−, x+)

)]
, (9.4.4)

where χ(x, y) = χ̃(x, y)− χ̃(y, x), and

χ̃(x, y) =
∞∑
n=0

χ̃(n)(x, y)

gn−1
, χ̃(n)(x, y) =

∞∑
r=2

∞∑
s=r+1

−c(n)
r,s

(r − 1)(s− 1)xr−1ys−1
, (9.4.5)

with the coefficients c
(n)
r,s are given in [21].

When considering one of the two scattering bodies belongs to the su(2) subsector, we just

have to extract matrix elements of the form Ej
i ⊗ E1

1 from the S-matrix of [60]. Written

explicitly, they are given by

S(y, x) = S0(y, x)
[
a1E

1
1 ⊗ E1

1 + (a1 + a2)E2
2 ⊗ E1

1 + a6

(
E3

3 ⊗ E1
1 + E4

4 ⊗ E1
1

)]2
, (9.4.6)

where

a1(y, x) ≡ y+ − x−

y− − x+

η(x)η(y)

η̃(x)η̃(y)
, (9.4.7)

a2(y, x) ≡ (y− − y+)(x− − x+)(y+ + x−)

(y− − x+)(y−x− − y+x+)

η(x)η(y)

η̃(x)η̃(y)
, (9.4.8)

a6(y, x) ≡ y+ − x+

y− − x+

η(x)

η̃(x)
, (9.4.9)

The su(2|2) invariant S-matrix does depend on the choice of frame η. For instance, if we take

the string frame of [60], we will obtain

η(x)

η̃(x)
=

√
x+

x−
,

η(y)

η̃(y)
=

√
y−

y+
. (9.4.10)

As for the spin chain frame, we obtain η(x)/η̃(x) = η(y)/η̃(y) = 1.
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If two magnons are in the same su(2) sector, the corresponding S-matrix without the

dressing phase in the spin chain frame is called BDS S-matrix and given by

SBDS(y, x) =
y− − x+

y+ − x−
·

1− 1
x−y+

1− 1
x+y−

a1(y, x)2 =
(y+ − x−)(1− 1

y+x−
)

(y− − x+)(1− 1
y−x+

)
. (9.4.11)

It is important to notice that the S-matrix of two boundstates factorizes into the product of

the two-body S-matrix between elementary magnons, as the consequence of integrability. Q-

magnon boundstate has spectral parameters x±k (k = 1, . . . , Q), which satisfy the boundstate

conditions

x−k = x+
k−1 (k = 2, . . . , Q). (9.4.12)

The magnon boundstate is thus characterized by the outermost variables

X− ≡ x−1 and X+ ≡ x+
Q . (9.4.13)

The BDS S-matrix between boundstate {x±j } and elementary magnon y± is given by

Q∏
k=1

SBDS(y, xk) =

Q∏
j=1

(y+ − x−k )(1− 1
y+x−k

)

(y− − x+
k )(1− 1

y−x+k
)

=
(y+ −X−)(1− 1

y+X−
)

(y− −X+)(1− 1
y−X+ )

(y− −X−)(1− 1
y−X−

)

(y+ −X+)(1− 1
y+X+ )

≡ SBDS(y,X) , (9.4.14)

where we used (9.4.12) and (9.4.13) [58, 59].

Recall that the su(2|2) invariant S-matrix given in (9.4.6) is also written as

S(y, xk) = SBDS(y, xk)

(
η(x)η(y)

η̃(x)η̃(y)

)2 4∑
i,j=1

ai(y, xk)aj(y, xk)

a1(y, xk)2
(Ei

i ⊗ E1
1)⊗ (Ej

j ⊗ E1
1). (9.4.15)

Since the flavors i or j remain unchanged during each of the two-body scatterings, one can easily

execute the product over k in this expression. Thus we obtain the elementary-boundstate S-

matrix as

S(y,X) = SBDS(y,X) Σ2(y,X)

[
4∑
b=1

sb(y,X)Eb
b ⊗ E(1...1)

(1...1)

]2

, (9.4.16)

where Σ(y,X) and sb(y,X) are given by

Σ(y,X) ≡
Q∏
k=1

σ(y, xk)
η(xk)η(y)

η̃(xk)η̃(y)
= σ(y,X)

η(X)

η̃(X)

(
η(y)

η̃(y)

)Q
, (9.4.17)

s1(y,X) = 1 , s2(y,X) =

Q∏
k=1

(
1 +

a2(y, xk)

a1(y, xk)

)
, s3(y,X) = s4(y,X) =

Q∏
k=1

a6(y, xk)

a1(y, xk)
.

(9.4.18)
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Interestingly, the following formula holds6

s2(y,X) =
y+ −X+

y+ −X−
1− 1

y−X+

1− 1
y−X−

, s3(y,X) =
y+ −X+

y+ −X−
η̃(X)

η(X)
, (9.4.20)

which agree with the recent results of [181, 182].

In order to compute the µ-term (9.4.1), we have to evaluate the residue at poles of the

S-matrix. Then which poles should we pick up? If one follows derivation of the µ-term formula

discussed in Section 9.3, one finds that the following criteria need to be satisfied for a given

pole to contribute to the µ-term:

1. The L-dependent exponential factor of (9.4.1) damps.

2. Gives the leading (or the largest) contribution.

3. Comes from the Iabc-type diagram.7

The first two criteria will be used to derive the leading exponential term (9.4.29), where we will

consider splitting of an on-shell particle with charge Q into two on-shell particles with ±1 and

Q∓ 1.

The third criterion is related to the fact that, in quantum field theories, poles of S-matrix

correspond to the scattering processes where intermediate particles become on-shell. For a

given pole, one must be able to find a scattering process such that the on-shell condition for its

intermediate states is equivalent to the pole condition of the S-matrix. The relation between

poles of the su(2|2)2 S-matrix and scattering processes are investigated in detail in [81, 82].

The third criterion states that we should pick up only the poles related to the scattering

process of Iabc-type. This is so severe that various complicated processes of splitting drop

out from the µ-term formula. For instance, from analysis of the S-matrix singularity alone,

the splitting process depicted in Figure 9.4 seems possible. However, this process should be

classified as a Kab-type diagram, and hence does not contribute to the µ-term.

9.4.2 Locating relevant poles

In this section, we investigate the third criterion in detail, in order to select the poles that

contribute to the µ-term. As will be discussed in Section 9.3, during the Iabc-type process an

incoming particle a splits into two particles b, c and these two recombine into the original one

6There is an identity for the spectral parameters of elementary magnons:

y+ − x−

y− − x+

(
1− y+ − x+

y+ − x−
1− 1

y−x+

1− 1
y−x−

)
=

(y− − y+)(x− − x+)(y+ + x−)

(y− − x+)(y+x+ − y−x−)
. (9.4.19)

7For classification of the Feynman diagrams, see Section 9.3.
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a

a

b

Figure 9.4: The splitting process of box type.

after going around the worldsheet cylinder as shown in Figure 9.1 (Left). Importantly, the

three particles a, b and c are all on-shell, and consequently for such processes to happen they

must satisfy the conditions:

3-1. Energy and momentum are conserved.

3-2. There is a Landau-Cutkosky diagram corresponding to the process a→ b+ c.

Let us first consider the conservation of energy and momentum for an on-shell splitting

process a → b + c. By on-shell we mean that the energy, the multiplet number, and the

momentum of a (boundstate) particle are given by functions of spectral parameters X± ≡
e(±ip+θ)/2 as

E(X±) =
g

i

(
X+ − 1

X+
−X− +

1

X−

)
= 4g cosh

(θ
2

)
sin
(p

2

)
, (9.4.21)

Q(X±) =
g

i

(
X+ +

1

X+
−X− − 1

X−

)
= 4g sinh

(θ
2

)
sin
(p

2

)
, (9.4.22)

p(X±) = log

(
X+

X−

)
, (9.4.23)

where g =
√
λ/(4π). The last two equations are solved as

X± ≡ e(±ip+θ)/2 = e±ip/2
Q+

√
Q2 + 16g2 sin2(p

2
)

4g sin(p
2
)

= e±ip/2
Q+

√
Q2 + sin2(p

2
)

sin(p
2
)

, (9.4.24)

where Q ≡ Q/(4g), and the parameter θ introduced above is identical to (9.2.36) with J2 ↔ Q.

Suppose the incoming particle a has the multiplet numberQ = Q(X±), theR-charge ra = Q,

and the momentum p = p(X±). We denote the multiplet number, and the momentum of the

split particle b by Qb , pb , respectively; and similarly for the other split particle c. Then, the

conservation of energy and momentum imposes the relation:√
Q2 + 16g2 sin2

(p
2

)
=

√
Q2
b + 16g2 sin2

(pb
2

)
+

√
Q2
c + 16g2 sin2

(
p− pb

2

)
. (9.4.25)
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We are interested in its solution that gives the smallest value of |Im pb|, with Im pb < 0. Such

situation occurs when Qb = 1 or Qc = 1, and we may choose Qb = 1 without loss of generality.

Further, we can constrain the multiplet number Qc by the following argument. In order that

the splitting process takes place invariantly under the su(2|2)2 symmetry, one should be able

to contract the product of the representation of particle b and that of particle c with the

representation of particle a, leaving us the singlet. In particular, if we define γ ≡ Q − Qc, we

should have |γ| ≤ 1.8

Let us now solve (9.4.25) in the region |pb| � 1 and Q� 1. The right hand side of (9.4.25)

can be evaluated as

R.H.S. ≈
√

1 + 4g2p2
b +

√
Q2 + 16g2 sin2

(p
2

)
−

8g2pb sin(p
2
) cos(p

2
) + γQ√

Q2 + 16g2 sin2
(
p
2

) , (9.4.26)

where we used Q� 1. Inserting Eq. (9.4.26) into Eq. (9.4.25), we obtain

pb ≈
2γQ cos(p

2
) sin(p

2
)− i

2g

√
(1− γ2)Q2 + 16g2 sin4(p

2
)
√
Q2 + 16g2 sin2(p

2
)

Q2 + 16g2 sin4(p
2
)

≡ qsplit,γ ,

(9.4.27)

where we choose the branch Im pb < 0. It is easy to see that Im qsplit,γ reaches its minimum

when γ = ±1,

pb = qsplit,± =
±2Q cos(p

2
) sin(p

2
)− 2i sin2(p

2
)
√
Q2 + 16g2 sin2(p

2
)

Q2 + 16g2 sin4(p
2
)

. (9.4.28)

From Eq. (9.4.1), we obtain the exponential factor

|e−iqsplit,±L| = e(Im qsplit,±)L ≈ exp

−2 sin2(p
2
)
√
Q2 + 16g2 sin2(p

2
)

Q2 + 16g2 sin4(p
2
)

L

 . (9.4.29)

One can easily see that the coefficient of L is same as that of J1 given in (9.2.40) or (9.2.39).

Next, we turn our attention to the condition 3-2. Firstly, we regard the self-energy diagrams

of Iabc-type as the Landau-Cutkosky diagram of s- or t-type using the following argument (See

Figure 9.5). If we set the particle travelling around the world, namely b particle, on-shell,

then self-energy diagrams of Iabc-type become equivalent to 2→ 2 scattering processes between

particles a and b exchanging particle c, where the momenta of a and b remain the same after

scattering. If we further put particle c on-shell, this process can be expressed in terms of the

Landau-Cutkosky diagram of s-type or t-type.

Secondly, for any scattering processes a(pa) + b(pb)→ c(pc)→ a(pa) + b(pb) to be kinemat-

ically allowed, it must satisfy the conservation of energy, momentum, and R-charge at each

8This argument is essentially same as in [178].
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a a

b

c a

b

b

a

c

(i) (ii) (iii)

L

Figure 9.5: (i): Self-energy diagram of Iabc-type. (ii): Diagram of ab → ab scattering made

from the diagram (i). (iii): The diagram (ii) can be viewed in two ways: s-type diagram as

shown in the left, and t-type diagram as shown in the right.

Table 9.1: All possible combinations of scattering processes coming from Iabc-type diagrams

which gives a damping exponential factor, namely Im pb < 0. Note that the crossing transfor-

mation X± 7→ 1/X± within this table maps the momentum with Im pb < 0 to the one with

Im pb > 0. The combinations y− = 1/X+ and y− = X− are realized as t-type diagram, while

the ones y+ = 1/X+ and y+ = X− are as s-type.

s-type t-type

Pole Condition y− = X+ y− = 1/X− y+ = X+ y+ = 1/X−

In SBDS pole zero pole zero

E(Z±) E(X±) + E(y±) E(X±) + E(y±) E(X±)− E(y±) E(X±)− E(y±)

Q(Z±) Q(X±) +Q(y±) Q(X±)−Q(y±) Q(X±)−Q(y±) Q(X±) +Q(y±)

pb
−i

2g sin
(
p−iθ

2

) −i
2g sin

(
p+iθ

2

) −i
2g sin

(
p−iθ

2

) −i
2g sin

(
p+iθ

2

)

point of interaction. Classification of the consistent Landau-Cutkosky diagrams of s- or t-type

has essentially been done in [81, 82]. By following similar arguments, one can easily exhaust

all consistent Landau-Cutkosky diagrams of s- or t-type. Let X± be the spectral parameters

of the particle a, and y± be those of b with Qb = 1, which satisfy the equation

y+ +
1

y+
− y− − 1

y−
=
i

g
. (9.4.30)

Then we find four possible combinations of {X±, y±} which reproduce pb = qsplit,±, as listed in

Table 9.1. The corresponding Landau-Cutkosky diagrams of s- or t-type are shown in Figure

9.6.
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Figure 9.6: The scattering processes which correspond to (i) y− = X+, (ii) y+ = X+, (iii)

y− = 1/X−, (iv) y+ = 1/X−. We follow the convention of the diagrams in [81].

The processes corresponding to y∓ = X+ satisfy pb ≈ qsplit,+ and solve the condition (9.4.25)

with Qc = Q− 1 at strong coupling. The ones corresponding to y∓ = 1/X− have pb ≈ qsplit,−

and solve (9.4.25) with Qc = Q + 1.9 Note that this result disagrees with the classification of

Table 9.1. This is not contradictory, because the analyses of [81, 82] are valid for arbitrary

values of g while ours are restricted to the case g → ∞ where the solutions to the splitting

condition (9.4.25) are degenerate.

Out of the four conditions, only the ones y∓ = X+ appear as poles of the BDS S-matrix

(9.4.14), and the conditions y∓ = 1/X− appear as the zeroes. The latter two actually become

the poles of the full S-matrix because the AFS phase bring double poles at these locations. In

this case, however, the spectral parameters y± do not lie inside the physical region |y±| > 1, so

we should not pick up the residues at y∓ = 1/X−.10

In summary, we conclude that solutions to all criteria are exhausted by the two poles at

y∓ = X+.

9.4.3 Evaluation of residues

We are going to evaluate the residue of each pole for the two cases Q ∼ O(g) � 1 and

Q ∼ O(1)� g. Note that the orientation of the contour needs to be specified to fix the sign of

the residue. It will turn out that the sum of two residues with the same orientation does not

reproduce the results of classical string, so we will argue how the contour should be shifted to

obtain the desired results.

The case Q ∼ O(g)� 1

Let us first consider the condition y− = X+. Because 1/(y+ −X+) ∼ O(g) around this pole,

the term proportional to s2 and s3 in (9.4.16) are negligible at strong coupling. The residue of

9There is no clear interpretation as such when Q ∼ O(1)� g.
10We thank S. Frolov for a comment on physicality issue.
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SBDS is given by

Res
q̃=q̃∗

SBDS(y,X) ≈ (X+ −X−)

(y−)′

(
1− 1

X+X−

)
(

1− 1
(X+)2

) (X+ −X−)

iq1
∗X

+

(
1− 1

X+X−

)
(

1− 1
(X+)2

) , (9.4.31)

where (y−)′ is the Jacobian given by (C.1.5), and we used

y+ =
(
1 + iq1

∗
)
y− +O

(
(q1
∗)

2
)
. (9.4.32)

Next we evaluate the dressing phase. By using

χ(y+, X±) ≈ χ(y−, X±) + iq1
∗y
−χ1,0(y−, X±) , (9.4.33)

we find

σ2(y,X) ≈ exp
[
2q1
∗y
− (χ1,0(y−, X−)− χ1,0(y−, X+)

)]
, (9.4.34)

where χ1,0(y, x) ≡ ∂yχ(y, x) = ∂xχ̃(y, x) − ∂yχ̃(x, y). A crucial fact is that χ
(n)
1,0 (X+, X+)

and χ
(n)
1,0 (X+, X−) are the order 1/gn−1 quantities if Q ∼ O(λ1/2) � 1. The dressing phase

with n ≥ 1 does not contribute at strong coupling, which is remarkable distinction from the

elementary magnon case [79]. Thus, it suffices to consider the contribution of χ(0), namely the

AFS phase [10]. The series (9.4.5) with c
(0)
r,s = δr+1,s sums up to give

χ(0)(y, x) = −g
(

1

x
− 1

y

)(
1− (1− xy) log

(
1− 1

xy

))
. (9.4.35)

It follows that

χ
(0)
1,0(y, x) = −g

y

(
1

x
+

(
y − 1

y

)
log

(
1− 1

xy

))
. (9.4.36)

Using this equation, the contribution of the AFS phase becomes

σ2
AFS(y,X) ≈ exp

− 2(
X+ − 1

X+

) ( 1

X−
− 1

X+

)
− 2 ln

(
1− 1

y−X−

1− 1
y−X+

) . (9.4.37)

By combining (9.4.31) and (9.4.37), we find

Res
q̃=q̃∗

SBDS(y,X) σ2
AFS(y,X) ≈ −8ig

sin2
(
p
2

)
sin
(
p−iθ

2

) exp

[
−ip− εQ(p)−Q

2g sin
(
p−iθ

2

)] . (9.4.38)

To compute the µ-term, one just has to multiply the prefactor

− i
(

1−
ε′Q(p1)

ε′1(q1
∗)

)
e−iq

1
∗L = −i

sin
(
p
2

)
sin
(
p−iθ

2

)
cosh

(
θ
2

) exp

[
− L

2g sin
(
p−iθ

2

)] , (9.4.39)

as well as the factor from the string frame

X+

X−

(
y−

y+

)Q
≈ exp

[
ip− Q

2g sin
(
p−iθ

2

)] . (9.4.40)
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In total, the µ-term from the pole y− = X+ is evaluated as

δEµ
∣∣∣
y−=X+

= −8g
sin3

(
p
2

)
cosh

(
θ
2

) exp

[
− L+ εQ(p)

2g sin
(
p−iθ

2

)] . (9.4.41)

Next, we study the pole y+ = X+. Now the coefficients s2(y,X) and s3(y,X) vanish due

to (9.4.20), and only the term s1(y,X) can contribute to the µ-term. The residue of SBDS is

Res
q̃=q̃∗

SBDS(y,X) ≈ (X+ −X−)

−iq1
∗X

+

(
1− 1

X+X−

)
(

1− 1
(X+)2

) (X+ −X−)

(y+)′

(
1− 1

X+X−

)
(

1− 1
(X+)2

) . (9.4.42)

Since (y+)′ ≈ (y−)′ as shown in (C.1.5), this result is just the minus of (9.4.31). The AFS phase

at y+ = X+ becomes

σ2
AFS(y,X) ≈ exp

− 2(
X+ − 1

X+

) ( 1

X−
− 1

X+

)
− 2 ln

(
1− 1

y+X−

1− 1
y+X+

) , (9.4.43)

which is equal to (9.4.37). Hence we conclude

δEµ
∣∣∣
y+=X+

= 8g
sin3

(
p
2

)
cosh

(
θ
2

) exp

[
− L+ εQ(p)

2g sin
(
p−iθ

2

)] . (9.4.44)

Here we neglected the orientation of contour when deriving the above results. We will discuss

this issue in Section 9.4.3.

The case Q ∼ O(1)� g

Let us now study the case Q > 1 with Q � g, and compute the residues of (9.4.16) at

y± = X+. We have to evaluate the dressing phase carefully, because the terms higher order in

1/g contribute to the µ-term, as discussed in [79].

Computation of the residue of the BDS S-matrix is straightforward, so let us focus on the

dressing phase. It is useful to introduce new variables αab by

αab

2g sin
(
p
2

) = 1− 1

yaXb
if yaXb → 1 as g →∞. (9.4.45)

We can neglect the higher-order terms in the dressing phase when yaXb is not close to unity.

The values of αab around the pole conditions are listed in Table 9.2.

The AFS phase [10] can be easily computed from the following expressions:

σ2
AFS(y,X) =

(
1− 1

y−X−

1− 1
y+X−

)2Q(
1− 1

y−X+

1− 1
y−X−

)2

, (9.4.46)
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Table 9.2: List of αab at strong coupling, corresponding to the pole with Im q1 < 0.

Pole Condition α++ α−− α+− α−+

y− = X+ Q Q+ 1

y+ = X+ Q− 1 Q

which are derived in Appendix C.1. The Hernández-López phase [13] can be computed by

employing the results of [79],

χ(1)(ya, Xb) ≈ ∓ i
2

log

(
αab

2g sin
(
p
2

)) , (9.4.47)

where the sign ambiguity comes from the choice of a logarithmic branch. As shown in Appendix

C.1, the rest of the BES phase [21] is summarized as

σ2
n≥2(y,X) ≈ exp

[
2
(
α−− − α+−) ](α+−

α−−

)α−−+α+−

,
(
for y ∼ eip/2

)
, (9.4.48)

Note that χ(2m+1)(ya, Xb) ≈ 0. By combining the results (9.4.47) and (9.4.48), the higher-order

dressing phase is evaluated as

σ2(y,X) ≈ −
16g2 sin2

(
p
2

)
Q(Q+ 1)

e−ip−2

(
Q+ 1

Q

)±1

for y− = X+, (9.4.49)

σ2(y,X) ≈ −
16g2 sin2

(
p
2

)
Q(Q− 1)

e−ip−2

(
Q

Q− 1

)±1

for y+ = X+. (9.4.50)

We will choose the + sign for (9.4.49) and the − sign for (9.4.50) for consistency with the Q = 1

case.11

One can calculate the remaining part of the S-matrix in the same manner as before. One

should take care that the coefficient s2(y,X) is non-zero for y− = X+. The final results in

string frame are summarized as

δEµ
∣∣∣
y−=X+

= −8g

(
1 +

1

Q

)
sin3

(p
2

)
exp

[
−L+ εQ(p)

2g sin
(
p
2

) ] , (9.4.51)

δEµ
∣∣∣
y+=X+

= +8g

(
1− 1

Q

)
sin3

(p
2

)
exp

[
−L+ εQ(p)

2g sin
(
p
2

) ] , (9.4.52)

where εQ(p) ≈ 4g sin(p/2).

11Consistency for the latter is only formal, for there is no pole at y+ = X+ when Q = 1.
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Comparison with classical string

Now we check if the Lüscher µ-term can reproduce the results of classical string theory, which

was given in (9.2.40) as

δ(E − J1) = −16g cos(2ω2)
sin3

(
p1
2

)
cosh

(
θ
2

) exp

[
−

sin
(
p1
2

)
cosh

(
θ
2

)
sin2

(
p1
2

)
+ sinh2

(
θ
2

) J1 + εQ(p1)

2g

]
. (9.4.53)

We begin with the case Q ∼ O(g) � 1. Here, the poles y± = X+ are located around

q̃ = cot
(
p−iθ

2

)
, and the residues obey the relation

δEµ
∣∣∣
y−=X+

= −δEµ
∣∣∣
y+=X+

. (9.4.54)

It suggests that the sum of µ-term will vanish if we simply sum up the residues of all poles on

the upper half plane. In order to obtain a nonvanishing result, for instance, we should take the

difference of two residues.

We can flip the relative sign of them if we modify the contour of q̃ integration in the F -

term formula (9.3.26) as shown in Figure 9.7, where q̃ is the Euclidean energy of the particle

travelling around the cylinder. As discussed in Section 9.3, we obtain the µ-term from the

shifts of the contour. When we set s = 1/2 in (9.3.21) and (9.3.22), we find a clockwise contour

shifted upward and a counterclockwise contour shifted downward. Note that it is possible to

have a clockwise contour shifted downward and a counterclockwise upward, if we choose the

other branch of square root in (C.1.2), which flips the overall sign. Thus, the modified and

shifted contours provide us with an additional minus sign in front of the residue at y+ = X+,

giving us

δEµ
∣∣∣
y−=X+

− δEµ
∣∣∣
y+=X+

= −16g cos(α)
sin3

(
p
2

)
cosh

(
θ
2

) exp

[
− L+ εQ(p)

2g sin
(
p−iθ

2

)] . (9.4.55)

Since the µ-term (9.4.1) is given by the real part of the last expression, we obtain

δEµ = ∓16g cos(α)
sin3

(
p
2

)
cosh

(
θ
2

) exp

[
−

sin
(
p
2

)
cosh

(
θ
2

)
sin2

(
p
2

)
+ sinh2

(
θ
2

) L+ εQ(p)

2g

]
, (9.4.56)

where

α =
cos
(
p
2

)
sinh

(
θ
2

)
sin2

(
p
2

)
+ sinh2

(
θ
2

) L+ εQ(p)

2g
, (9.4.57)

for Q ∼ O(g)� 1. This agrees with (9.4.53) upon identifying J1 ↔ L, p1 ↔ p and 2ω2 ↔ α.

Next, let us consider the case Q ∼ O(1) � g. As shown in (C.1.4), both poles are located

on the upper half plane of the q̃ plane, namely

q̃ = cot
(p

2

)
+

i(Q± 1)

2g sin3
(
p
2

) for y∓ = X+. (9.4.58)
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(-+)

(++)

(-+)

(++)

Figure 9.7: The contour of integration in q̃ is deformed as in the left figure. By considering the

difference between the F -term contour and the shifted contours (9.3.21), (9.3.22), we can pick

up the µ-term as depicted in the right figure. By (−+), (++) we denote the location of poles

y− = X+, y+ = X+, respectively.

By making the same deformation of the contour as in Figure 9.7, we find

±
(
δEµ

∣∣∣
y−=X+

− δEµ
∣∣∣
y+=X+

)
= ∓16g sin3

(p
2

)
exp

[
−L+ εQ(p)

2g sin
(
p
2

) ] , (9.4.59)

for Q ∼ O(1) � g. This result is already real, and agrees with (9.4.53) if we set θ = ω2 = 0

and identify J1 with L, p1 with p.

Finally let us comment on computation in the spin chain frame. The result of the spin chain

frame differ from that of the string frame by the factor (9.4.40). As a consequence, the µ-term

for Q ∼ O(g) in (9.4.56) turns into

δEµ = ∓16g cos(αp)
sin3

(
p
2

)
cosh

(
θ
2

) exp

[
−

sin
(
p
2

)
cosh

(
θ
2

)
sin2

(
p
2

)
+ sinh2

(
θ
2

) L−Q+ εQ(p)

2g

]
, (9.4.60)

where

αp = p+
cos
(
p
2

)
sinh

(
θ
2

)
sin2

(
p
2

)
+ sinh2

(
θ
2

) L−Q+ εQ(p)

2g
. (9.4.61)

This expression also agrees with the result of classical string (9.4.53) if we identify L − Q ↔
J1, p1 ↔ p and 2ω2 ↔ αp .12 Also, the expression (9.4.61) is the same as the one found in [178].

Thus, the µ-term of the generalized Lüscher formula can capture the leading finite-size (or

finite angular momentum) correction to dyonic giant magnons.

12It appears that what we call length depends on the choice of frame.
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Conclusions and Outlook

This dissertation can be divided into three parts.

In the first part, we reviewed recent developments of AdS/CFT correspondence between

N = 4 super Yang-Mills theory and superstring on AdS5×S5 after the discovery of integrability.

On gauge theory side, the central idea is to diagonalize anomalous dimension matrix by

using integrability method called Bethe Ansatz. On string theory side, we can construct algebro-

geometric solutions based on Lax-pair formulation of the equations of motion. Singular integral

equations appeared in both sides. They enabled us to compare the spectrum in terms of

algebraic curves and Abelian differentials.

In the second part, we investigated families of classical string solutions on Rt× S3 and on

AdS3 × S1 from sine-Gordon perspective. We show they interpolate various rigid and spin-

ning/oscillating and winding string solutions known so far. Put it schematically, for helical

spinning strings on Rt× S3, we obtain

I :
Type (i) helical string

with generic (k, U, ω1,2)
→


- Point-like (BPS), rotating string (k → 0)

- Array of dyonic giant magnons (k → 1)

- Elliptic, spinning folded string (ω1,2 → 0)

,

II :
Type (ii) helical string

with generic (k, U, ω1,2)
→


- Rational, spinning circular string (k → 0)

- Array of dyonic giant magnons (k → 1)

- Elliptic, spinning circular string (ω1,2 → 0)

.

and for helical oscillating strings on Rt× S3, we obtain

I′ :
Type (i)′ helical string

with generic (k, U, ω1,2)
→


- Rational, static circular string (k → 0)

- Array of single-spike strings (k → 1)

- Elliptic, type (i)′ pulsating string (ω1,2 → 0)

,

II′ :
Type (ii)′ helical string

with generic (k, U, ω1,2)
→


- Rational circular string (k → 0)

- Array of single-spike strings (k → 1)

- Elliptic, type (ii)′ pulsating string (ω1,2 → 0)

.
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It is also discussed that these two families of classical string solutions are characterized

general two-cut finite-gap solutions. In algebro-geometric language, the τ ↔ σ operation is

translated into either the interchange of quasi-momentum with quasi-energy, or the reconnection

of branch cuts passing through the singularities at x = ±1.

For Cases I and II , the gauge theory duals are well-known. All of them are of the form

O ∼ Tr
(
ZL−MWM

)
+ . . . , (9.4.62)

with L very large. Though operators look simple as such, their configuration on rapidity plane

will be in general quite complicated.

In contrast, gauge theory duals for Cases I′ and II′ are not yet clearly known. From com-

parison of global charges, they should be dual to certain non-holomorphic operators with little

R-charges. In the paper [97] we conjectured excitations over the singlet state in so(6) sector

will be a good candidate. The correspondence involving such operators has not been much

studied so far, due to large quantum corrections on super Yang-Mills side. Assuming all-order

integrability and using all-loop Bethe Ansatz, one may be able to deduce strong coupling pre-

diction of non-holomorphic sector as in [183]. More works are certainly needed to establish

correspondence for the case of large winding strings.

For further check of AdS/CFT correspondence we have to find sophisticated way of com-

parison, or to compare both sides from general perspective. In either way, we have to know the

spectrum of both sides in great detail. We expect our solutions serve as a catalyst for opening

new region of comparison.

In the third part, we considered application of our solutions to study the finite-size effects

in AdS/CFT correspondence. In particular, we have computed finite-size corrections to giant

magnons with two angular momenta from two points of view:

(i) Studying the asymptotic behavior of helical strings as k → 1

(ii) Applying the generalized Lüscher formula to the case in which incoming particles are

boundstates

We found that two results exactly match taking into consideration the finite-gap interpreta-

tion of [62]. This result supports the validity of generalized Lüscher formula for the case of

boundstates.

In contrast to the work of [79], it turned out that the leading term is only sensitive to the

AFS phase in the strong coupling limit. Nevertheless, our results coincide with those in [79] in

the limit Q → 0.

Towards computation of the finite-size corrections exact in L, several approaches have been

known in the theory of integrable systems, such as Thermodynamic Bethe Ansatz (TBA)

[75, 176, 177], nonlinear integral equations (NLIE) [184, 185, 186, 187], and functional relations
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among commuting transfer-matrices [188]. Recently, Arutyunov and Frolov have studied TBA

formulation of the finite-size system by double Wick rotation on the worksheet, and determined

S-matrix of the “mirror” model [189]. Moreover, they obtained the finite-size exponential factor

which is identical to the giant magnon’s, by considering (two-magnon) boundstates of the mirror

model. It will be very interesting to reanalyze our results from the TBA approach for multi-

magnon boundstates.

Unmentioned topics and Open questions

There are several important topics we have not discussed in this dissertation, some of which

are listed as follows.

Quantum correction to classical strings. Contrary to classical computation in string

theory where we are able to truncate action to its arbitrary subspaces, the one-loop correction

requires the full information of superstring on AdS5× S5 . In this respect, it is quite important

to extend classical analysis into the quantum level. Note that in general there is non-zero

correction to the energy-spin relation, because worldsheet supersymmetry is spontaneously

broken when we fix certain classical background.

One basic approach to compute such effects is to sum up fluctuations over the given classical

background. For instance, one-loop correction to Frolov-Tseytlin strings is computed in [164,

36, 37, 38], and one-loop correction to (dyonic) giant magnons is discussed in [53, 190, 191, 34].

Another direction is to make use of Bethe Ansatz. Although we do not know whether

quantum superstring on AdS5× S5 is integrable or not, a brave proposal was first made in [10]

that Bethe Ansatz with the dressing phase will capture quantum string spectrum. At one-loop

level, the string S-matrix acquires so-called Hernandez-Lopez phase [13].

Since the dressing phase appears as a scalar factor, it must be independent of subsectors

one chooses. The Hernandez-Lopez phase passes this test, and its universality is confirmed in

[155].

Worldsheet computation at two loops in 1/
√
λ has recently been done in [192, 193, 194].

Landau-Lifshitz effective action. It is well known that XXX1/2 spin chain model has an

effective description as σ-model called Landau-Lifshitz effective action, which can be obtained

from a coherent-state path-integral of XXX1/2 Hamiltonian. Kruczenski pointed out that by

taking an appropriate “large J” limit at the level of classical string action, it agrees with the

Landau-Lifshitz effective action derived above from XXX1/2 spin chain[195].

One advantage of considering effective action is in that it provides an intuitive map between

N = 4 operators and classical strings; for instance, the position of impurity is identified as the

spatial coordinate of worldsheet. From the standpoint of effective action, folded and circu-

lar strings are interpreted as periodic solitons of Landau-Lifshitz equation, and dyonic giant
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magnons can be compared to pulse-like solitons in an infinite spin-chain [196, 197]. It will be

interesting to study how the helical strings are interpreted in a coherent-state picture.

Interestingly, continuum limit of the half-filled one-dimensional Hubbard model was com-

pared with string effective action in “small J” (or slow-string) limit in [198]. Although there

was mismatch of a numerical factor [199], such approach would pave the way to correct under-

standing of N = 4 operator dual to large winding strings.

Worldsheet scattering on AdS5 × S5. In quantum field theory, the spectrum of physical

particles can be read off from some poles of S-matrix of the theory. If we are interested in

excitations of a string which look like particles, then studying the S-matrix gives more detailed

information on that theory than the spectrum itself.

By taking so-called uniform light-cone gauge, we can spontaneously break conformal symme-

try on worldsheet, and obtain a theory with massive excitations [52, 60]. Worldsheet scattering

on AdS5 × S5 has been studied in such a way to probe its integrable structure [200, 147].

The worldsheet scattering is also studied in the near-flat-space limit [80], in which the theory

becomes facilitated while the BHL/BES dressing phase kept nontrivial [201, 202, 203].13

We would like to conclude this dissertation by posing some open questions.

• Integrability of the N = 4 theory is the cornerstone of recent developments in AdS/CFT

correspondence. We must ask ourselves if the N = 4 theory is integrable to all-orders

in λ for general L, or to what extent the integrability remains valid. On string theory

side, the proof of (even one-loop) quantum integrability still remains an open problem

[204, 205, 206].

• Even if we assume all-order integrability, we still do not understand what exactly is

the Hamiltonian operator we are diagonalizing when we use the conjectured all-loop

Bethe Ansatz. Furthermore, it is not clear how the dynamics of gauge or string theories

favors or disfavors BES choice of the dressing phase from BHL solutions. Works such

as [183, 207, 208] can be thought of as a trial for answering this question. In addition,

intricate relation between Hubbard model and the su(2|2)2 asymptotic spin chain has

been found in [209, 61, 148], which may give a clue to the above question.

• It is known that there is close relation between the derivative sector of N = 4 theory

and that of large N QCD, such as the conjecture of transcendentality principle. There

is possibility of applying methods of integrability to other conformal or superconformal

theories.

13Strictly speaking, however, the near-flat-space limit is not the limit of infinite-J , which may possibly

invalidate the BHL/BES phase.
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Hopefully answers to these problems will lead to new surprising ideas, interesting observa-

tions, or useful techniques concerning strong coupling dynamics of gauge, gravity and string

theories.
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Appendix A

Elliptic functions

A.1 Definitions of elliptic functions

Our conventions for the elliptic functions, elliptic integrals are presented below.

Elliptic theta functions

Let Q =
∞∏
n=1

(1− e2πinτ ). We define elliptic theta functions by

ϑ0 (z, τ) := Q
∞∏
n=1

(
1− 2 eπi(2n−1)τ cos(2πnz) + e2πi(2n−1)τ

)
, (A.1.1)

ϑ1 (z, τ) := 2Qeiπτ/4 sin(2πz)
∞∏
n=1

(
1− 2 e2πinτ cos(2πnz) + e4πinτ

)
, (A.1.2)

ϑ2 (z, τ) := 2Qeiπτ/4 cos(2πz)
∞∏
n=1

(
1 + 2 e2πinτ cos(2πnz) + e4πinτ

)
, (A.1.3)

ϑ3 (z, τ) := Q
∞∏
n=1

(
1 + 2 eπi(2n−1)τ cos(2πnz) + e2πi(2n−1)τ

)
. (A.1.4)

We also use an abbreviation ϑ0
ν ≡ ϑν(0, k). The following functions are known as Jacobi theta

and zeta functions, respectively:

Θν (z, k) ≡ ϑν

(
z

2K
, τ =

iK′

K

)
, Zν (z, k) ≡ ∂zΘν (z, k)

Θν (z, k)
. (A.1.5)

Complete elliptic integrals

Complete elliptic integral of the first kind and its complement are defined as, respectively,

K(k) :=

∫ 1

0

dz√
(1− z2)(1− k2z2)

, K′(k) := K(
√

1− k2) . (A.1.6)

We often write K(k) as K. Likewise, we omit the moduli parameter k of other elliptic functions

or elliptic integrals as well. There are alternative expressions for K and K′ in terms of elliptic
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theta functions :

K(k) =
π(ϑ0

3)2

2
, K′(k) = −iKτ =

πiτ(ϑ0
3)2

2
. (A.1.7)

Complete elliptic integral of the second kind is defined as

E(k) :=

∫ 1

0

√
1− k2z2

1− z2
dz =

∫ K

0

dn2(u)du , E′(k) := E(
√

1− k2) . (A.1.8)

Jacobi elliptic functions

Jacobi sn, dn and cn functions are defined as

sn(z) :=
ϑ0

3

ϑ0
2

ϑ1(w)

ϑ0(w)
, dn(z) :=

ϑ0
0

ϑ0
3

ϑ3(w)

ϑ0(w)
, cn(z) :=

ϑ0
0

ϑ0
2

ϑ2(w)

ϑ0(w)
, (A.1.9)

where z = π (ϑ0
3)

2
w = 2Kw. In terms of Jacobi theta functions, they can be written as

sn(z) =
Θ3(0)

Θ2(0)

Θ1(z)

Θ0(z)
, dn(z) =

Θ0(0)

Θ3(0)

Θ3(z)

Θ0(z)
, cn(z) =

Θ0(0)

Θ2(0)

Θ2(z)

Θ0(z)
. (A.1.10)

The moduli k and k′ ≡
√

1− k2 are related to the elliptic theta functions by

k ≡
(
ϑ0

2

ϑ0
3

)2

, k′ ≡
(
ϑ0

0

ϑ0
3

)2

. (A.1.11)

The Jacobi elliptic functions satisfy the following relations :

sn2(z, k) + cn2(z, k) = 1, k2 sn2(z, k) + dn2(z, k) = 1,

dn2(z, k)− k2 cn2(z, k) = 1− k2.
(A.1.12)

Normal (or incomplete) elliptic integrals

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
(1− t2) (1− k2t2)

(A.1.13)

is called the normal elliptic integral of the first kind. At special values, it reduces to

F (0, k) = 0, F
(π

2
, k
)

= K(k), F (φ, 0) = φ, F (φ, 1) = arctanhφ. (A.1.14)

The normal elliptic integral of the first kind is related to the inverse of an elliptic function. If

one regards F (φ, k) as a function of y = sinφ, then f(y, k) ≡ F (sin−1 y, k) obeys the differential

equation (
∂f

∂y

)2

=
1

(1− t2) (1− k2t2)
. (A.1.15)

showing that

F (φ, k) = f(y, k) = sn−1(y, k). (A.1.16)
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And if one regards F (φ, k) as a function of φ, its inverse defines Jacobi amplitude function by

F (φ, k) = u ⇐⇒ φ = am(u, k). (A.1.17)

From (A.1.16) and (A.1.17), it follows

sn(u, k) = y = sinφ = sin (am(u, k)) . (A.1.18)

As corollaries,

cn(u, k) = cosφ, dn(u, k) =

√
1− k2 sin2 φ for φ = am(u, k). (A.1.19)

We also use the notation

F (z, k) ≡ F (φ, k), for φ = am(z, k). (A.1.20)

The normal (or incomplete) elliptic integral of the second kind is defined by

E(φ, k) =

∫ φ

0

dθ
√

1− k2 sin2 θ =

∫ sinφ

0

dt

√
1− k2t2

1− t2
. (A.1.21)

We also use the notation

E (z, k) ≡ E(φ, k), for φ = am(z, k). (A.1.22)

At special values, it reduces to

E(0, k) = 0, E
(π

2
, k
)

= E(k), E(φ, 0) = φ, E(φ, 1) = sinφ. (A.1.23)

The normal elliptic integral of the second kind is related to the integral of an elliptic function,

as

E(φ, k) = E (z, k) =

∫ z

0

dw dn2(w, k) for φ = am(z, k). (A.1.24)

Using (A.1.17), and (A.1.24), one can rewrite Jacobi Zeta function as

Z0(z, k) = E(φ, k)− F (φ, k)
E(k)

K(k)
(φ = am(z, k)) , (A.1.25)

or equivalently,

Z0(z, k) = E (z, k)− z E(k)

K(k)
. (A.1.26)

Other functions

Below we describe the definitions of other functions and integrals which will be used in

Appendix A.4.
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The digamma function is defined by

ψ(x) :=
d ln Γ(x)

dx
, Γ(x) :=

∫ ∞
0

dt tx−1e−t . (A.1.27)

At special values, it behaves as

ψ(1) = −γ , ψ

(
1

2

)
= −γ − 2 ln 2 , (A.1.28)

with γ the Euler-Mascheroni constant. The digamma function obeys the recurrence relation

ψ(x+ 1) = ψ(x) +
1

x
. (A.1.29)

As corollaries,

ψ(n) = −γ +Hn−1 , ψ

(
n+

1

2

)
= −γ − 2 ln 2 +

n∑
k=1

2

2k − 1
, for n ∈ Z≥1 , (A.1.30)

where Hn is the harmonic number defined by The harmonic number:

Hn ≡
n∑
k=1

1

k
. (A.1.31)

We also use the standard definitions of Pochhammer’s symbol :

(a)0 ≡ 1, (a)n ≡ a(a+ 1) · · · (a+ n− 1) for n ∈ Z≥1 . (A.1.32)

and binomial coefficients:(
a

0

)
= 1,

(
a

n

)
=
a(a− 1) · · · (a− n+ 1)

1 · 2 · 3 · · ·n
= (−1)n

(−a)n
n!

. (A.1.33)

A.2 Mathematical facts on elliptic functions

This appendix provides some properties and formulae useful for computation involving Jacobi

elliptic functions and elliptic integrals.

A.2.1 Useful properties

Parity

Odd functions: sn(z), Θ1(z), Zν(z) (ν = 0, · · · , 3), (A.2.1)

Even functions: dn(z), cn(z), Θ0(z), Θ2(z), Θ3(z) . (A.2.2)
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All functions listed above are meromorphic, so we have

f(z̄) = f(z) and fodd(ix) ∈
√
−1R , feven(ix) ∈ R , for x ∈ R . (A.2.3)

Special values

Θν(z) have no poles at finite values of z, but have zeros at

Θ0(z) : z = 2mK + (2n+ 1)iK′ , (A.2.4)

Θ1(z) : z = 2mK + 2niK′ , (A.2.5)

Θ2(z) : z = (2m+ 1)K + 2niK′ , (A.2.6)

Θ3(z) : z = (2m+ 1)K + (2n+ 1)iK′ , (A.2.7)

where m, n are integers.

For Jacobi sn, cn and dn functions, we have

sn(0, k) = 0, sn(K, k) = 1, sn(iK′) =∞, (A.2.8)

dn(0, k) = 1, dn(K, k) = k′, dn(iK′) =∞, (A.2.9)

cn(0, k) = 1, cn(K, k) = 0, cn(iK′) =∞. (A.2.10)

We also have

sn(z, k) = z −
(

1 + k2

6

)
z3 +

(
1 + 14k2 + k4

120

)
z5 +O

(
z7
)
, as z → 0. (A.2.11)

The complete elliptic integrals K(k), 1/K′(k), 1/E(k) are monotonically increasing function

of k. They take the values

K(0) =
π

2
, K(1) =∞, K′(0) =∞, K′(1) =

π

2
, E(0) =

π

2
, E(1) = 1. (A.2.12)

We also have

K(k)− E(k) =
π

4
k2 +

3π

32
k4 +O(k6) . (A.2.13)

The zeros and the poles of Z0(z) are located at

Z0(z) = 0 at z = mK + 2niK′, Z0(z) =∞ at z = 2mK + (2n+ 1)iK′ . (A.2.14)

where m, n are integers. Asymptotically, Zν(z) behave as

Z0(z) ∼ 1

z − iK′
+

iπ

2K
+O(z − iK′), Z1(z) ∼ 1

z
+O(z). (A.2.15)

To derive them, the following identity is useful:

∂2ϑj (z, τ)

∂z2
= 4πi

∂ϑj (z, τ)

∂τ
, (A.2.16)
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We also have

Z0(K + iK′) = − πi

2K
, Z2(0) = 0. (A.2.17)

Periodicity

Jacobi sn, cn, dn functions have the following periodicity:

sn(z + K) =
cnz

dnz
, sn(z + iK′) =

1

k snz
, sn(z + 2K) = − sn(z) , sn(z + 2iK′) = snz,

dn(z + K) =
k′

dnz
, dn(z + iK′) =

cnz

i snz
, dn(z + 2K) = dnz , dn(z + 2iK′) = − dnz,

cn(z + K) = −k
′ snz

dnz
, cn(z + iK′) =

dnz

ik snz
, cn(z + 2K) = − cnz , cn(z + 2iK′) = − cnz.

As corollaries, we have

sn(z −K) = − cnz

dnz
, sn(z − iK′) =

1

k snz
, sn(z −K− iK′) = − dnz

k cnz
, (A.2.18)

dn(z −K) =
k′

dnz
, dn(z − iK′) = i

cnz

snz
, dn(z −K− iK′) =

−ik′ snz
cnz

, (A.2.19)

cn(z −K) =
k′ snz

dnz
, cn(z − iK′) = i

dnz

k snz
, cn(z −K− iK′) =

−ik′

k cnz
. (A.2.20)

For Jacobi theta functions, we have

Θ0(z + K) = Θ3(z) , Θ0(z + iK′) = iNΘ1(z) , Θ0(z + K + iK′) = NΘ2(z) ,

Θ1(z + K) = Θ2(z) , Θ1(z + iK′) = iNΘ0(z) , Θ1(z + K + iK′) = NΘ3(z) ,

Θ2(z + K) = −Θ1(z) , Θ2(z + iK′) = NΘ3(z) , Θ2(z + K + iK′) = −iNΘ0(z) ,

Θ3(z + K) = Θ0(z) , Θ3(z + iK′) = NΘ2(z) , Θ3(z + K + iK′) = iNΘ1(z) ,

where

N = N(z) ≡ exp

(
− iπ

2K
(z + iK′/2)

)
. (A.2.21)

As corollaries,

Θ0(z + 2K) = Θ0(z) , Θ0(z + 2iK′) = −M Θ0(z) ,

Θ1(z + 2K) = −Θ1(z) , Θ1(z + 2iK′) = −M Θ1(z) ,

Θ2(z + 2K) = −Θ2(z) , Θ2(z + 2iK′) = M Θ2(z) ,

Θ3(z + 2K) = Θ3(z) , Θ3(z + 2iK′) = M Θ3(z) ,

where

M = M(z) ≡ exp

(
−iπ
K

(z + iK′)

)
. (A.2.22)
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Periodicity for Zν(z) can be derived from the one for Θν(z):

Z0(z + 2K) = Z0(z), Z0(z + 2iK′) = Z0(z)− iπ

K
. (A.2.23)

We also have

Z1(z) = Z0(z + iK′) +
iπ

2K
, Z1(z) = Z0(z − iK′)− iπ

2K
, (A.2.24)

Z2(z) = Z0(z + K + iK′) +
iπ

2K
, Z2(z) = Z0(z −K− iK′)− iπ

2K
, (A.2.25)

Z3(z) = Z0(z + K) , Z3(z) = Z0(z −K) . (A.2.26)

See also (A.2.35), (A.2.36), (A.2.37) for the relation among Jacobin Zeta functions,

Derivative

Derivative of elliptic functions with respect to z is summarized as follows.

∂

∂z
snz = cnz dnz,

∂

∂z
dnz = −k2 snz cnz,

∂

∂z
cnz = − snz dnz, (A.2.27)

∂

∂z
Z0(z) = dn2z − E(k)

K(k)
,

∂

∂z
Z1(z) = − cn2z

sn2z
− E(k)

K(k)
. (A.2.28)

A.2.2 Useful formulae

We collect useful formulae to perform calculation in Section A.3. For details, please consult

textbooks such as [157, 210].

Addition and multiplication formulae

For Jacobi sn function, we have

sn(u+ v) =
snu cnv dnv + snv cnu dnu

1− k2 sn2u sn2v
, sn(u+ v) sn(u− v) =

sn2u− sn2v

1− k2 sn2u sn2v
, (A.2.29)

and in particular,

sn(2u) =
2 snu cnu dnu

1− k2 sn4u
. (A.2.30)

For Jacobi Zeta function,

Z0(u+ v) = Z0(u) + Z0(v)− k2 sn(u) sn(v) sn(u+ v) . (A.2.31)

As corollaries, by putting u = x+ iK′, v = y + iK′ we get

1

2

(
Z1(x+ y) + Z1(x− y)

)
= Z0(x) +

snx cnx dnx

sn2x− sn2y
. (A.2.32)
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And by putting u = x+ iK′, v = y − x we get

1

2

(
Z1(x+ y)− Z1(x− y)

)
= Z0(y)− sny cny dny

sn2x− sn2y
. (A.2.33)

Other formulae

Below are the results listed in [210]. Another expression of Jacobi Zeta is,

Z0(z, k) =
k2 sn(z, k) cn(z, k) dn(z, k)

K(k)

∫ K(k)

0

du sn2(u, k)

1− k2 sn2(z, k) sn2(u, k)
. (A.2.34)

Using the addition formula (A.2.31), one can express Jacobi Zeta’s solely by Z0 , as

Z1(z, k) = Z0(z, k) +
cn(z, k) dn(z, k)

sn(z, k)
, (A.2.35)

Z2(z, k) = Z0(z, k)− sn(z, k) dn(z, k)

cn(z, k)
, (A.2.36)

Z3(z, k) = Z0(z, k)− k2 sn(z, k) cn(z, k)

dn(z, k)
. (A.2.37)

Trigonometric limits

By taking k → 0 or k → 1 in (A.1.11), elliptic functions reduce to trigonometric functions.

sn(z, 0) = sin(z), dn(z, 0) = 1, cn(z, 0) = cos(z), (A.2.38)

sn(z, 1) = tanh(z), dn(z, 1) =
1

cosh(z)
, cn(z, 1) =

1

cosh(z)
. (A.2.39)

Jacobi zeta and theta functions become

Z0(z, 0) = 0, =⇒ Θ0(z, 0) = A′ , (A.2.40)

Z0(z, 1) = tanh(z), =⇒ Θ0(z, 1) = A cosh(z) , (A.2.41)

where A and A′ are possibly divergent constants. We can find the trigonometric limit of other

Jacobi zeta and theta functions from the definitions of Jacobi sn, cn and dn functions (A.1.9):

Θ1(z, 0) =
√
kΘ0(z, k) sn(z, k) , (A.2.42)

Θ2(z, 0) =

√
k

k′
Θ0(z, k) cn(z, k) , (A.2.43)

Θ3(z, 0) =
1√
k′

Θ0(z, k) dn(z, k) . (A.2.44)

In the k → 0 limit, they become

Θ1(z, 0) =
√
k A′ sin(z) , Θ2(z, 0) =

√
k A′ cos(z) , Θ3(z, 0) = A′ . (A.2.45)

Z1(z, 0) = cot(z) , Z2(z, 0) = − tan(z) , Z3(z, 0) = 0 . (A.2.46)
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In the k → 1 limit, we have

Θ1(z, 1) = A sinh(z) , Θ2(z, 1) =
A√
k′
, Θ3(z, 1) =

A√
k′
. (A.2.47)

Z1(z, 1) = coth(z) , Z2(z, 1) = Z3(z, 1) = 0 . (A.2.48)

A.2.3 Moduli transformations

We collect some formulae for SL(2,Z) transformations acting on elliptic functions.

Elliptic theta functions transform under the T-transformation as

ϑ0(z|τ + 1) = ϑ3(z|τ) , ϑ1(z|τ + 1) = eπi/4 ϑ1(z|τ) , (A.2.49)

ϑ2(z|τ + 1) = eπi/4 ϑ2(z|τ) , ϑ3(z|τ + 1) = ϑ0(z|τ) , (A.2.50)

and complete elliptic integrals with q ≥ 0 transform as

K(q) = k′K(k) , K′(q) = k′ (K′(k)− iK(k)) , E(q) = E(k)/k′ . (A.2.51)

Jacobi theta functions, defined by

Θν(z, k) ≡ ϑν

(
z

2K(k)
, τ =

iK′(k)

K(k)

)
, (ν = 0, 1, 2, 3) (A.2.52)

transform as

Θ0(z|τ + 1) = Θ3(z/k′|τ) , Θ1(z|τ + 1) = eπi/4 Θ1(z/k′|τ) , (A.2.53)

Θ2(z|τ + 1) = eπi/4 Θ2(z/k′|τ) , Θ3(z|τ + 1) = Θ0(z/k′|τ) , (A.2.54)

and Jacobi zeta functions defined by Zν(z, k) ≡ ∂z ln Θν(z, k) transform as

Z0(z|τ + 1) = Z3(z/k′|τ)/k′ , Z1(z|τ + 1) = Z1(z/k′|τ)/k′ , (A.2.55)

Z2(z|τ + 1) = Z2(z/k′|τ)/k′ , Z3(z|τ + 1) = Z0(z/k′|τ)/k′ . (A.2.56)

Therefore, the T-transformation acts on the elliptic modulus k as

q ≡
(

Θ2(0|τ + 1)

Θ3(0|τ + 1)

)2

= i

(
Θ2(0|τ)

Θ0(0|τ)

)2

=
ik

k′
, (A.2.57)

q′ ≡
(

Θ0(0|τ + 1)

Θ3(0|τ + 1)

)2

=

(
Θ3(0|τ)

Θ0(0|τ)

)2

=
1

k′
. (A.2.58)

In terms of the modulus q defined in (8.2.1), the Jacobi sn, cn and dn functions are written as

sn(z, q) = k′
sn(z/k′, k)

dn(z/k′, k)
, cn(z, q) =

cn(z/k′, k)

dn(z/k′, k)
, dn(z, q) =

1

dn(z/k′, k)
. (A.2.59)

Normal elliptic integrals behaves under reciprocal modular transformation, as

F

(
z,

1

k

)
= kF

(z
k
, k
)
, E

(
z,

1

k

)
=

1

k

{
E
(z
k
, k
)
−
(
1− k2

)
F
(z
k
, k
)}

. (A.2.60)
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A.3 Some details of calculations

In this appendix we will collect some key formulae that would be useful in checking the calcu-

lation involving the function

Ξ(X,T,w) =
Θ1(X −X0 − w + w0)

Θ0(X −X0)Θ0(w − w0)
exp

(
Z0(w − w0)(X −X0) + iu(T − T0)

)
,

u2 = U + dn2(w − w0), (A.3.1)

where X, X0, T and T0 are all real. For the moment we assume w and w0 to be purely imaginary.

The degrees of freedom of (T0, X0) correspond to the initial values for the phases of ξj, and in

what follows, we will set them as zero. We will also set w0 = 0.

As a preliminary, we shall collect several useful formulae from the ones presented in the last

section.

• One can express Z0(z, k) in terms of Jacobi dn function and complete elliptic integrals as

Z0(z, k) =

∫ z

0

dn2(u, k)du− z E

K
. (A.3.2)

• By using an addition theorem

Z0(u+ v) = Z0(u) + Z0(v)− k2 sn(u) sn(v) sn(u+ v) , (A.3.3)

one can verify the following identities :

1

2

(
Z1(x+ y) + Z1(x− y)

)
= Z0(x) +

snx cnx dnx

sn2x− sn2y
, (A.3.4)

1

2

(
Z1(x+ y)− Z1(x− y)

)
= Z0(y)− sny cny dny

sn2x− sn2y
. (A.3.5)

• Concerning the absolute value of Ξ(X,T,w), one can show that

Θ1(z − w) Θ1(z + w)

Θ2
0(z) Θ2

0(w)
=

k

Θ2
0(0)

(
sn2z − sn2w

)
. (A.3.6)

With the help of those formulae, we can easily arrived at the following relations:∣∣∣∣∂XΞ

Ξ

∣∣∣∣2 =
sn2(X) cn2(X) dn2(X)− sn2(w) cn2(w) dn2(w)

( sn2(X)− sn2(w))2 , (A.3.7)

Re

(
∂TΞ∗

Ξ

∂XΞ

Ξ

)
= −iu sn(w) cn(w) dn(w)

sn2(X)− sn2(w)
, (A.3.8)

Im

(
∂XΞ

Ξ

)
=

1

i

sn(w) cn(w) dn(w)

sn2(X)− sn2(w)
, (A.3.9)

which should be useful in evaluating the consistency condition, Virasoro conditions and con-

served charges in the main text.
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We can now discuss a generalization of the Ansatz (6.2.6). In order for Ξ(X,T,w) to be

normalizable for all range of X, Z0(w, k) must be purely imaginary. When k is real, this can

be achieved if and only if w = mK + iω with m ∈ Z and ω ∈ R. Therefore, with the Ansatz

(6.2.6), general solutions of (8.1.12) are given by

Ξ0 =
Θ1(X − iω)

Θ0(X)Θ0(iω)
exp

(
Z0(iω)X + iuT

)
, u2 = U + dn2(iω) , (A.3.10)

Ξ1 =
Θ0(X − iω)

Θ0(X)Θ1(iω)
exp

(
Z1(iω)X + iuT

)
, u2 = U − cn2(iω)

sn2(iω)
, (A.3.11)

Ξ2 =
Θ3(X − iω)

Θ0(X)Θ2(iω)
exp

(
Z2(iω)X + iuT

)
, u2 = U − (1− k2) sn2(iω)

cn2(iω)
, (A.3.12)

Ξ3 =
Θ2(X − iω)

Θ0(X)Θ3(iω)
exp

(
Z3(iω)X + iuT

)
, u2 = U +

1− k2

dn2(iω)
. (A.3.13)

These four functions are mutually related by a shift of w as

Ξ0(X,T ;w) = Ξ(X,T ;w = iω) , Ξ1(X,T ;w) = −Ξ(X,T ;w = iω − iK′) ,

Ξ2(X,T ;w) = Ξ(X,T ;w = iω −K− iK′) , Ξ3(X,T ;w) = Ξ(X,T ;w = iω −K) .

(A.3.14)

Note that in ω → 0 limit, the functions Ξ0, Ξ2 and Ξ3 reduce to sn(X), dn(X) and cn(X)

with the angular velocity satisfying u2 = U + 1, U and U + 1− k2, respectively.

It would also be useful to note the properties of Ξi given in (A.3.14). They are doubly

periodic with respect to w :

Ξi → −Ξi (w → w + 2K) , Ξi → Ξi (w → w + 2iK′) , (A.3.15)

and quasi-periodic with respect to X :

Ξ0(X + 2K) = −e2Z0(w)K Ξ0(X) , Ξ1(X + 2K) = e2Z1(w)K Ξ1(X) ,

Ξ2(X + 2K) = e2Z2(w)K Ξ2(X) , Ξ3(X + 2K) = −e2Z3(w)K Ξ3(X) . (A.3.16)

A.4 Expansions around k = 1

Behavior of Jacobi elliptic functions around k = 1 is discussed below.

A.4.1 Jacobi sn, cn and dn functions

Jacobi sn, cn, and dn functions can be expanded in power series of k′2 ≡ 1− k2 around k = 1.

We want to know the expansion up to the order of k′4 for later use. We follow the method of

[211], where they computed asymptotics around k = 0 .
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The Jacobi sn function obeys an equation

u =

∫ sn(u,k)

0

dt√
1− t2

√
1− k2t2

. (A.4.1)

Differentiating both sides with respect to k , one finds

∂ sn(u, k)

∂k
= − cn(u, k) dn(u, k)

∫ sn(u,k)

0

kt2 dt
√

1− t2 (1− k2t2)3/2
. (A.4.2)

Taking the limit k → 1 and substituting u = iω , we obtain

∂ sn(u, k)

∂k

∣∣∣∣
k→1

=
i (ω − sinω cosω)

2 cos2 ω
, (A.4.3)

which is the first term in the expansion of the Jacobi sn function around k = 1 . The asymptotics

of the Jacobi cn and dn functions can be determined by the relations

sn2(u, k) + cn2(u, k) = 1, dn2(u, k) + k2 sn2(u, k) = 1 . (A.4.4)

We write down the results at higher orders in k′ :1

sn(iω, k) ≈ i tan(ω) +
i(1− k2)

4 cos2(ω)
(sinω cosω − ω)

+
i(1− k2)2

64 cos3(ω)

(
− 9ω cosω + sinω

(
4ω2 + 9− 7 sin2 ω − 2 sin4 ω

) )
, (A.4.5)

cn(iω, k) ≈ 1

cosω
+

1− k2

4 cos2(ω)

(
cosω sin2 ω − ω sinω

)
+

(1− k2)2

64 cos3(ω)

(
2ω2

(
1 + sin2 ω

)
− ω sinω cosω

(
13− 4 sin2 ω

)
+ 11 sin2 ω cos2 ω

)
, (A.4.6)

dn(iω, k) ≈ 1

cosω
− 1− k2

4 cos2(ω)

(
cosω sin2 ω + ω sinω

)
+

(1− k2)2

64 cos3(ω)

(
2ω2

(
1 + sin2 ω

)
+ ω sinω cosω

(
3− 4 sin2 ω

)
− 5 sin2 ω cos2 ω

)
. (A.4.7)

A.4.2 Elliptic Integrals and Jacobi Zeta function

The expansion of elliptic integrals and Jacobi Zeta functions around k = 1 is not polynomial

in k′, because it involves ln k′. Here we borrow the general results from the textbook [210],

Normal elliptic integrals

Normal elliptic integral of the first kind behaves as

F (φ, k) =
∞∑
m=0

(
−1/2

m

)
k′

2m
%2m(φ) for (0 < k′

2
tan2 φ < 1, k < 1), (A.4.8)

1These results can be checked also by Mathematica 6.
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where

%0(φ) = ln

(
1 + sinφ

cosφ

)
, %2(φ) =

1

2

[
sinφ

cos2 φ
− ln

(
1 + sinφ

cosφ

)]
, (A.4.9)

%4(φ) =
1

8

[
2 sin3 φ

cos4 φ
− 3 sinφ

cos2 φ
+ 3 ln

(
1 + sinφ

cosφ

)]
. (A.4.10)

And in general

%2m(φ) =
1

2m

{
−(2m− 1)%2m−2(φ) +

sin2m−1 φ

cos2m φ

}
, (m ≥ 1) . (A.4.11)

First few terms are written as

F (φ, k) = ln

(
1 + sinφ

cosφ

)
− k′2

4

[
sinφ

cos2 φ
− ln

(
1 + sinφ

cosφ

)]
+

3k′4

64

[
2 sin3 φ

cos4 φ
− 3 sinφ

cos2 φ
+ 3 ln

(
1 + sinφ

cosφ

)]
+ · · · . (A.4.12)

Normal elliptic integral of the second kind behaves as

E(φ, k) =
∞∑
m=0

(
1/2

m

)
k′

2m
d2m(φ) for (0 < k′

2
tan2 φ < 1, k < 1), (A.4.13)

where

d0(φ) = sinφ, d2(φ) = − sinφ+ ln

(
1 + sinφ

cosφ

)
, (A.4.14)

d4(φ) =
1

2

[
sin3 φ

cos2 φ
+ 3 sinφ− 3 ln

(
1 + sinφ

cosφ

)]
. (A.4.15)

And in general

d2m(φ) =
1

2(m− 1)

{
−(2m− 1)d2m−2(φ) +

sin2m−1 φ

cos2m−2 φ

}
, (m ≥ 2) . (A.4.16)

First few terms are

E(φ, k) = sinφ+
k′2

2

[
− sinφ+ ln

(
1 + sinφ

cosφ

)]
− k′4

16

[
sin3 φ

cos2 φ
+ 3 sinφ− 3 ln

(
1 + sinφ

cosφ

)]
+ · · · . (A.4.17)

Complete elliptic integrals

Complete elliptic integral of the first kind behaves as

K(k) =
∞∑
m=0

(
−1/2

m

)2

k′
2m

[
ln

(
4

k′

)
− bm

]
, (k < 1), (A.4.18)
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where

b0 = 0, bm = 2
2m∑
j=1

(−1)j

j
= bm−1 +

2

2m (2m− 1)
. (A.4.19)

First few terms are written as

K(k) = ln

(
4

k′

)
+
k′2

4

[
ln

(
4

k′

)
− 1

]
+

9k′4

64

[
ln

(
4

k′

)
− 7

6

]
+ · · · . (A.4.20)

Another but equivalent expression of this expansion is

K(k) =
∞∑
m=0

((
1
2

)
m

m!

)2

k′
2m

[
− ln k′ + ψ (m+ 1)− ψ

(
m+

1

2

)]
, (k < 1), (A.4.21)

where ψ is the digamma function defined in (A.1.27).

Complete elliptic integral of the second kind behaves as:

E(k) = 1 +
1

4

∞∑
m=0

(
1
2

)
m

(
3
2

)
m

m!(m+ 1)!
k′

2m×[
−2 ln k′ + ψ (m+ 2) + ψ (m+ 1)− ψ

(
m+

3

2

)
− ψ

(
m+

1

2

)]
, (k < 1). (A.4.22)

First few terms become

E(k) = 1 +
k′2

2

[
ln

(
4

k′

)
− 1

2

]
+

3k′4

16

[
ln

(
4

k′

)
− 13

12

]
+ · · · . (A.4.23)

Substituting the expansion of elliptic integrals (A.4.17), (A.4.20), (A.4.23) and Jacobi sn

and cn functions (A.4.5), (A.4.6), into the expression of Jacobi Zeta (A.1.26), one obtains its

asymptotic behavior near k = 1:

Z0 (iω, k) = i tanω − iω

`k
− ik′2

4

[
ω + sinω cosω

cos2 ω
− ω

(
2

`k
− 1

`2
k

)]
+
ik′4

128

[
−2ω cosω + 2 sinω (4ω2 − 5 cos2 ω + 2 cos4 ω)

cos3 ω
+ 3ω

(
4

`k
+

1

`2
k

)]
+O

(
k′

6
)

+O

(
1

`3
k

)
, (A.4.24)

where `k ≡ ln (4/k′).

A.5 The asymptotic behavior of helical strings near k = 1

Below we show the asymptotic behavior of helical strings in detail by using the formula derived

in Appendix A.4.
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The parameters a, b and v = b/a, which appeared in (9.2.12) and (9.2.13), behave as

a =

√
U + cos2 ω1

cosω
+ k′2 a(2) +O(k′4) ,

b = tanω1 + k′2 b(2) +O(k′4) ,

v =
sinω1√

U + cos2 ω1

+ k′2 v(2) +O(k′4) ,

where

a(2) =
(
− (U + 1)ω1 sinω1 − 4

(
U cos2 ω1 + 1

)
cos3 ω1 cos2 ω2

+ 4
√
U
√
U cos2 ω1 + 1 sinω1 cos3 ω1 sinω2 cosω2

+ 2U cos5 ω1 + (3 + U) cos3 ω1 − (U + 1) cosω1

)/[
4
√
U cos2 ω1 + 1 (U + 1) cos2 ω1

]
,

b(2) =
(
− (U + 1)ω1 sinω1 − 4U sin2 ω1 cos3 ω1 cos2 ω2

− 4
√
U
√
U cos2 ω1 + 1 sinω1 cos3 ω1 sinω2 cosω2

− 2U cos5 ω1 + (3U + 1) cos3 ω1 − (U + 1) cosω1

)/[
4 (U + 1) cos2 ω1 sinω1

]
,

v(2) =
(
− (U + 1)2 ω1 sinω1 cosω1 − 4 (U − 1)

(
U cos2 ω1 + 1

)
sin2 ω1 cos2 ω1 cos2 ω2

− 4
√
U
√
U cos2 ω1 + 1

(
2− cos2 ω1 + U cos2 ω1

)
sinω1 cos2 ω1 sinω2 cosω2

+ sin2 ω1 cos2 ω1

{(
2 cos2 ω1 − 1

)
U2 − 2U cos2 ω1 − 3

}/[
4
(
U cos2 ω1 + 1

)3/2
(U + 1) sinω1

]
.

The conserved charges, which appeared in (9.2.24), (9.2.25) and (9.2.26), become

E =
`k (U + 1) sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1

+
k′2

4
E (2′) +O

(
k′4
)
, (A.5.1)

J1 =
`k (U + 1) sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1
−
√
U sin2

(p1

2

)
+ 1 sin

(p1

2

)
+
k′2

4
J (2′)

1 +O
(
k′4
)
, (A.5.2)

J2 =
√
U sin2

(p1

2

)
+
k′2

4
J (2′)

2 +O
(
k′4
)
, (A.5.3)
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where the next-to-leading terms in (9.2.33) are given by

E (2′) − J (2′)
1 = sin3

(p1

2

){
2 `k

[
U
(
U sin2

(p1

2

)
+ 1
)(

(2− 2U) cos2
(p1

2

)
+ 1 + U

)
×
(
−1 + 2 cos2 ω2

)
+ 2

√
U
(
U sin2

(p1

2

)
+ 1
)((

2U2 − 2U
)

cos2
(p1

2

)
− 2U2 − U + 1

)
× cos

(p1

2

)
sinω2 cosω2

]
+ (U + 1)

(
U sin2

(p1

2

)
+ 1
)

×
[
− 4

(
U sin2

(p1

2

)
+ 1
)

cos2 ω2 + 3 +
(
−2 cos2

(p1

2

)
+ 3
)
U
]}

/[(
U sin2

(p1

2

)
+ 1
)3/2

(U + 1)

]
,

J (2′)
2 = sin2

(p1

2

){
2 `k

[
U

√
U sin2

(p1

2

)
+ 1

(
(2− 2U) cos2

(p1

2

)
+ 1 + U

)
×
(
−1 + 2 cos2 ω2

)
+ 2
√
U
((

2U2 − 2U
)

cos2
(p1

2

)
− 2U2 − U + 1

)
cos
(p1

2

)
sinω2 cosω2

]
+

√
U sin2

(p1

2

)
+ 1 (U + 1)

[
− 4

(
U sin2

(p1

2

)
+

1

2

)
cos2 ω2 + 2 +

(
−2 cos2

(p1

2

)
+ 3
)
U
]}

/[√
U (U + 1)

√
U sin2

(p1

2

)
+ 1

]
.

Thus, the next-to-leading term in (9.2.33) is,

E (2′) − J (2′)
1 −

√
U sin

(
p1
2

)√
U sin2

(
p1
2

)
+ 1
J (2′)

2 = sin3
(p1

2

) (1− 2 cos2 ω2)√
U sin2

(
p1
2

)
+ 1

. (A.5.4)
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Appendix B

The Pohlmeyer-Lund-Regge reduction

The spectrum of Complex sine-Gordon system is investigated through the Pohlmeyer-Lund-

Regge reduction of classical string theory on Rt× S3. We study one- and two-soliton solutions

and the mapping of spectral parameters of two theories.

We further show that so-called ‘Complex sine-Gordon breather’ is exactly identical to the

kink-antikink scattering solution, by making use of invariance under the exchange of spectral

parameters as first suggested in [81]. This result is consistent with the semiclassical quantization

of Complex sine-Gordon theory, where no boundstates of kink and antikink are found.

B.1 Brief introduction

Complex sine-Gordon is an integrable 1+1 dimensional field theory, and can be regarded as

generalization of sine-Gordon system with additional U(1) charge [212]. Pohlmeyer, Lund, and

Regge found that classical string theory on Rt× S3 in conformal gauge admits reduction to

another integrable model known as Complex sine-Gordon (CsG) system [55, 56, 57]. Moreover,

one can reconstruct classical string solutions from those of CsG system at least locally.

An example of such correspondence is giant magnon solution of classical strings on Rt× S2

and kink solution of sine-Gordon system [49]. The two-spin generalization of giant magnon

solution, called dyonic giant magnon is related to kink solution of CsG system [51]. We will

see this correspondence more in detail below.

sine-Gordon kink ↔ Giant Magnon CsG kink ↔ Dyonic Giant Magnon

sine-Gordon scattering ↔ GM scattering CsG scattering ↔ DGM scattering

Table B.1: Examples of the Pohlmeyer-Lund-Regge reduction.

Soliton solutions of CsG system can be constructed by various techniques such as inverse

scattering method. One can also study its spectrum from poles of S-matrix.
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Semiclassical analysis of CsG S-matrix was initiated by [213, 214]. About a decade later,

Bakas reformulated CsG system as SU(2)/U(1) gauged WZW model perturbed by its first

thermal operator [215]. Based on the result, an exact quantum S-matrix was conjectured [216].

They found that the spectrum of Complex sine-Gordon consists of boundstate of same charges

alone. The solitons of opposite charges do not form boundstate.

The situation is completely different from sine-Gordon system, where analytic continuation

of 2-kink solution gives the boundstate solution known as “breather”. In CsG system, breather

solution becomes exactly identical to the kink-antikink scattering solution. In fact, Dorey,

Hofman, and Maldacena showed that analytic continuation of dyonic giant magnon scattering

solution does not give another new solution of classical string on Rt× S3 [81].

In this appendix, we also establish the equivalence of CsG breather and CsG kink-antikink,

by means of the Pohlmeyer-Lund-Regge reduction of dyonic giant magnon scattering. To show

this equivalence, we make use of the exchange symmetry of the classical string solution found

in [81].

B.2 Multisoliton solutions of sine-Gordon system

We begin with collecting facts on the soliton solutions of sine-Gordon system before looking

into the connection with classical string theory.

Multi-soliton solutions of sine-Gordon system can be obtained by using inverse scattering

method [217]. The following expression is known for K-soliton solutions of sine-Gordon system:

− ∂2
t φ+ ∂2

xφ− sinφ = 0, φ = −2i log

(
det (IK + V )

det (IK − V )

)
(B.2.1)

where IK is K ×K identity matrix, and the components of the K ×K matrix V are given by

Vjk =
imj

λj + λk
exp

(
i (µj + µk)x+ 2iνj t

)
, µj ≡ λj −

1

16λj
, νj ≡ λj +

1

16λj
. (B.2.2)

For φ = φ(x, t) to be real, V must satisfy

det (I + V ) = det (I − V ∗) . (B.2.3)

One-soliton case. By substituting K = 1, we have

V =
im

2λ
e2i(µx+νt), tan

(u
4

)
=
m

2λ
e2i(µx+νt) . (B.2.4)

Plugging them back to (B.2.1), we can identify the result as the famous expression of 1-soliton

solution of sine-Gordon system

tan

(
φ

4

)
= exp

(
− x− vt√

1− v2
+ x0

)
, (B.2.5)
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by setting

m = 2λ ex0 , v = −ν
µ

=
1 + 16λ2

1− 16λ2
. (B.2.6)

For this solution to be real, we must have

v < 1 ⇐⇒ λ = ia, a ∈ R. (B.2.7)

Thus, in the one-soliton case, the imaginary part of λ controls the Lorentz boost v.

Two-soliton case. Consider the reality constraint (B.2.3) imposed on V . By writing

V =

 V11 V12

V21 V22

 , Ṽ =

 V21 V21

V12 V11

 , (B.2.8)

we can see that V ∗ = −Ṽ solves the constraint. Thus, after the redefinition of the parameters

as

λ ≡ λ1 = −λ∗2 , m ≡ m1 = m∗2 , µ ≡ µ1 = −µ∗2 , ν ≡ ν1 = −ν∗2 , (B.2.9)

the matrix V given in (B.2.2) becomes

V =


im

2λ
e2iµx+2iνt im

λ− λ̄
ei(µ−µ̄)x+2iνt

im̄

λ− λ̄
ei(µ−µ̄)x−2iνt −im̄

2λ̄
e−2iµ̄x−2iν̄t

 . (B.2.10)

Then, we substitute V into (B.2.1) to obtain the expression of tan(φ/4). By setting

m = ρλeiθ, λ = ξ + iη, (B.2.11)

we have

tan

(
φ

4

)
=

−iρ sin(T + θ)

eX

[
1−

(
ξρ

2η

)2

e−2X

] , (B.2.12)

where T and X are defined by

T =
ξ

8 (ξ2 + η2)

{(
1 + 16 ξ2 + 16 η2

)
t−
(
1− 16 ξ2 − 16 η2

)
x
}
, (B.2.13)

X =
η

8 (ξ2 + η2)

{(
1 + 16 ξ2 + 16 η2

)
x−

(
1− 16 ξ2 − 16 η2

)
t
}
. (B.2.14)

We further set

ρ =
2η

ξ
e−χ, v =

1− 16 (ξ2 + η2)

1 + 16 (ξ2 + η2)
, (B.2.15)

and introduce (tv , xv) as the Lorentz boost of (t, x) by velocity v, then (B.2.12) becomes

tan

(
φ

4

)
=
−iη
ξ

sin

(
ξ tv√
ξ2 + η2

+ θ

)

sinh

(
η xv√
ξ2 + η2

+ χ

) . (B.2.16)
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We can identify (B.2.16) as the famous expression of breather solution of sine-Gordon system

tan

(
φ

4

)
=

1

w

sin

(
wtv√
1 + w2

+ t0

)
cosh

(
xv√

1 + w2
+ x0

) , (B.2.17)

by choosing

w =
ξ

η
, t0 = θ, x0 = χ+

iπ

2
(B.2.18)

From (B.2.11), (B.2.15), and (B.2.18), one finds that the absolute value of λ controls the period

of breathing, the phase of λ controls the Lorentz boost, and m controls the initial values of t

and x.

There are other two scattering solutions known in sine-Gordon theory. One is the kink-kink

solution

tan

(
φ

4

)
=

1

w

sinh

(
wtv√
1− w2

+ t0

)
cosh

(
xv√

1− w2
+ x0

) , (B.2.19)

which can be obtained by setting λ1 = ia1 , λ2 = ia2 with a1 , a2 ∈ R, or by setting w to be

purely imaginary. The other is the kink-antikink solution

tan

(
φ

4

)
=

1

w

cosh

(
wtv√
1− w2

+ t0

)
sinh

(
xv√

1− w2
+ x0

) . (B.2.20)

which can be obtained by the shift of t0 and x0 in the kink-kink solution. The kink-kink and

the kink-antikink solutions have different topological charge,

Qtop ≡
∫ ∞
−∞

dx
∂φ

∂x
. (B.2.21)

That is, Qtop is nonzero for the kink-kink solution, while it is zero for the kink-antikink solution.

B.3 Review of the Pohlmeyer-Lund-Regge reduction

We review the reduction procedure invented by Pohlmeyer, Lund, and Regge [55, 56, 57], by

partly repeating argument in Section 6.1. We then discuss how dyonic giant magnon solution

is reduced to kink solution of Complex sine-Gordon (CsG) system.

We follow the discussion of Section 6.1. There we find that the equations of motion of

classical strings on Rt× S3 take the form

∂a∂
a~ξ + (∂a~ξ · ∂ a~ξ∗)~ξ = ~0 , (B.3.1)
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and Virasoro constraints read

|∂t~ξ|2 + |∂x~ξ|2 = 1, Re
(
∂t~ξ · ∂x~ξ∗

)
= 0. (B.3.2)

We can construct a solution of Complex sine-Gordon out of any solution of classical string

on Rt× S3 in conformal gauge using the Pohlmeyer-Lund-Regge reduction. The reduction

procedure goes as follows. First, let us define O(4)-invariant variables φ and χ by

−∂+
~X · ∂− ~X ≡ cosφ , (B.3.3)

∂2
+
~X · ~K ≡ 2 ∂+χ sin2(φ/2), ∂2

−
~X · ~K ≡ −2 ∂−χ sin2(φ/2), (B.3.4)

where x± are the light-cone coordinates defined by t = x+ + x−, x = x+ − x−, and Ki ≡
εijklX

j∂+X
k∂−X

l (i, j, k, l = 1, . . . , 4). Then, we can derive differential equations for φ and χ

∂a∂
aφ− sinφ− sin (φ/2)

2 cos3 (φ/2)
(∂aχ)2 = 0 , ∂a∂

aχ+
2 ∂aφ ∂

aχ

sinφ
= 0 . (B.3.5)

by using the equations of motion (B.3.1), Virasoro constraints (B.3.2), and the normalization

condition |~ξ|2 = 1. The equations (B.3.5) are called Complex sine-Gordon equations. If we

introduce a complex variable ψ ≡ sin(φ/2) exp(iχ/2), the equations (B.3.5) are rewritten as

∂a∂
aψ + ψ∗

(∂aψ)2

1− |ψ|2
− ψ

(
1− |ψ|2

)
= 0 . (B.3.6)

An interesting problem is whether we can reconstruct the classical string solution on Rt×S3

from the solution of Complex sine-Gordon system. The problem is more precisely formulated

as follows. Take any solution of CsG system, call it ψ0 = ψ0(t, x) , and substitute it into the

string equation of motion (B.3.1) with the identification (B.3.3). Then we have to solve the

‘reduced’ equation of motion

∂a∂
a~ξ +

(
1− 2 |ψ0|2

)
~ξ = ~0 . (B.3.7)

under suitable boundary conditions. Throughout this section, we impose the following Dirichlet

boundary conditions:

ξ1 → exp (it± ip/2) , ξ2 → 0, (as x→ ±∞) . (B.3.8)

After having found a solution to (B.3.7), we have to check its consistency; that is, the solution

must satisfy the relation (B.3.3) and (B.3.4) with the right hand sides determined by ψ0 =

sin(φ0/2) exp(iχ0/2).

Let us illustrate how to deal with this problem with a simple example. The CsG kink

solution is given by

ψkink =
cosA

coshU
eiV , (B.3.9)
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where coordinates U, V are defined by

U = cosA (x cosh θ − t sinh θ) , V = sinA (t cosh θ − x sinh θ) . (B.3.10)

We further introduce a pair of auxiliary variables λ± used in [54, 151, 81], as1

U =
−i (λ+ − λ−)

(1− (λ+)2) (1− (λ−)2)

[
x
(
1 + λ+λ−

)
− t
(
λ+ + λ−

) ]
, (B.3.11)

V =
1− λ+λ−

(1− (λ+)2) (1− (λ−)2)

[
t
(
1 + λ+λ−

)
− x

(
λ+ + λ−

) ]
, (B.3.12)

where A and θ are reparametrized as

cosA =
−i (λ+ − λ−)√

(1− (λ+)2) (1− (λ−)2)
, sinA =

1− λ+λ−√
(1− (λ+)2) (1− (λ−)2)

, (B.3.13)

cosh θ =
1 + λ+λ−√

(1− (λ+)2) (1− (λ−)2)
, sinh θ =

λ+ + λ−√
(1− (λ+)2) (1− (λ−)2)

. (B.3.14)

Now we want to solve the reduced equation of motion (B.3.7) with ψ0 = ψkink , under the

boundary conditions (B.3.8). The solution is nothing but the dyonic giant magnon solution

obtained in [51],

ξ1 =
eit

2
√
λ+λ−

λ+eU + λ−e−U

coshU
= eit

[
cos
(p

2

)
+ i sin

(p
2

)
tanhU

]
ξ2 =

−i
2
√
λ+λ−

(λ+ − λ−) eiV

coshU
=

sin(p/2)

coshU
eiV ,

(B.3.15)

where we used

λ+ ≡
(
λ−
)∗ ≡ e(ip+q)/2 . (B.3.16)

We can easily check that the Pohlmeyer-Lund-Regge reduction of the dyonic giant magnon

(B.3.15) is indeed consistent with the CsG kink (B.3.9).

The conserved charges of Complex sine-Gordon are defined by

ECsG ≡
∫ ∞
−∞

dx

(
|∂tψ|2 + |∂xψ|2

1− |ψ|2
+ |ψ|2

)
, Qu(1) ≡

∫ ∞
−∞

dx

(
Im (ψ∗∂tψ)

1− |ψ|2

)
. (B.3.17)

For the kink solution, they become

ECsG = 4 cosh θ |cosA| = 4 (λ+ − λ−) (1 + λ+λ−)

(1− (λ+)2) (1− (λ−)2)
, (B.3.18)

Qu(1) =
sin 2A

|sin 2A|

(
π − 2 |A|

)
= sign

(
(λ+ − λ−) (1− λ+λ−)

(1− (λ+)2) (1− (λ−)2)

){
π − 2

∣∣∣∣arccot

(
−i (λ+ − λ−)

1− λ+λ−

)∣∣∣∣} . (B.3.19)

1The variables λ± are aliases of x± variables used so far.
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Note that the CsG kink has no topological charge unless cosA = 1 which is sine-Gordon limit

(see Section B.2). In this connection, the U(1) charge Qu(1) has discontinuity around A = 0.

The conserved charges of classical strings on Rt× S3 are defined by

E − J1 ≡
√
λ

2π
(E − J1) =

√
λ

2π

∫ ∞
−∞

dx
{

1− Im (ξ∗1∂tξ1)
}
, (B.3.20)

J2 ≡
√
λ

2π
J2 =

√
λ

2π

∫ ∞
−∞

dx Im (ξ∗2∂tξ2) . (B.3.21)

In the case of dyonic giant magnon, they become

E − J1 =
s(λ±)

2i

(
λ+ − 1

λ+
− λ− +

1

λ−

)
= cosh

q

2

∣∣∣sin p
2

∣∣∣ ,
J2 =

s(λ±)

2i

(
λ+ +

1

λ+
− λ− − 1

λ−

)
= sinh

q

2

∣∣∣sin p
2

∣∣∣ , (B.3.22)

where s(λ±) is the sign function of the form

s(λ±) ≡ −i (λ+ − λ−) (1 + λ+λ−)

(1− (λ+)2) (1− (λ−)2)

∣∣∣∣(1− (λ+)2) (1− (λ−)2)

(λ+ − λ−) (1 + λ+λ−)

∣∣∣∣ . (B.3.23)

The crossing transformation λ± → 1/λ± of Janik [14] induces the transformation

ψkink → (ψkink)∗ , (ξ1 , ξ2) → (ξ1 , −(ξ2)∗) , (E − J1 , J2) → (E − J1 , −J2) , (B.3.24)

which can be regarded as transformation from kink to antikink in Complex sine-Gordon system.

Let us make a few comments on mapping the spectral parameters of CsG model and classical

string theory. The relation between λ± variables of classical strings and the parameters of CsG

solutions, namely tanA, tanh θ given in (B.3.13) and (B.3.14), is given as follows. The velocity

of a soliton is given by

tanh θ =
λ+ + λ−

1 + λ+λ−
=

4g sin p
2

cos p
2√

n2 + 16g2 sin2 p
2

=
1

2g

dE

dp
, (B.3.25)

where the right hand side is normalized so that the speed of light is 1. The U(1) parameter of

a soliton is written as

tanA =
i (1− λ+λ−)

λ+ − λ−
=

−n
4g sin2 p

2

=
1

2g

dJ2

dp
. (B.3.26)

We can also relate the spectral parameter of sine-Gordon model λ and λ± variables of classical

strings.2 To this end, we identify the velocity of sG kink (B.2.6) as tanh θ, then it follows

v = tanh θ ⇐⇒ 1 + 16λ2

1− 16λ2
=

λ+ + λ−

1 + λ+λ−
, 4λ = ±i

√
(1− λ+) (1− λ−)

(1 + λ+) (1 + λ−)
. (B.3.27)

2Note that the spectral parameter of Complex sine-Gordon is same as that of sine-Gordon.
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B.4 Analytic continuation of 2-soliton solutions

First, we summarize the construction of 2-soliton solutions in CsG system by Bäcklund trans-

formation method done in [218, 219], Let us redefine the (U, V ) coordinates (B.3.10) as

Uk = cosAk

[
xv
2

(
δk +

1

δk

)
+
tv
2

(
δk −

1

δk

)]
,

Vk = sinAk

[
tv
2

(
δk +

1

δk

)
+
xv
2

(
δk −

1

δk

)]
,

(B.4.1)

where tv , xv are Lorentz-boosted coordinates

tv =
t− vx√
1− v2

, xv =
x− vt√
1− v2

. (B.4.2)

Define two auxiliary functions by

uk =
cosAk
coshUk

eiVk , vk = −eiΩ
(

cos(Ak) tanh(Uk) + i sin(Ak)
)
. (B.4.3)

The general form of 2-soliton solution of CsG system is given by

ψ2−soliton =
(−δ1v

∗
2 + δ2v

∗
1) eiΩ (δ1u1 − δ2u2) + (−δ1u2 + δ2u1) e−iΩ (−δ1v1 + δ2v2)

(δ1)2 + (−u∗1u2 − u∗2u1 − v∗1v2 − v∗2v1) δ2δ1 + (δ2)2
, (B.4.4)

which satisfies the CsG equation (B.3.6). Note that the solution (B.4.4) is independent of Ω.

The two-soliton solutions are completely specified by the choice of δ1,2 and A1,2 . The param-

eters δ1,2 determines the relative velocities of each soliton and the parameters A1,2 determines

their amplitude. In general, there will be 2K independent parameters for K-soliton solutions.

Using terminology of the paper [218, 219], the 2-kink scattering solution is given by

δ1 = − 1

δ2

≡
√

1−W
1 +W

, and A1 , A2 ∈ R, (B.4.5)

the kink-antikink scattering solution is

δ1 =
1

δ2

≡
√

1−W
1 +W

, and A1 , A2 ∈ R, (B.4.6)

and the breather solution is

δ1 =
1

δ2

≡
√

1− iW
1 + iW

, and A1 = (A2)∗ ≡ A ∈ C, (B.4.7)

where W ∈ R for each of them. Note that the choice

δ1 = − 1

δ2

≡
√

1− iW
1 + iW

, and A1 = (A2)∗ ≡ A ∈ C, (B.4.8)

violates the reality condition for φ; that is, |ψ| = sin(φ/2) > 1.
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It turns out quite useful to introduce auxiliary variables λ±1,2 as in (B.3.13), (B.3.14). So we

rewrite the four parameters v,W , and A1,2 as

cotAk ≡
−i
(
λ+
k − λ

−
k

)
1− λ+

k λ
−
k

, v ≡ tanh ν, W ≡ tanhω, (B.4.9)

where

tanh(ν + ω) ≡ λ+
1 + λ−1

1 + λ+
1 λ
−
1

, tanh(ν − ω) ≡ λ+
2 + λ−2

1 + λ+
2 λ
−
2

. (B.4.10)

Care should be taken in solving (tanh ν, tanhω) in terms of Θ± ≡ tanh (ν ± ω) due to sign

ambiguity. Written explicitly, the solutions are

tanh ν± =
1 + Θ−Θ+ ±

√
(1−Θ2

−) (1−Θ2
+)

Θ+ + Θ−
,

tanhω± =
1−Θ−Θ+ ±

√
(1−Θ2

−) (1−Θ2
+)

Θ+ −Θ−
.

(B.4.11)

Only the combinations (tanh ν+ , tanhω+) or (tanh ν− , tanhω−) can recover the original

relation (B.4.9). We will concentrate on the combination (ν−, ω−), because tanh ν+ ≥ 1, thus

making ν+ complex. Below we will denote the parameters (ν− , ω−) by (ν, ω).3

In terms of the variables λ±k , the 2-kink solution is redefined as

ψkk

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
⇐⇒ δ1 = − 1

δ2

= e−ω, A1 , A2 , v are given in (B.4.9), (B.4.12)

the kink-antikink solution is

ψka

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
⇐⇒ δ1 =

1

δ2

= e−ω, A1 , A2 , v are given in (B.4.9), (B.4.13)

and the breather solution is redefined by the analytic continuation of the kink-antikink solution4

ψbr

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
≡ ψka

(
λ+

1 , λ
+
2 , λ

−
2 , λ

−
1

)
. (B.4.14)

Let us discuss the properties of the functions ψkk , ψak and ψbr. They change their signs

under the simultaneous complex conjugation

ψkk

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
= −ψkk

(
λ−1 , λ

−
2 , λ

+
1 , λ

+
2

)
,

ψka

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
= −ψka

(
λ−1 , λ

−
2 , λ

+
1 , λ

+
2

)
,

ψbr

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
= −ψbr

(
λ−1 , λ

−
2 , λ

+
1 , λ

+
2

)
.

(B.4.15)

Also, ψkk and ψak are invariant under crossing

λ±1 → 1/λ±1 , λ±2 : fixed, or λ±2 → 1/λ±2 , λ±1 : fixed, (B.4.16)

3We can nevertheless obtain the 2-soliton solution satisfying the reality constraint |ψ| ≤ 1 for the combination

(ν+, ω+). Such consideration complicates the classification of the 2-soliton solutions, but the statement (B.4.18)

remains unchanged.
4As explained in (B.4.8), the analytic continuation of 2-kink solution does not work at all.
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and ψbr is invariant under the simultaneous crossing

λ±1 → 1/λ±1 , λ±2 → 1/λ±2 . (B.4.17)

A surprising is fact that the kink-antikink (B.4.13) and the breather solution (B.4.14) written

in terms of λ±k variables are identical

ψbr

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
≡ ψka

(
λ+

1 , λ
+
2 , λ

−
2 , λ

−
1

)
= ψka

(
λ+

1 , λ
+
2 , λ

−
1 , λ

−
2

)
, (B.4.18)

which clearly shows that there are no ‘boundstate’ solution in the Complex sine-Gordon system.

This identity can be proven either by direct computation, or by the exchange symmetry in the

scattering solution of dyonic giant magnons, which will be discussed in the next section.

B.5 Relation to dyonic giant magnon scattering

The scattering solution of dyonic giant magnons (DGMs) were explicitly constructed in [54,

151] using dressing method. Here we consider the Pohlmeyer-Lund-Regge reduction of these

solutions.

The profile of the DGM scattering solution is

ξ1 =
eit

2D
√
λ+

1 λ
−
1 λ

+
2 λ
−
2

{
R + λ+

1 λ
−
1 λ

+−
11 λ

+−
22 e

i(v1−v2) + λ+
2 λ
−
2 λ

+−
11 λ

+−
22 e

−i(v1−v2)
}
,

ξ2 =
−i

2D
√
λ+

1 λ
−
1 λ

+
2 λ
−
2

{
λ+−

11 e
iv1
[
λ++

12 λ
−+
12 λ

−
2 e

u2 + λ−−12 λ
+−
12 λ

+
2 e
−u2
]

+ (1↔ 2)
}
,

(B.5.1)

where

R = λ++
12 λ

−−
12

[
λ+

1 λ
+
2 e

u1+u2 + λ−1 λ
−
2 e
−u1−u2

]
+ λ−+

12 λ
+−
12

[
λ+

1 λ
−
2 e

u1−u2 + λ−1 λ
+
2 e
−u1+u2

]
, (B.5.2)

D = λ++
12 λ

−−
12 cosh(u1 + u2) + λ+−

12 λ
−+
12 cosh(u1 − u2) + λ+−

11 λ
+−
22 cos(v1 − v2), (B.5.3)

and λ±±jk are defined by

λ++
jk = λ+

j − λ+
k , λ+−

jk = λ+
j − λ−k , λ−+

jk = λ−j − λ+
k , λ−−jk = λ−j − λ−k . (B.5.4)

As pointed out in [54, 81], this solution is invariant under the ‘exchange’ transformation

λ−1 ↔ λ−2 , λ+
k : fixed, or λ+

1 ↔ λ+
2 , λ−k : fixed.

Consider the Pohlmeyer-Lund-Regge reduction (B.3.3), (B.3.4) of the above solution, and

call the corresponding CsG solution as ψstring . The function |ψstring| is invariant under

simultaneous complex conjugation λ+
1 ↔ λ−1 , λ

+
2 ↔ λ−2 (B.5.5)

simultaneous crossing λ±1 → 1/λ±1 , λ
±
2 → 1/λ±2 (B.5.6)

exchange λ−1 ↔ λ−2 , λ+
k : fixed,

or λ+
1 ↔ λ+

2 , λ−k : fixed. (B.5.7)
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Let xk ≡ e(iPk+Qk)/2 (k = 1, 2) be two complex numbers with Q1 > 0 and Q2 < 0. By suitably

identifying λ±k in the scattering solution of dyonic giant magnons with the ones in CsG 2-soliton

solutions (B.4.9), we get identities∣∣ψstring

(
λ+

1 = x1, λ
+
2 = x2, λ

−
1 = (x1)∗, λ−2 = (x2)∗

)∣∣
=

∣∣ψkk

(
λ+

1 = x1, λ
+
2 = x2, λ

−
1 = (x1)∗, λ−2 = (x2)∗

)∣∣ , (B.5.8)∣∣ψstring

(
λ+

1 = x1, λ
+
2 = 1/x2, λ

−
1 = (x1)∗, λ−2 = 1/(x2)∗

)∣∣
=

∣∣ψka

(
λ+

1 = x1, λ
+
2 = x2, λ

−
1 = (x1)∗, λ−2 = (x2)∗

)∣∣ . (B.5.9)

We have checked the identities (B.5.8) and (B.5.9) by numerically evaluating both sides. The

phase of ψ must also agree up to overall signs, from the uniqueness of the solution to the CsG

equations (B.3.6).

If we recall the discussion around (B.3.24), the transformation (x1 , x2)→ (x1 , 1/x2) should

turn the CsG 2-kink solution into the CsG kink-antikink solution, which explains the difference

between (B.5.8) and (B.5.9). Also, with the identification (B.5.9), the exchange symmetry

(B.5.7) of DGM scattering solution provides a proof of the equivalence between the CsG kink-

antikink and the CsG breather posed at (B.4.18).
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Appendix C

Details of calculation for finite-size

effects

C.1 S-matrix contribution

C.1.1 The spectral parameters and Jacobian

The Lüscher F -term formula (9.3.26) contains an integration over q̃, while the S-matrix is

written in terms of the spectral parameters y±. Thus in order to compute the Jacobian, we

need to rewrite y± as functions of q̃.

The spectral parameters y± as functions of q1 is defined by

y±(q1) = e±iq
1/2

Qb +

√
Q2
b + 16g2 sin2

(
q1

2

)
4g sin

(
q1

2

) , (C.1.1)

and the momentum q1 is related to q̃ via (9.3.20). There are two branches of the square root,

corresponding to E(y±) = ±iq̃. If we choose E(y±) = −iq̃, we obtain

y±(q̃) =

√
16g2 +Q2

b + q̃2 ±
√
Q2
b + q̃2

4g

iQb + q̃√
Q2
b + q̃2

. (C.1.2)

If we introduce another parameter by q̃ ≡ Qb cot(r/2), they translate into

y±(q̃) =

√
Q2
b + 16g2 sin2 r

2
±Qb

4g sin r
2

eir/2 . (C.1.3)

Roughly speaking, the Wick rotation (9.3.20) with q̃ = iq0 is equivalent to the transformation

(y+, y−) 7→ (y+, 1/y−). When we set Qb = 1 and use (C.1.3), we can solve the condition

y± = X+ to the next order of 1/g as

y± = X+ ≡ e(ip+θ)/2 ⇐⇒ r∗ ≈ p− iθ ± i

2g sin
(
p−iθ

2

) +O
(

1

g2

)
. (C.1.4)
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Note that θ ≈ Q/[2g sin(p/2)] if Q� g.

It is easy to compute the Jacobian between q̃ and y± from (C.1.2). They read

dy±(q̃)

dq̃
≈ i

(i− q̃)
√

1 + q̃2
= −i sin2

(r
2

)
eir/2 , (C.1.5)

for g � 1. Note in particular that both (y+)′ and (y−)′ are equal for this case.

C.1.2 Dressing phase

We will evaluate the dressing phase (9.4.4) for the case Q ∼ O(1)� 1.

AFS phase. The AFS phase is given in (9.4.35). Since the first term sums up to zero, the

following expression is more useful:

χ(0)(y, x) = −g(y − x)

(
1− 1

yx

)
log

(
1− 1

yx

)
. (C.1.6)

By using the relations

(y+ −X±)

(
1− 1

y+X±

)
= (y− −X±)

(
1− 1

y−X±

)
+
i

g
, (C.1.7)

we find

χ(0)(y−, X±)− χ(0)(y+, X±)

= −g(y− −X±)

(
1− 1

y−X±

)
log

(
1− 1

y−X±

1− 1
y+X±

)
+ i log

(
1− 1

y+X±

)
. (C.1.8)

We can relate the terms with X+ to those with X− via

(y− −X+)

(
1− 1

y−X+

)
= (y− −X−)

(
1− 1

y−X−

)
− iQ

g
. (C.1.9)

Thus we obtain

σ2
AFS(y,X) =

(
1− 1

y−X−

1− 1
y+X−

)2Q(
1− 1

y−X+

1− 1
y−X−

)2

, (C.1.10)

which is equal to (9.4.46).

Higher dressing phase. We reconsider the sum of even part of the dressing phase higher or-

der in 1/g. As shown in [79], there are contributions to the µ-term from the terms χ(2m)(ya, Xb)

with yaXb ∼ 1 at strong coupling. If we use the variable αab defined by (9.4.45), the higher

dressing phase can be written as

χ(2m)(αab) = ±2iαab(2m− 2)!
ζ(2m)

(2πiαab)2m
, (C.1.11)
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where we take the upper sign for ya ∼ eip/2 and the lower sign for ya ∼ e−ip/2. By means of

Borel resummation, we can compute the summation of χ(2m) over m as
∞∑
m=1

χ(2m)(αab) = ±2iαab
∞∑
m=1

∫ ∞
0

dt e−t
t2m−2ζ(2m)

(2πiαab)2m

= ±i
∫ ∞

0

dt e−t

[
αab

t2
−

coth
(

t
2αab

)
2t

]
. (C.1.12)

The last expression can be simplified further with the help of the following formula:1

2

∫ ∞
0

dt e−t
[

(αab − αcd)
t2

− 1

2t
coth

(
t

2αab

)
+

1

2t
coth

(
t

2αcd

)]

= (αab + αcd) log

(
αab

αcd

)
− 2(αab − αcd)

(
if αab − αcd = ±1

)
. (C.1.13)

The dressing phase can be computed by collecting terms with nonvanishing αab. According to

Table 9.2, we find

σ2
n≥2(y,X) ≈ exp

[
2
(
α−− − α+−) ](α+−

α−−

)α−−+α+−

,
(
for y ∼ eip/2

)
, (C.1.14)

which is (9.4.48).

C.2 Discussion on F -term

We show that F -term becomes negligibly small when we can avoid singularities of the S-matrix.

Let us first rewrite the expression for F -term (9.3.26) by changing integration variable. We

introduce another variable κ by

q2 = 16g2 sinh2
(κ

2

)
−Q2

b ,
(
q1 = q∗ ≡ −iκ

)
, (C.2.1)

where Qb is the multiplet number of particle b. The F -term can be rewritten as

δεFa (p) = −
∑
Qb≥1

∫
CQb

dκ

2π

4g2 sinhκ√
16g2 sinh2

(
κ
2

)
−Q2

b

(
1−

ε′Q(p)

ε′Qb(q∗)

)
e−κL

∑
b

(Sbaba(q, p)− 1) ,

(C.2.2)

where the contour CQ is defined as

CQ =
{
κ ∈ R

∣∣∣ κ ≥ κ(Q)
cr

}
, κ(Q)

cr = 2 arcsinh

(
Q

4g

)
. (C.2.3)

Because each term within the sum at most gives the contribution ∼ e−κ
(Qb)
cr L, we may focus on

the leading term Qb = 1 and rewrite it as

δεFa (p)
∣∣∣
Qb=1

≡ −
∫ ∞
κ
(1)
cr

dκ
e−κL√

sinh
(
κ
2

)
− sinh

(
κ
(1)
cr

2

) f (q, p) . (C.2.4)

1We checked this equality numerically.
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At large L the dominant contribution comes from κ = κ
(1)
cr . If one finds singularity of S-matrix

along the integration path, one can slightly deform the contour assuming the analyticity of

integrand. Thus, if S-matrix behaves regularly around κ = κ
(1)
cr , we can approximate the

integral (C.2.4) as

δεFa (p)
∣∣∣
Qb=1

≈ −
∫ ∞

0

dk
e−(k+κ

(1)
cr )L

√
k

· f(−iκ(1)
cr , p)

cosh1/2
(
κ
(1)
cr

2

) =
e−κ

(1)
cr L

√
L
· f(−iκ(1)

cr , p)

cosh1/2
(
κ
(1)
cr

2

) , (C.2.5)

which is subleading in the limit L→∞ , because of the factor L−1/2.

Singularities of the S-matrix appear at the position depending on the value of X± and g.

And if there is a singularity at q∗ = −iκ(1)
cr which is different from single poles of the BDS

S-matrix, the above argument will break down. We will consider a few particular cases in

which the su(2|2)2 S-matrix may possibly have singularity at q1 = −iκ(1)
cr in what follows.2

Using the expression of y± given in Appendix C.1.1, one can find that the zeroes or the

poles of the BDS S-matrix are found at

q1 =
−i

2g sin
(
p±iθ

2

) for Im q1 < 0, q1 =
+i

2g sin
(
p±iθ

2

) for Im q1 > 0, (C.2.6)

and they do not hit the path (C.2.3) unless p = π, θ = 0. Also, by looking at (9.4.16), one sees

that the coefficients s2(y,X) and s3(y,X) do not bring new poles.

As discussed in [81, 82], the BHL/BES dressing phase contains an infinite number of double

poles located at

X+ +
1

X+
− Y − − 1

Y −
= −im

g
(m = 1, 2, . . .) , (C.2.7)

where either one of X+ or Y − must be inside the unit circle, while the other be outside. These

double poles are interpreted as the kinematical constraint for the Landau-Cutkosky diagram

of box type (Figure 9.4). Below we will analytically continue Y ± keeping particle a real,

X+ = (X−)∗, and study if both (C.2.7) and q∗ = −iκ(1)
cr can be solved at a particular value of

X±.

First of all, with q∗ = −iκ(1)
cr and Q(Y ±) = 1, we evaluate Y ± as,

Y ± = e±
iq1

2

1 +
√

1 + 16g2 sin2( q
1

2
)

4g sin( q
1

2
)

∣∣∣∣∣
q1=−iκ(1)cr

= i e±
κ
(1)
cr
2 = i

(
1±

√
1 + 16g2

4g

)
, (C.2.8)

showing |Y +| > 1 and |Y −| < 1. Plugging (C.2.8) into (C.2.7), we find

X+ +
1

X+
= − i

2g
(2m+ 1) , (C.2.9)

2Note that the condition p(Y ±) ≡ q1 = −iκ(1)cr implies E(Y ±) = 0.
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which has the solutions

X+ = i

− (2m+ 1)±
√

(2m+ 1)2 + 16g2

4g

 . (C.2.10)

Note that we must choose the lower sign so that X+ stays outside the unit circle. By using

the definition X± ≡ e(±ip+θ)/2 as in (9.4.24), we can identify this solution as p = −π and

sinh(θ/2) = (2m+ 1)/4g, which implies

X− = −i

− (2m+ 1)−
√

(2m+ 1)2 + 16g2

4g

 . (C.2.11)

However, it turns out that the spectral parameters given by (C.2.10) and (C.2.11) give rise to

Q(X±) = − (2m+ 1) < 0, which is impossible. Therefore, we conclude that there are no real

values of p and θ which are consistent with the double pole condition (C.2.7), q∗ = −iκ(1)
cr ,

Q(Y ±) = 1, and Q(X±) > 0.
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